首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smooth and non-muscle tropomyosins were found to produce a 2-3-fold Ca-insensitive stimulation of the ATPase activity of reconstituted skeletal muscles actomyosin at normal MgATP concentrations and physiological ratios of myosin to actin. Under the same conditions skeletal muscles tropomyosin had no effect. Similar effects of these three tropomyosins were observed for the low myosin/F-actin ratios necessary for kinetic measurements. Since it could be established that this actomyosin system, with or without tropomyosin, obeyed Michaelian kinetics, the tropomyosin effects could be interpreted in terms of their influence on maximal turnover (V) or on the affinity of myosin for actin (Kapp). Accordingly, gizzard tropomyosin had practically no effect on the affinity and reduced only slightly the value of V, compared to pure actin. In contrast to gizzard tropomyosin, brain tropomyosin produced an approximately twofold increase in both Kapp and V; i.e. it increased the turnover rate but decreased the affinity. It is apparent from the data that brain tropomyosin acts as an uncompetitive activator with respect to pure actin, while having the same V as the actin plus gizzard tropomyosin complex. Further studies on these tropomyosins show that only skeletal and smooth muscle tropomyosin have similar functional properties with respect to troponin inhibition and the activation of the ATPase at low ATP concentrations. It is suggested that the noted increases in V by tropomyosin are caused by the acceleration of the dissociation of the myosin head from actin at the end point of the cross bridge movement.  相似文献   

2.
A chemical comparison of tropomyosins from muscle and non-muscle tissues.   总被引:17,自引:0,他引:17  
Tropomyosins from six different calf tissues: aorta (smooth muscle), skeletal muscle, heart, brain, pancreas and platelets have been isolated, as well as a tropomyosin from mouse fibroblasts. The three muscle tropomyosins have identical polypeptide molecular weights (35,000), paracrystal periodicity and fine structure, and very similar peptide maps. The four non-muscle tropomyosins also have identical polypeptide molecular weights (30,000), paracrystal periodicity and fine structure, and very similar peptide maps. All tropomyosins examined have the same C-terminal amino acid, isoleucine and a blocked N terminal. These findings indicate that muscle and non-muscle tropomyosins are grouped into two similar but non-identical classes of protein. The two classes have at least ten peptide differences out of 31 total peptides, each group having several peptides not found in the other group. This suggests that the two classes of tropomyosins are coded for by different gene classes. It is likely that both gene classes evolved from an ancestral gene by a process involving gene duplication.Peptide maps of skeletal muscle tropomyosins from rabbit, calf and chick, and of non-muscle tropomyosins from rabbit, mouse and calf show few species differences. This suggests that tropomyosin is a highly conserved molecule.  相似文献   

3.
4.
Aims:  We have recently found that preconditioning of stainless steel surfaces with an aqueous fish muscle extract can significantly impede bacterial adhesion. The purpose of this study was to identify and characterize the primary components associated with this bacteria-repelling effect.
Methods and Results:  The anti-adhesive activity was assayed against Escherchia coli K-12, and bacterial adhesion was quantified by crystal violet staining and sonication methods. Proteolytic digestion, elution and fractionation experiments revealed that the anti-adhesive activity of the extract was linked to the formation of a proteinaceous conditioning film composed primarily of fish tropomyosins. These fibrous proteins formed a considerable anti-adhesive conditioning layer on and reduced bacterial adhesion to several different materials including polystyrene, vinyl plastic, stainless steel and glass. The protein adsorption profiles obtained from the various materials did not differ significantly, but elution was often incomplete making minor qualitative/quantitative differences indiscernible.
Conclusions:  The data highlights the significance of protein conditioning films on bacterial adhesion and emphasizes the importance of substratum's physiochemical properties and exposure time with regards to protein adsorption/elution efficiency and subsequent bacterial adhesion.
Significance and Impact of the Study:  Fish tropomyosin-coatings could potentially offer a nontoxic and relatively inexpensive measure of reducing bacterial colonization of inert surfaces.  相似文献   

