首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this investigation was to determine the effect of daily intake of fluid and salt supplementation (FSS) on increased urinary losses of microelements that developed during hypokinesia (decreased number of walking steps/d). The studies were performed on 30 endurance-trained male volunteers aged 23–26 yr, with an averaged maximum oxygen uptake of 65 mL/kg/min during 364 d of hypokinesia (HK). All volunteers were divided into three equal groups: Ten volunteers were placed continuously under an average of 10,000 running steps/d (14.2 km/d) (control subjects), ten volunteers subjected continuously to HK without the use of FSS (hypokinetic subjects), and ten volunteers were continuously submitted to HK and consumed daily FSS (hyperhydrated subjects). For the simulation of the hypokinetic effect the hypokinetic and hyperhydrated volunteers were kept under an average of 3,000 walking steps/d (2.7 km/d) for 364 d. Prior to their exposure to HK the volunteers were on an average of 10,000 running steps/d (14.2 km/d). During the prehypokinetic period of 60 d and during the hypokinetic period of 364 d were determined renal excretion of microelements responses of endurance-trained volunteers. In the hyperhydrated volunteers urinary excretion of iron, zinc, copper, manganese, cobalt, nickel, lead, tin, chromium, aluminum, molybdenum, and vanadium decreased, whereas in the hypokinetic volunteers it increased significantly. It was concluded that chronic hyperhydration may be used to attenuate urinary excretion of microelements in endurance-trained volunteers during prolonged restriction of muscular activity.  相似文献   

2.
The aim of this study was to evaluate the effect of a daily intake of fluid and salt supplementation (FSS) on the deficiency of electrolytes, which is characterized by higher rather than lower plasma concentration of electrolytes during prolonged hypokinesia (HK) (decreased number of km taken per day). Forty long distance runners aged 22–25 yr with a peak V02 65.4 mL min-1 kg-1 with an average 14.2 km d running distance were selected as subjects. They were equally divided into four groups: 1) unsupplemented control subjects (UCS); 2) unsupplemented hypokinetic subjects (UHS); 3) supplemented hypokinetic subjects (SHS), and 4) supplemented control subjects (SCS). During the investigation of 364 d, groups 2 and 3 maintained an average running distance of less than 4.7 km per day, groups 1 and 4 did not experience any modification in their normal training routines and diets. During the preexperimental period of 60 d and during the experimental period of 364 d urinary excretion of electrolytes and concentrations of sodium, potassium, calcium, and magnesium in plasma were determined. Whole blood hemoglobin, hematocrit index, plasma osmolality, and plasma protein concentration were measured. In the UHS plasma concentration of electrolytes and urinary excretion thereof, fluid elimination, hematocrit, whole blood hemoglobin, plasma osmolality, and plasma protein concentration increased significantly (p < 0.05) when compared with the UCS, SCS, and SHS groups. In the SHS plasma concentration of electrolytes and urinary excretion thereof, fluid excretion, whole blood hemoglobin, hematocrit, plasma osmolality, and plasma protein concentration decreased when compared with the UHS and increased insignificantly when compared with the UCS and SCS groups. It was concluded that FSS may be used to prevent or minimize electrolyte deficiency in endurance-trained volunteers during prolonged restriction of muscular activity.  相似文献   

3.
The objective of this investigation was to determine whether urinary and plasma potassium changes developed during prolonged hypokinesia (HK) (decreased number of km/d) in endurance-trained subjects could be minimized or reversed with a daily intake of fluid and salt supplementation (FSS). The studies were performed on 30 endurance-trained male volunteers aged 23–26 yr with an average peak oxygen uptake of 65 mL/kg min during 364 d of HK. All volunteers were on an average of 13.8 km/d prior to their exposure to HK. All volunteers were randomly divided into three groups: 10 volunteers were placed continuously under an average of 14.0 km/d (control subjects), 10 volunteers were subjected continuously to an average of 2.7 km/d (unsupplemented hypokinetic subjects), and 10 volunteers were submitted continuously to an average of 2.7 km/d, and consumed daily an additional amount of 0.1 g sodium chloride (NaCl)/kg body wt and 30 mL water/kg body wt (supplemented hypokinetic subjects). During the prehypokinetic period of 60 d and during the hypokinetic period of 364 d, potassium loading tests were performed with 1.5–1.7 mEq potassium chloride/kg body wt, and potassium, sodium, and chloride excretion in urine and potassium, sodium, and chloride in plasma were determined. In the unsupplemented hypokinetic volunteers, urinary excretion of electrolytes and concentrations of electrolytes in plasma increased significantly as compared to the control and supplemented hypokinetic groups of volunteers. It was concluded that daily intake of fluid and salt supplementation had a favorable effect on regulation of urinary and plasma potassium changes in trained subjects during prolonged HK.  相似文献   

