首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
BACKGROUND: The triple A syndrome is characterized by the main features adrenal insufficiency, achalasia and alacrima. Other organ systems can be involved in a variable manner. PATIENT: We report clinical and novel molecular findings in a 6.8-year-old Kurdish boy, who presented with relapsing vomiting and failure to thrive. He was diagnosed as having achalasia and primary adrenocortical hypofunction. History and clinical examination showed that the boy was unable to produce tears. In addition, a large number of associated neurological and dermatological features was present in this patient. Thus, the clinical diagnosis of triple A syndrome was made. RESULTS: Initial molecular marker analysis supported linkage to the triple A critical region on chromosome 12q13. Further, a homozygous G -->A transition in exon 9 of the newly identified AAAS gene, resulting in a stop codon (W295X) and predicting a truncated protein with loss of function, confirmed the diagnosis. This new mutation was also detected in another family of Kurdish origin. In turned out that both families were related.  相似文献   

2.
OBJECTIVE: To investigate the phenotype and genotype of 3 unrelated children with triple A syndrome from southern Turkey. METHODS: The coding sequence of the AAAS gene was sequenced including exon-intron boundaries. Haplotype analysis using markers from AAAS region was performed in order to assess potential founder effects. RESULTS: In all 3 patients, the identical nonsense mutation (R478X) in exon 16 of the AAAS gene was identified. The patients who may be distantly related appeared phenotypically similar with the classical triad of the triple A syndrome (adrenal insufficiency, alacrima and achalasia) with dermatological manifestations while lacking neurological features except for mild mental retardation. CONCLUSION: The R478X mutation tends to result in a rather severe phenotype although genotype-phenotype relationships cannot be drawn due to the small number of patients.  相似文献   

3.
4.
The triple A syndrome is a complex and multisystemic autosomal recessive disease with the 3 main symptoms of adrenal insufficiency, alacrima, and achalasia accompanied by neurological impairment. Mutations in the AAAS gene on chromosome 12q13 are responsible for the disorder. AAAS encodes a protein named ALADIN, which belongs to the family of WD-repeat-containing proteins and has been shown to localize to nuclear pore complexes. The function of the protein is not clear. It is supposed that ALADIN plays an important role in RNA and (or) protein trafficking between the nucleus and cytoplasm. With transfection experiments, we analyzed the cellular localization of the wild-type and 17 natural mutant variants (9 missense, 5 nonsense, 3 frameshift mutations) of ALADIN. We show that most mutations cause mislocalization of the mutant ALADIN proteins in the cytoplasm. In contrast, some variants with mutations located at the N-terminus (Q15K, L25P) and 3 artificial C-terminus mutations (Q490X, R493X, and V497X) remain at the nuclear pore. Using a patient cell line, we show that the mutation 43C>A in exon 1 does not cause a missense mutation Q15K but, rather, results in aberrant splicing.  相似文献   

5.
6.
The deficient activity of the human lysosomal hydrolase, acid sphingomyelinase (ASM, EC 3.1.4.12), results in the neuronopathic (Type A) and non-neuronopathic (Type B) forms of Niemann-Pick disease (NPD). To investigate the genetic basis of the phenotypic heterogeneity in NPD, the molecular lesions in the ASM gene were determined from three unrelated NPD patients and evaluated by transient expression in COS-1 cells. A Type A NPD patient of Asian Indian ancestry (proband 1) was homoallelic for a T to A transversion in exon 2 of the ASM gene which predicted a premature stop at codon 261 of the ASM polypeptide (designated L261X). In contrast, an unrelated Type A patient of European ancestry (proband 2) was heteroallelic for a two-base (TT) deletion in exon 2 which caused a frame-shift mutation at ASM codon 178 (designated fsL178), leading to a premature stop at codon 190, and a G to A transition in exon 3 which caused a methionine to isoleucine substitution at codon 382 (designated M382I). Transient expression of the fsL178, L261X, and M382I mutations in COS-1 cells demonstrated that these lesions did not produce catalytically active ASM, consistent with the severe neuronopathic Type A NPD phenotype. In contrast, an unrelated Type B patient of European descent (proband 3) was heteroallelic for two missense mutations, a G to A transition in exon 2 which predicted a glycine to arginine substitution at ASM codon 242 (designated G242R), and an A to G transition in exon 3 which resulted in an asparagine to serine substitution at codon 383 (designated N383S). Interestingly, the G242R allele produced ASM activity in COS-1 cells at levels about 40% of that expressed by the normal allele, thereby explaining the mild Type B phenotype of proband 3 and the high residual activity (i.e. approximately 15% of normal) in cultured lymphoblasts. In contrast, the N383S allele did not produce catalytically active enzyme. None of these five ASM mutations was detected in over 60 other unrelated NPD patients analyzed, nor were these mutations found in over 100 normal ASM alleles. Thus, small deletions or nonsense mutations which trunctated the ASM polypeptide, or missense mutations that rendered the enzyme noncatalytic, resulted in Type A NPD disease, whereas a missense mutation that produced a defective enzyme with residual catalytic activity caused the milder nonneuronopathic Type B phenotype. These findings have facilitated genotype/phenotype correlations for this lysosomal storage disease and provided insights into the functional organization of the ASM polypeptide.  相似文献   