5.
1. Tropomyosin, one of the regulatory proteins in muscle contraction, was prepared from chickens, rabbits, frogs, shrimps, and shellfish, and conserved characteristics were studied using an enzymological technique. 2. All tropomyosins tested, irrespective of their sources, were found to have the ability to mediate the inhibitory activity of rabbit troponin toward rabbit Mg2+-activated actomyosin ATPase (Mg2+-ATPase) activity in the absence of Ca2+ ions. 3. The effect of tropomyosin on the Mg2+-ATPase activity in the presence of Ca2+ ions varied, depending on the source, and this variation appeared to reflect the evolutionary course of this protein. 4. Tropomyosin from shellfish adductor muscle had the ability to bind to rabbit skeletal muscle troponin and actin. This ability is also considered to be a basic characteristic of tropomyosin which has been conserved during evolution.  相似文献   

6.
Structural and functional properties of ras proteins   总被引:33,自引:0,他引:33  
E Santos  A R Nebreda 《FASEB journal》1989,3(10):2151-2163
The ras proteins belong to a family of related polypeptides that are present in all eukaryotic organisms from yeast to human. Their extraordinary evolutionary conservation suggests that they have essential cellular functions, although their exact role remains unknown. Mutations in specific amino acids and overexpression of normal proteins have been linked to altered proliferation and/or differentiation and, particularly, to neoplastic processes. Mature ras proteins are located on the inner side of the plasma membrane, and their biochemical properties include binding and exchange of guanine nucleotides and GTPase activity. The favored hypothesis for ras function is that these proteins exist in an equilibrium between an inactive conformation (p21.GDP) and an active conformation (p21. GTP) in which they are able to interact with their as yet unknown cellular target or targets. Similarities in cellular location, structure, and biochemistry with other known regulatory (G) proteins suggest that they play a role in transduction of signals from the cell surface. The elucidation of the crystal structure of normal and transforming ras proteins and the identification of cellular proteins that interact directly with them (GAP, CDC25) or suppress some of their biological effects (Krev-1) have opened new avenues in the search for their elusive cellular targets and in the elucidation of the functional role of ras gene products.  相似文献   

7.
Structural and functional properties of colicin B   总被引:24,自引:0,他引:24  
Colicin B was isolated in pure form from cells of Escherichia coli that contained the colicin activity and immunity genes cloned on a multi-copy plasmid. Active colicin B consisted of a single polypeptide with Mr of about 60,000. The sequence of 44 amino acids from the amino-terminal portion is presented. The isoelectric point of the protein was at 4.5. Colicin B inhibited the membrane potential-dependent transport of proline and enhanced the uptake of alpha-methylglucoside via the phosphoenolpyruvate-dependent phosphotransferase system. Colicin B formed small, ion permeable channels with an average single-channel conductance of 13.7 pS (1 pS = 10(-12) siemens) in 1 M KCl. Channel formation was voltage-dependent in the pH range between 4.5 and 6. At pH 7 the channels were voltage independent. Voltage-dependent channels were only formed when the trans compartment (the protein was added to the cis compartment) was negative by at least 70 mV. Evidence for an asymmetric single channel conductance was obtained. With KCl a hyperbolic conductance-concentration relationship was observed. The conductance for monovalent cations was minimal for Li+ and was maximal for NH+4. The single channel conductance of colicin B was larger than that of colicin A as judged from lipid bilayer experiments under otherwise identical conditions.  相似文献   

8.
In this review the main families of endopeptidases belonging to the clan of metzincins of zinc-dependent metal-loproteinases in organisms of wide evolutional range from bacteria to mammals are considered. The data on classification, physicochemical properties, substrate specificity, and structural features of this group of enzymes are given. The activation mechanisms of metzincins, the role of these proteins in organisms, and their participation in various physiological processes are discussed.  相似文献   