4.
The objective of this investigation was to determine fluid electrolyte changes after water-loading tests and during hypokinesia (decreased number of km taken per day) and daily intake of fluid and salt supplementation (FSS). The studies during hypokinesia (HK) were performed for 364 d on 30 endurance-trained male volunteers in the age range of 23–26 yr, with an average peak oxygen uptake, POU, of 64 mL/kg/min. All volunteers were divided into three equal groups: 10 volunteers were placed on a continuous regime of exercise of 14.4 km/d and served as control subjects (CS); 10 volunteers were submitted to continuous HK without FSS and were considered as the unsupplemented hypokinetic subjects (UHS); and 10 volunteers were under continuous HK and FSS and were considered as the supplemented hypokinetic subjects (SHS). For the simulation of the hypokinetic effect, the UHS and SHS groups were kept continuously under an average of 2.7 km/d for the duration of the study. Prior to exposure to HK, the two groups of volunteers were on the same exercise regime as the control group. During a 60-d preexperimental period and during the remainder of the study, water-loading tests with a water load of 20 mL/kg body wt/min were performed, and urinary and plasma electrolytes (sodium, potassium, calcium, and magnesium) were measured. In the SHS group, urinary excretion of electrolytes and plasma electrolyte content decreased, while in the UHS these values increased after water loading tests and during HK. Based on the obtained data, it is concluded that chronic hyperhydration may be used to prevent or minimize urinary and plasma electrolyte changes in endurance-trained volunteers after water-loading tests and during prolonged restriction of muscular activity.  相似文献   

5.
The purpose of this investigation was to determine whether negative phosphate balance, which is developed during hypokinesia (a decreased number of walking steps/d) could be reversed with daily supplementation with phosphate, fluid, and salt (FSS). The studies on hypokinesia (HK) were performed for 364 d on 30 endurance-trained male volunteers in the age range of 23–26 yr, with an average maximum oxygen uptake, MOU, of 65 mL/kg min. All subjects were divided into three equal groups: Ten volunteers were placed on a continuous regime of exercise of 14.4 kmJd at 10,000 steps/d and served as controls. Ten volunteers were subject to continuous HK without FSS and were considered as the hypokinetic subjects (HS). The remaining subjects were under continuous HK and FSS and were considered as the hypokinetic, hyperhydrated subjects (HHS). The three groups were on a diet that averaged 2620 cal/d and contained 1.7 g calcium, 1.6 g phosphate, and 5.6 g sodium chloride. For simulation of the hypokinetic effect, the HS and HHS groups were kept continuously under 2.9 km/d (3000 walking steps/d) for the duration of the study. Prior to exposure to HK, all volunteers were on the same exercise regime as the controls. During a 60-d pre-HK period and during the remainder of the study, phosphate-loading tests, urinary and plasma phosphate concentrations were performed in all subjects. In the HHS group, plasma phosphate concentration and urinary excretion of phosphate were decreased, while in the HS group these values increased after phosphate loading. Based on our results, we concluded that chronic hyperhydration and phosphate supplementation may be used to minimize phosphate losses in endurance-trained volunteers during prolonged restriction of muscular activity.  相似文献   

6.
The objective of this investigation was to evaluate the effect of a daily intake of fluid and salt supplementation (FSS) on blood plasma trace elements concentrations in physically healthy volunteers after exposure to 364 d of hypokinesia (decreased number of steps per day). The studies were performed after exposure to 364 d of Hypokinesia (HK) on 30 long-distance runners of volunteers who had a VO2 max 67 mL/kg/min and were ranging in the age of 19–24 yrs. Prior to their exposure to HK all volunteers were on an average of 10,000 steps/d. For the simulation of the hypokinetic effect the volunteers were kept under an average of 3000 steps/d. All volunteers were divided into three equal groups. The first group of volunteers subjected to HK and received daily FSS (water 26 mL/kg body wt and sodium chloride 0.16 g/kg body wt.), the second groups of volunteers submitted only to HK, and the third group of volunteers underwent a normal ambulatory life and served as control. The content of manganese, calcium, magnesium, iron, lead, copper, tin, nickel, zinc and cobalamine were determined in blood plasma of volunteers. By the end of the hypokinetic period the blood plasma concentration of microelements increased significantly in the hypokinetic subjects (second group), whereas in the hyperhydrated subjects (first group) decreased. It was concluded that prolonged restriction of motor activity induced significant increases in blood trace elements concentrations whereas daily hyperhydration had a normalizing effect on their concentration in blood plasma. This indicates that daily hyperhydration may be used to normalize blood plasma concentrations of microelements in physically healthy volunteers subjected to prolonged restriction of motor activity.  相似文献   