7.
We report four new mutations in Japanese patients with mucopolysaccharidosis IVA (MPSIVA) who were heterozygous for a common double gene deletion. A nonsense mutation of CAG to TAG at codon 148 in exon 4 was identified, resulting in a change of Q to a stop codon and three missense mutations. V (GTC) to A (GCC) at codon 138 in exon 4, P (CCC) to S (TCC) at codon 151 in exon 5, and P (CCC) to L (CTC) at codon 151 in exon 5. Introduction of these mutations into the normal GALNS cDNA and transient expression in cultured fibroblasts resulted in a significant decrease in the enzyme activity. V138A and Q148X mutations result in changes of restriction site, which were analyzed by restriction-enzyme assay. P151S and P151L mutations that did not alter the restriction site were detected by direct sequencing or allele specific oligohybridization. Detection of the double gene deletion was initially done using Southern blots and was confirmed by PCR. Haplotypes were determined using seven polymorphisms to the GALNS locus in families with the double gene deletion. Haplotype analysis showed that the common double gene deletion occurred on a single haplotype, except for some variation in a VNTR-like polymorphism. This finding is consistent with a common founder for all individuals with this mutation.  相似文献   

8.
X-linked adrenoleukodystrophy (XALD, MIM 300100), the commonest inherited peroxisomal disorder, is characterized by central nervous system demyelination, primary adrenal failure and the systemic accumulation of saturated very long chain fatty acids (VLCFAs). The defective gene ABCD1 encodes an ATP-binding cassette (ABC) transport protein named ALDP, which functions as a crucial transporter of VLCFAs into the peroxisomes for beta-oxidation. Here, we report a Chinese man with adrenomyeloneuropathy characterized by Addison's disease and spastic paraparesis. His plasma VLCFA levels, ratios of C24:0/C22:0 and C26:0/C22:0 were all significantly elevated. We performed mutation analysis of the ABCD1 gene in the proband and the family members using direct DNA sequencing and restriction analysis. A novel insertion 496_497insG in exon 1 causing a frame shift and a premature stop codon at amino acid position 194 (D194X) was identified (GenBank accession No. NM_000033). The insertional mutation abolishes an HhaI restriction site. The same mutation was found in his mother and the eldest sister even though their clinical and biochemical abnormalities were milder. Diagnosis of XALD often relies upon the detection of elevated VLCFA levels and ratios of C26:0/C22:0 and C24:0/C22:0 in fasting blood, however, 5-15% of the obligate heterozygotes would give normal values. DNA-based testing thus remains the most reliable tool for heterozygote detection when the disease-causing mutations are known. Using restriction fragment length polymorphism with HhaI, we have devised a rapid method for the identification of the carriers among the proband's family members and possibly for the screening of the mutations in other XALD patients.  相似文献   

9.
We studied a French kindred with hereditary elliptocytosis associated with a spectrin variant (spectrin LePuy) containing a beta-spectrin chain that is truncated at its C terminus (Dhermy, D., Lecomte, M., Garbarz, M., Bournier, O., Galand, C., Gautero, H., Feo, C., Alloisio, N., Delaunay, J., and Boivin, P. (1982) J. Clin. Invest. 70, 707-715). The structure of the 3' end of the beta-spectrin gene, the region encoding the C terminus of beta-spectrin, was determined. Nucleotide sequencing of amplified genomic DNA revealed a mutation at position +4 (A----G) of the 5' donor consensus splice site of the intron following the third-to-last exon (exon X) in one beta-spectrin allele of a heterozygous patient. Agarose gel electrophoresis of polymerase chain reaction-amplified cDNA revealed an extra band of lower molecular weight, suggesting that the shortened beta-spectrin chain of spectrin LePuy arises from aberrant mRNA splicing. Nucleotide sequencing of the shorter cDNA amplification product revealed that the sequences encoding exon X were absent. Southern blotting of cDNA amplification products confirmed this result. The skipping of exon X causes a shift in the normal reading frame resulting in the encoding of a new amino acid sequence at the C terminus of the mutant beta-spectrin chain. A new in-frame stop codon is encountered following a single residue of this novel sequence.  相似文献   