9.
Structural and functional properties of colicin M.   总被引:13,自引:11,他引:2       下载免费PDF全文
Colicin M of Escherichia coli Cl139 was isolated in pure form. It consisted of a single polypeptide with a molecular weight of 27,000 +/- 2,000. Colicin M lysed sensitive cells of E. coli but had to act continuously up to the point when lysis commenced (after 20 min). Colicin M was largely resistant to hydrolysis by trypsin except when adsorbed to cells. Within 4 to 5 min after addition of colicin M, cells could be rescued by trypsin or sodium dodecyl sulfate. Later, colicin M was apparently inaccessible to these inactivating agents. Killing of cells by colicin M required Ca2+ ions. Cells could be rescued with ethylene glycol-bis(beta-aminoethyl ether)-N,N'-tetraacetate (EGTA) immediately before the onset of lysis. Under these conditions, colicin M remained bound to the cells, and it became again sensitive to trypsin. We conclude that under the influence of EGTA colicin M is removed from its site of action and becomes again accessible to trypsin at the cell surface.  相似文献   

10.
11.
R M Wynn  J Omaha  R Malkin 《Biochemistry》1989,28(13):5554-5560
Photosystem I (PSI) complexes have been isolated from two cyanobacterial strains, Synechococcus sp. PCC 7002 and 6301. These complexes contain six to seven low molecular mass subunits in addition to the two high molecular mass subunits previously shown to bind the primary reaction center components. Chemical cross-linking of ferredoxin to the complex identified a 17.5-kDa subunit as the ferredoxin-binding protein in the Synechococcus sp. PCC 6301-PSI complex. The amino acid sequence of this subunit, deduced from the DNA sequence of the gene, confirmed its identity as the psaD gene product. A 17-kDa subunit cross-links to the electron donor, cytochrome c-553, in a manner analogous to the cross-linking of plastocyanin to the higher plant PSI complex. Using antibodies raised against the spinach psaC gene product (a 9-kDa subunit which binds Fe-S centers A and B), we identified an analogous protein in the cyanobacterial PSI complex.  相似文献   

12.
The addition of either smooth muscle or brain tropomyosin to skeletal muscle actoheavy meromyosin (HMM) or acto-myosin subfragment-1 (SF1) produces an activation of the actin-activated ATPase activity up to 100%. This contrasts with the opposite, inhibitory effect produced by skeletal muscle tropomyosin. The degree of activation or inhibition depends on the ionic conditions, which influence the affinities of tropomyosin and HMM or SF1 for actin as well as on the molar ratio of actin to myosin.Enzyme kinetic analysis indicates that the inhibitory effect of skeletal muscle tropomyosin results from an approximately six- to tenfold increase in the apparent affinity (Kapp) of the myosin head for the F-actin-tropomyosin complex with a concomitant six- to tenfold reduction in the maximal turnover rate (Vmax). Thus, there is no direct competition of skeletal muscle tropomyosin and myosin for the same site on actin. Brain tropomyosin has an opposite effect, decreasing the apparent affinity with concomitant increase in the Vmax.The effect of smooth muscle tropomyosin is more complex. At high ratios of myosin to actin this tropomyosin produces the same change in the Kapp as skeletal muscle tropomyosin but yields a value of Vmax that is about twofold higher. At lower molar ratios (below about 1 to 5 myosin subfragments to actin) the activating effect of this tropomyosin remains unchanged while the apparent affinity decreases to that observed for pure F-actin.On the basis of these data as well as from experiments carried out at fixed actin and varying SF1 concentrations, it is concluded that tropomyosins act in general as allosteric un-competitive inhibitors or activators of actomyosin by increasing or reducing the co-operative activation of myosin by actin at the level of product release.  相似文献   