7.
It was suggested that negative calcium balance is not based on the shortage of calcium in the diet, but on the decreased tissular capacity of the body to retain calcium during hypokinesia (decreased muscular activity), and that chronic hyperhydration may be used to normalize calcium balance. To evaluate this hypothesis studies were performed on 30 long distance runners aged 23–26 yr, with an average maximum oxygen uptake 65 mL/kg/min during 364 d of hypokinesia (HK). All volunteers were divided into three equal groups: Ten volunteers were placed continuously under an average of 14.9 km/d (control subjects), ten volunteers were subjected continuously to HK (hypokinetic subjects), and ten volunteers were submitted continuously to HK with daily consumption of an additional amount of 26 mL water/kg body wt and 0.16 g sodium chloride (NaCl)/kg body wt (hyperhydrated subjects). For the simulation of the hypokinetic effect, the hypokinetic and hyperhydrated volunteers were kept under an average of 2.7 km/day for 364 d. During the prehypokinetic period and hypokinetic period calcium lactate loading tests (0.55 mEq/kg body wt) were performed. Urinary and blood electrolytes (sodium, ionized calcium, total calcium, magnesium, and phosphate) and blood parathyroid hormone (PTH) were determined. Urinary electrolytes and concentrations in blood thereof decreased in the hyperhydrated and increased significantly in the hypokinetic volunteers. Blood parathyroid hormone content increased in the hyperhydrated and decreased in the hypokinetic volunteers. After calcium lactate loading tests, the hypokinetic volunteers displayed a faster excretion of calcium and a decreased blood PTH content as compared to the control and hyperhydrated groups of volunteers. It was concluded that calcium deficiency during HK is associated with decreased tissular capacity of the body to retain calcium, whereas chronic hyperhydration may be used to prevent calcium deficiency in endurance trained volunteers during prolonged restriction of muscular activity.  相似文献   

8.
The objective of this investigation was to determine the effect of daily intake of fluid and salt supplementation (FSS) on increased urinary losses of microelements that developed during hypokinesia (decreased number of walking steps/d). The studies were performed on 30 endurance-trained male volunteers aged 23–26 yr, with an averaged maximum oxygen uptake of 65 mL/kg/min during 364 d of hypokinesia (HK). All volunteers were divided into three equal groups: Ten volunteers were placed continuously under an average of 10,000 running steps/d (14.2 km/d) (control subjects), ten volunteers subjected continuously to HK without the use of FSS (hypokinetic subjects), and ten volunteers were continuously submitted to HK and consumed daily FSS (hyperhydrated subjects). For the simulation of the hypokinetic effect the hypokinetic and hyperhydrated volunteers were kept under an average of 3,000 walking steps/d (2.7 km/d) for 364 d. Prior to their exposure to HK the volunteers were on an average of 10,000 running steps/d (14.2 km/d). During the prehypokinetic period of 60 d and during the hypokinetic period of 364 d were determined renal excretion of microelements responses of endurance-trained volunteers. In the hyperhydrated volunteers urinary excretion of iron, zinc, copper, manganese, cobalt, nickel, lead, tin, chromium, aluminum, molybdenum, and vanadium decreased, whereas in the hypokinetic volunteers it increased significantly. It was concluded that chronic hyperhydration may be used to attenuate urinary excretion of microelements in endurance-trained volunteers during prolonged restriction of muscular activity.  相似文献   

9.
The objective of this study was to evaluate the effects of hypokinesia (HK) and fluid- and salt supplementation (FSS) on zinc metabolism in endurance-trained volunteers (ETV) for a period of 364 d. Thirty long-distance runners aged 22–25 yr with a peak VO2 of 67 mL/min/kg with an average 13.8 km/d running distance were chosen as subjects. They were equally divided into three groups:
1.  Controls;
2.  HK subjects; and
3.  HK+FSS subjects.
Throughout the duration of the study, groups 2. and 3. were maintained under an average running distance of 2.7 km/d, whereas group 1. did not experience any modifications to their normal training routines and diets. Prior to and during the experimental period, plasma volume, hemoglobin, sodium, potasium, hematocrit, osmolality, and protein concentrations were determined along with the concentrations and urinary excretions of zinc, magnesium, calcium, and phosphorous. During the HK period, plasma concentrations of these minerals increased significantly when compared to the HK+FSS and control groups. The same was observed for the remaining parameters, which led us to conclude that during prolonged restriction of muscular activity, (PRMA) the body of the HK+FSS volunteers acquire an apparent tendency to retain zinc, whereas in the HK group the opposite is observed.  相似文献   