10.
A rare cause of congental adrenal hyperplasia is 17α-hydroxylase deficiency. It results in sexual infantilism, primary amenorrhea in females, pseudohermaphroditism in males, hypertension, and hypokalemia. We studied two female siblings from a rural community in Mexico. The cause of consultation was primary amenorrhea. The proband had low levels of estrogen, progesterone and cortisol. Deoxycorticosterone and corticosterone levels were elevated. The proband was homozygous for a transversion of cytosine to thymine at exon 4 (CGA→TGA), causing a premature stop codon at position 239 (R239X). Analysis of family members showed the presence of this heterozygous mutation in the mother, father and one healthy sibling. In summary, we describe a Mexican family with 17α-hydroxylase deficiency due to R239X mutation.  相似文献   

11.
Mutations in the gene for the pigment-producing enzyme tyrosinase are responsible for type IA (tyrosinase-negative) oculocutaneous albinism (OCA). Most reported mutations have been single base substitutions. We now report three different frameshift mutations in three unrelated individuals with type IA OCA. The first individual has a single base deletion within a series of five guanidines, resulting in a premature stop codon in exon I on one allele and a missense mutation at codon 382 in exon III on the homologous allele. The second individual is a genetic compound of two separate frameshift mutations, including both the same exon I single base deletion found in the first individual and a deletion of a thymidine-guanidine pair, within the sequence GTGTG, forming a termination codon (TAG) in exon I on the homologous allele. The third individual has a single base insertion in exon I on one allele and a missense mutation at codon 373 in exon III on the homologous allele. The two missense mutations occur within the copper Bbinding region and may interfere with either copper binding to the enzyme or oxygen binding to the copper. These five different mutations disrupt tyrosinase function and are associated with a total lack of melanin biosynthesis.  相似文献   

12.
We report studies of two unrelated Japanese patients with 17α-hydroxylase deficiency caused by mutations of the 17α-hydroxylase (CYP17) gene. We amplified all eight exons of the CYP17 gene, including the exon-intron boundaries, by the polymerase chain reaction and determined their nucleotide sequences. Patient 1 had novel, compound heterozygous mutations of the CYP17 gene. One mutant allele had a guanine to thymine transversion at position +5 in the splice donor site of intron 2. This splice-site mutation caused exon 2 skipping, as shown by in vitro minigene expression analysis of an allelic construct, resulting in a frameshift and introducing a premature stop codon (TAG) 60 bp downstream from the exon 1-3 boundary. The other allele had a missense mutation of His (CAC) to Leu (CTC) at codon 373 in exon 6. These two mutations abolished the 17α-hydroxylase and 17,20-lyase activities. Restriction fragment length polymorphism (RFLP) analysis with a mismatch oligonucleotide showed that the patient’s mother and brother carried the splice-site mutation, but not the missense mutation. Patient 2 was homozygous for a novel 1-bp deletion (cytosine) at codon 131 in exon 2. This 1-bp deletion produces a frameshift in translation and introduces a premature stop codon (TAG) proximal to the highly conserved heme iron-binding cysteine at codon 442 in microsomal cytochrome P450 steroid 17α-hydroxylase (P450c17). RFLP analysis showed that the mother was heterozygous for the mutation. Received: 15 November 1997 / Accepted: 15 March 1998  相似文献   