13.
Summary The diversity of the structural and functional properties of the various components of trout blood may be taken as a type case of molecular adaptation to physiological requirements. Studies on this system yield, in addition, information which appears relevant to the interpretation of the behavior of mammalian hemoglobins.an invited article  相似文献   

14.
Calsequestrin is the major Ca2+-binding protein localized in the terminal cisternae of the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle cells. Calsequestrin has been purified and cloned from both skeletal and cardiac muscle in mammalian, amphibian, and avian species. Two different calsequestrin gene products namely cardiac and fast have been identified. Fast and cardiac calsequestrin isoforms have a highly acidic amino acid composition. The amino acid composition of the cardiac form is very similar to the skeletal form except for the carboxyl terminal region of the protein which possess variable length of acidic residues and two phosphorylation sites. Circular dichroism and NMR studies have shown that calsequestrin increases its -helical content and the intrinsic fluorescence upon binding of Ca2+. Calsequestrin binds Ca2+ with high-capacity and with moderate affinity and it functions as a Ca2+ storage protein in the lumen of the SR. Calsequestrin has been found to be associated with the Ca2+ release channel protein complex of the SR through protein-protein interactions. The human and rabbit fast calsequestrin genes have been cloned. The fast gene is skeletal muscle specific and transcribed at different rates in fast and slow skeletal muscle but not in cardiac muscle. We have recently cloned the rabbit cardiac calsequestrin gene. Heart expresses exclusively the cardiac calsquestrin gene. This gene is also expressed in slow skeletal muscle. No change in calsequestrin mRNA expression has been detected in animal models of cardiac hypertrophy and in failing human heart.  相似文献   

15.
Nonsymbiotic class 1 plant hemoglobins are induced under hypoxia. Structurally they are protein dimers consisting of two identical subunits, each containing heme iron in a weak hexacoordinate state. The weak hexacoordination of heme-iron binding to the distal histidine results in an extremely high avidity to oxygen, with a dissociation constant in the nanomolar range. This low dissociation constant is due to rapid oxygen binding resulting in protein conformational changes that slow dissociation from the heme site. Class 1 hemoglobins are characterized by an increased rate of Fe3(+) reduction which is likely mediated by cysteine residue. This cysteine can form a reversible covalent bond between two monomers as shown by mass spectrometry analysis and, in addition to its structural role, prevents the molecule from autoxidation. The structural properties of class 1 hemoglobins allow them to serve as soluble electron transport proteins in the enzymatic system scavenging nitric oxide produced in low oxygen via reduction of nitrite. During oxygenation of nitric oxide to nitrate, oxidized ferric hemoglobin is formed (methemoglobin), which can be reduced by an associated reductase. The identified candidate for this reduction is monodehydroascorbate reductase. It is suggested that hemoglobin functions as a terminal electron acceptor during the hypoxic turnover of nitrogen, the process aided by its extremely high affinity for oxygen.  相似文献   

16.
The studies of structural and functional properties of inulinases and their molecular and supramolecular organization are crucial for understanding the functional mechanisms for key enzymes of polyfructans metabolism which demands special attention. This review addresses these issues with a focus to disagreement concerning supramolecular organization of inulinases, practical importance of different glycosylation degrees, and mechanism of splitting of glycosidic linkages, which occur in different organisms.  相似文献   

17.
The proteasome activator PA28 or 11S regulator is a protein complex composed of two different but homologous polypeptides, termed PA28 and PA28. The purified activator protein (_200 kDa) is a ring-shaped heteromultimer containing the two polypeptides, possibly with an 3 3 stoichiometry. The activator, which by itself shows no hydrolytic activity elicits activation of the proteasome's multiple peptidase activities by binding to the terminal rings of the proteinase. In vitro, active PA28 can be reconstituted from isolated and subunits, yielding two different oligomers: with the single subunit, PA28 homomultimers with moderate stimulatory activity toward 20S proteasomes are obtained whereas isolated -subunits are unable to form oligomers and are devoid of stimulatory activity. However, in the presence of both subunits, heteromultimers form, concomitant with restoration of full stimulatory activity. The recent finding that PA28 modulates the proteasome-catalyzed production of antigenic peptides presented to the immune system on MHC class I molecules indicates a cellular function of the activator in antigen processing. Abbreviations: IFN – interferon; LMP – low molecular weight peptide; MHC – major histocompatibility complex.  相似文献   