10.
Hypokinesia (HK) (diminished movement) induces significant electrolyte changes, but little is known about the effect of periodic hypokinesia (PHK) on minerals. The aim of this study was to measure the effect of PHK and continuous hypokinesia (CHK) on urinary and serum electrolytes. Studies were done during a 30-d period of prehypokinesia (HK) and during 364 d of PHK and CHK periods. Thirty male athletes aged 24.6±7.7 yr were chosen as subjects. They were equally divided into three groups: unrestricted ambulatory control subjects (UACS), continuously hypokinetic subjects (CHKS), and periodically hypokinetic subjects (PHKS). The UACS group experienced no changes in the daily activities and regular training and they were maintained under an average running distance of 11.7 km/d. The CHKS group was limited to an average walking distance of 0.7 km/d; and the PHKS group was limited to an average walking distance of 0.7 and running distance of 11.7 km/d for 5 d and 2 d/wk, respectively, for a period of 364 d. Urinary and serum phosphate (P), calcium (Ca), sodium (Na) and potassium (K), serum intact parathyroid hormone (iPTH), calcitonin (CT), plasma renin activity (PRA) and aldosterone (PA) levels, food and water intakes, and physical characteristics were measured. Urinary P, Ca, Na, and K loss, serum Ca, P, Na, and K, and PRA and PA values increased significantly (p≤0.01), whereas serum iPTH and CT levels decreased significantly (p≤0.01) in the PHKS and CHKS groups when compared with the UACS group. However, significant (p≤0.01) differences were observed between PHKS and CHKS groups regarding urinary and serum electrolytes, serum and plasma hormones. Food and water intakes, body weight, body fat, and peak oxygen uptake decreased significantly (p ≤ 0.01) in the CHKS group when compared with PHKS and UACS groups. Food and fluid intakes, body fat, and body weight increased significantly (p≤0.01), whereas peak oxygen uptake remained significantly (p≤0.01) higher in the PHKS group when compared with the CHKS group. Serum and urinary minerals, serum hormones, food and fluid intakes, and physical characteristics did not change significantly (p>0.01) in the UACS group when compared with their baseline control values. It was shown that both PHK and CHK induce significant serum and urinary electrolyte changes. However, urinary and serum electrolyte changes were significantly (p≤0.01) greater during PHK than CHK. It was concluded that the greater the stability of muscular activity, the smaller the serum and urinary electrolyte changes during prolonged HK.  相似文献   

11.
The objective of this investigation was to determine the effect of prolonged restriction of motor activity (hypokinesia [HK]) on several parameters of water metabolism in primates. The studies were performed on 12 rhesus monkeys aged 4–5 yr (5.10–6.85 kg) during the hypokinetic period of 90 d and during the prehypokinetic period of 30 d. They were divided into two equal groups: the first group was placed under ordinary vivarium conditions (vivarium control animals) and the second group was subjected to 90 d of HK (hypokinetic animals). For the simulation of the hypokinetic effect, the primates were immobilized on their abdomens in special tables. The legs of the monkeys were immobilized with hip and knee joints extended. The primates retained freedom of movement at elbow, wrist, and ankle. During the preexperimental period of 30 d and during the experimental period of 90 d, the following variables were determined: body weight, total body fluid content, specific total body fluid, mean fluid consumed and eliminated in urine, specific plasma resistance, hematocrit level, and plasma concentrations of sodium (Na) and potassium (K). In the hypokinetic primates, body weight decreased significantly when compared to the controls. Mean fluid intake, total body fluid, and specific total body fluid decreased, whereas mean daily fluid loss and specific mean daily fluid elimination increased significantly. Specific plasma resistance, hematocrit level, and plasma electrolyte concentrations increased significantly when compared to the control primates. It was concluded that prolonged restriction of motor activity induces significant changes in water metabolic parameters of primates leading in decreased total water content of the body.  相似文献   