13.
Congenital adrenal hyperplasia is most frequently due to steroid 21-hydroxylase (21-OH) deficiency. Due to the existence of a pseudogene in tandem duplicated with the 21-OH gene, asymmetric recombination causes the majority of the molecular defects underlying this deficiency: gene conversions and deletions of the functional gene. Screening for a small array of mutations, those existing in the pseudogene together with deletions, allows the characterization of most mutated alleles, 91% in the Spanish population. We report the case of a boy from a nonconsanguineous family, diagnosed during the neonatal period of a salt-wasting form of the deficiency, in which this screening did not allow the characterization of the paternal or the maternal allele. This infrequent finding in a nonconsanguineous family was further investigated. Single-strand conformation polymorphism screening for new mutations revealed an abnormally migrating pattern when polymerase chain reaction fragments from 21-OH gene exon 1 of the patient and relatives were analyzed. Upon direct sequencing, the insertion of a T at position 64 (64insT, frameshift generating a stop codon at exon 2) was found in homozygosity in the patient. Microsatellite typing in the HLA region revealed the patient to be homozygous for five markers (heterozygosities 0.62 to 0.74). Apparently this new mutation was generated several generations ago and has been preserved for years. Consanguinity had been discarded for several generations, although both families could be traced back to a small rural area in Navarra (Spain).  相似文献   

14.
Four mutations of the XPAC gene were identified as molecular bases of different UV-sensitive subgroups of xeroderma pigmentosum (XP) group A. One was a G to C transversion at the last nucleotide of exon 4 in GM1630/GM2062, a little less hypersensitive subgroup than the most sensitive XP2OS/XP12RO. The second mutation was a G to A transition at the last nucleotide of exon 3 in GM2033/GM2090, an intermediate subgroup. Both mutations caused almost complete inactivation of the canonical 5' splice donor site and aberrant RNA splicing. The third mutation was a nucleotide transition altering the Arg-211 codon (CGA) to a nonsense codon (TGA) in another allele of GM2062. The fourth mutation was a nucleotide transversion altering the His-244 codon (CAT) to an Arg codon (CGT) in XP8LO, an intermediate subgroup. Our results strongly suggest that the clinical heterogeneity in XP-A is due to different mutations in the XPAC gene.  相似文献   

15.
BACKGROUND: 17alpha-Hydroxylase/17,20-lyase deficiency is caused by a defect of P450c17 which catalyzes both 17alpha-hydroxylase and 17,20-lyase reactions in adrenal glands and gonads. RESULTS: In the present study, we analyzed the CYP17 gene in a Japanese patient with 17alpha-hydroxylase/17,20-lyase deficiency. The patient was a phenotypic girl and referred to us for right-sided inguinal hernia at the age of 4 years. Biopsy of the herniated gonad showed testicular tissue. The karyotype was 46,XY. At 6 years of age, hypertension was clearly recognized and the patient was diagnosed as having 17alpha-hydroxylase/17,20-lyase deficiency based on the clinical and laboratory findings. Analysis of the CYP17 gene revealed a compound heterozygous mutation. One mutation was an undescribed single nucleotide deletion at codon 247 in exon 4 (CTT to CT: 247delT) and the other was a missense mutation resulting in a substitution of His to Leu at codon 373 in exon 6 (CAC to CTC: H373L), which has been previously shown to abolish both 17alpha-hydroxylase and 17,20-lyase activities. The functional expression study of the 247delT mutant showed that this 247delT mutation completely eliminates both 17alpha-hydroxylase and 17,20-lyase activities. CONCLUSIONS: Together, these results indicate that the patient is a compound heterozygote for the mutation of the CYP17 gene (247delT and H373L) and that these mutations inactivate both 17alpha-hydroxylase and 17,20-lyase activities and give rise to clinically manifest 17alpha-hydroxylase/17,20-lyase deficiency.  相似文献   

16.

Background

Steroid 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia (CAH). Detection of underlying mutations in CYP21A2 gene encoding steroid 21-hydroxylase enzyme is helpful both for confirmation of diagnosis and management of CAH patients. Here we report a novel 9-bp insertion in CYP21A2 gene and its structural and functional consequences on P450c21 protein by molecular modeling and molecular dynamics simulations methods.

Methods

A 30-day-old child was referred to our laboratory for molecular diagnosis of CAH. Sequencing of the entire CYP21A2 gene revealed a novel insertion (duplication) of 9-bp in exon 2 of one allele and a well-known mutation I172N in exon 4 of other allele. Molecular modeling and simulation studies were carried out to understand the plausible structural and functional implications caused by the novel mutation.

Results

Insertion of the nine bases in exon 2 resulted in addition of three valine residues at codon 71 of the P450c21 protein. Molecular dynamics simulations revealed that the mutant exhibits a faster unfolding kinetics and an overall destabilization of the structure due to the triple valine insertion was also observed.