18.
We propose that the in vivo functions of NM II (non-muscle myosin II) can be divided between those that depend on the N-terminal globular motor domain and those less dependent on motor activity but more dependent on the C-terminal domain. The former, being more dependent on the kinetic properties of NM II to translocate actin filaments, are less amenable to substitution by different NM II isoforms, whereas the in vivo functions of the latter, which involve the structural properties of NM II to cross-link actin filaments, are more amenable to substitution. In light of this hypothesis, we examine the ability of NM II-A, as well as a motor-compromised form of NM II-B, to replace NM II-B and rescue neuroepithelial cell-cell adhesion defects and hydrocephalus in the brain of NM II-B-depleted mice. We also examine the ability of NM II-B as well as chimaeric forms of NM II (II-A head and II-B tail and vice versa) to substitute for NM II-A in cell-cell adhesions in II-A-ablated mice. However, we also show that certain functions, such as neuronal cell migration in the developing brain and vascularization of the mouse embryo and placenta, specifically require NM II-B and II-A respectively.  相似文献   

19.
Enteropathogenic Escherichia coli utilise a filamentous type III secretion system to translocate effector proteins into host gut epithelial cells. The primary constituent of the extracellular component of the filamentous type III secretion system is EspA. This forms a long flexible helical conduit between the bacterium and host and has a structure almost identical to that of the flagella filament. We have inserted the D3 domain of FliCi (from Salmonella typhimurium) into the outer domain of EspA and have studied the structure and function of modified filaments when expressed in an enteropathogenic E. coli espA mutant. We found that the chimeric protein EspA-FliCi filaments were biologically active as they supported protein secretion and translocation [assessed by their ability to trigger actin polymerisation beneath adherent bacteria (fluorescent actin staining test)]. The expressed filaments were recognised by both EspA and FliCi antisera. Visualisation and analysis of the chimeric filaments by electron microscopy after negative staining showed that, remarkably, EspA filaments are able to tolerate a large protein insertion without a significant effect on their helical architecture.  相似文献   

20.
Calmodulin was purified from the eukaryotic microorganism Dictyostelium discoideum and characterized in terms of its nearly complete primary structure and quantitative activator activity. The strategy for amino acid sequence analysis took advantage of the highly conserved structure of calmodulin and employed a new procedure for limited cleavage of calmodulin that uses a protease from mouse submaxillary gland. Fourteen amino acid sequence differences between Dictyostelium and bovine calmodulin were identified unequivocally, as well as an unmethylated lysine at residue 115 instead of N epsilon, N epsilon, N epsilon-trimethyllysine. Seven of the amino acid substitutions in Dictyostelium calmodulin are novel in that the residues at these positions are invariant in all calmodulin sequences previously examined, most notably an additional residue at the carboxy terminus. Comparison of the Dictyostelium calmodulin sequence with other calmodulin sequences shows that the region with the greatest extended sequence identity includes parts of the first and second structural domains and the interdomain region between domains 1 and 2. Dictyostelium calmodulin activated bovine brain cyclic nucleotide phosphodiesterase in a manner indistinguishable from that of bovine brain calmodulin. However, Dictyostelium calmodulin activated pea NAD kinase to a maximal level 4.6-fold greater than that produced by bovine brain calmodulin. This functional difference demonstrates the potential biological importance of the limited number of amino acid sequence differences between Dictyostelium calmodulin and other calmodulins and provides further insight into the structure, function, and evolution of the calmodulin family of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号