Conclusion

The novel 9-bp insertion in exon 2 of CYP21A2 genesignificantly lowers the structural stability of P450c21 thereby leading to the probable loss of its function.  相似文献   

17.
Using the cDNA and selected genomic probes of rat urate oxidase, we have screened the human genomic library and isolated seven clones; one clone (clone 13) contained exonic regions which correspond to the exons 5, 6, and 7 of rat urate oxidase gene. The nucleotide sequence was determined for these three exons and exon/intron junctions, and compared with the sequence from the rat gene. A mutation resulting in a stop codon TGA was found in the fifth exon of the human urate oxidase gene. Sequence analysis of the polymerase chain reaction amplified DNA, corresponding to the fifth exon of urate oxidase from DNA samples from four different individuals, confirmed the same TGA stop codon in all. This single stop codon mutation and/or other mutation(s) in this gene may be responsible for the lack of urate oxidase activity in the human.  相似文献   

18.
Summary Two previously unidentified mutations at the phenylalanine hydroxylase locus were found during a study of the relationship between genotype and phenotype in phenylketonuria and hyperphenylalaninemia. One mutation eliminates the BamHI site in exon 7 and the other eliminates the HindIII site in exon 11 of the phenylalanine hydroxylase gene. They were suspected because of deviating restriction fragment patterns and confirmed by amplification, via the polymerase chain reaction, of exon 7 and exon 11, respectively, followed by digestion with the appropriate restriction enzyme. Direct sequencing of amplified mutant exon 7 revealed a G/C to T/A transversion at the first base of codon 272, substituting a GGA glycine codon for a UGA stop codon. Direct sequencing of amplified mutant exon 11 revealed a deletion of codon 364, a CTT leucine codon. The exon 7 mutation can be expected to result in a truncated protein and the exon 11 mutation in the elimination of an amino acid in the catalytic region of the enzyme. A patient who is a compound heterozygote for these two mutations has classical phenylketonuria. It is concluded that each of the two mutations leads to a profound loss of enzymatic activity. The segregation of these mutations with disease alleles in 4 and 2 families, respectively, supports the hypothesis that multiple mutations at the phenylalanine hydroxylase locus explain the variable phenylalanine tolerance in patients with phenylalanine hydroxylase deficiency.  相似文献   

19.
Hereditary coproporphyria (HCP) is an autosomal dominant disease characterized by a deficiency of coproporphyrinogen oxidase. To date, four mutations of the gene have been reported. We report here another mutation in two Japanese families with HCP, which was revealed by analysis of polymerase chain reaction (PCR)-amplified DNA fragments of the gene by a direct-sequencing method. A point mutation, G to A, was found in exon 4 of the gene at position 538 of the cDNA from the reported putative translation initiation codon ATG. This mutation results in a glycine to arginine substitution at amino acid 180. Two carriers in the family were successfully diagnosed by detecting the mutation using restriction analysis of the PCR products. Received: 23 April 1996 / Revised: 15 July 1996  相似文献   

20.
We analyzed Niemann-Pick type C disease 1 (NPC1) gene in 12 patients with Niemann-Pick type C disease by sequencing both cDNA obtained from fibroblasts and genomic DNA. All the patients were compound heterozygotes. We found 15 mutations, eight of which previously unreported. The comparison of cDNA and genomic DNA revealed discrepancies in some subjects. In two unrelated patients carrying the same mutations (P474L and nt 2972del2) only one mutant allele (P474L), was expressed in fibroblasts. The mRNA corresponding to the other allele was not detected even in cells incubated with cycloheximide. The promoter variants (-1026T/G and -1186T/C or -238 C/G), found to be in linkage with 2972del2 allele do not explain the lack of expression of this allele, as they were also found in control subjects. In another patient, (N1156S/Q922X) the N1156S allele was expressed in fibroblasts while the expression of the other allele was hardly detectable. In a fourth patient cDNA analysis revealed a point mutation in exon 20 (P1007A) and a 56 nt deletion in exon 22 leading to a frameshift and a premature stop codon. The first mutation was confirmed in genomic DNA; the second turned out to be a T-->G transversion in exon 22, predicted to cause a missense mutation (V1141G). In fact, this transversion generates a donor splice site in exon 22, which causes an abnormal pre-mRNA splicing leading to a partial deletion of this exon. In some NPC patients, therefore, the comparison between cDNA and genomic DNA may reveal an unexpected expression of some mutant alleles of NPC1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号