12.
The aim of this study was to evaluate the effect of magnesium (Mg) loading (10.0 mg Mg/kg body wt) and daily Mg supplements (5.0 mg Mg/kg body wt) on Mg deficiency shown by increased and not by decreased serum Mg concentration during hypokinesia (decreased km number/d). The studies were done during 30 d of prehypokinesia and 364 d of hypokinesia (HK) periods. Forty endurance-trained volunteers aged 22–26 yr with a peak VO2 max of 66.3 mL·kg−1 min−1 and with an average 15.0 km/d running distance were chose as subjects. They were equally divided into four groups:
1.  Unsupplemented ambulatory control subjects (UACS).
2.  Unsupplemented hypokinetic subjects (UHKS).
3.  Supplemented hypokinetic subjects (SHKS).
4.  Supplemented ambulatory control subjects (SACS).
The SHKS and SACS groups took daily 5.0 mg elemental Mg/kg body wt and subjected to Mg loading (10.0 mg Mg/kg body wt). Both the SHKS and UHKS groups were maintained under an average running distance of 4.7 km/d, whereas the SACS and UACS groups did not experience any modifications to their normal training routines and diets. During the prehypokinetic and hypokinetic periods, excretion of Mg in feces and urine, concentration of Mg in serum, and Mg balance were measured. urinary and serum sodium (Na), potassium (K), and calcium (Ca) were also determined. In both SHKS and UHKS groups, fecal Mg loss, urinary excretion of electrolytes, and serum concentrations of electrolytes increased significantly (p≤0.05) when compared with the SACS and UACS groups. During Mg loading tests, urinary and fecal Mg excretion was also greater in the SHKS and UHKS groups than in the SACS and UACS groups. Throughout the study, Mg balance was negative in the SHKS and UHKS groups, whereas in the SACS and UACS groups, Mg balance was positive. It was concluded that significant losses of Mg occurred in the presence of negative Mg balance and Mg deficiency in endurance-trained subjects during prolonged exposure to HK, daily mg supplements, and Mg loading tests. This suggests that Mg is not entering or being retaining by the bones and cells of many tissues where most Mg is deposited normally, resulting in Mg deficiency as was shown by the increased serum Mg concentration.  相似文献   

13.
Negative potassium balance during hypokinesia (decreased number of kilometers taken/day) is not based on the potassium shortage in the diet, but on the impossibility of the body to retain potassium. To assess this hypothesis, we study the effect of potassium loading on athletes during prolonged hypokinesia (HK). Studies were done during 30 d of a pre-HK period and during 364 d of an HK period. Forty male athletes aged 23–26 yr were chosen as subjects. They were divided equally into four groups: unloaded ambulatory control subjects (UACS), unloaded hypokinetic subjects (UHKS), loaded hypokinetic subjects (LHKS), and loaded ambulatory control subjects (LACS). For the simulation of the hypokinetic effect, the LHKS and UHKS groups were kept under an average running distance of 1.7 km/d. In the LACS and LHKS groups, potassium loading tests were done by administering 95.35 mg KC1 per kg body weight. During the pre-HK and HK periods and after KC1 loading tests, fecal and urinary potassium excretion, sodium and chloride excretion, plasma potassium, sodium and chloride concentration, and potassium balance were measured. Plasma renin activity (PRA) and plasma aldosterone concentration was also measured. Negative potassium balance increased significantly (p < -0.01) in the UHKS and LHKS groups when compared with the UACS and LACS groups. Plasma electrolyte concentration, urinary electrolyte excretion, fecal potassium excretion, PRA, and PA concentration increased significantly (p ≤ 0.01) in the LHKS and UHKS groups when compared with LACS and UACS groups. Urinary and fecal potassium excretion increased much more and much faster in the LHKS group than in the UHKS group. By contrast, the corresponding parameters change insignificantly in the UACS and LACS groups when compared with the base line control values. It was concluded that urinary and fecal potassium excretion increased significantly despite the presence of negative potassium balance; thus, negative potassium balance may not be based on potassium shortage in the diet because of the impossibility of the body to retain potassium during HK.  相似文献   

14.
Hypokinesia (diminished movement) induces significant potassium (K) changes; however, little is known about K deposition and deficiency during hypokinesia (HK). Using K supplements during and after HK, the aim was to establish body K deposition and K deficiency during HK. Studies were done during the pre-HK period of 30 d, HK period of 364 d, and post-HK period of 30 d. Forty male trained athletes aged 24.9 ± 8.0 y were chosen as subjects. They were equally divided into four groups: unsupplemented active control subjects (UACS), unsupplemented hypokinetic subjects (UHKS), supplemented active control subjects (SACS), and supplemented hypokinetic subjects (SHKS). Hypokinetic subjects were limited to an average walking distance of 0.7 km/d. Control subjects ran an average distance of 11.6 km/d. The SHKS and SACS groups took 95.0 mg elemental K/kg body weight daily. Fecal K excretion, urinary sodium (Na) and K excretion, plasma K and Na levels, plasma renin activity (PRA), plasma aldosterone (PA), food and fluid intake, and physical characteristics were measured. During HK, fecal K loss, urinary K and Na loss, and plasma K, Na, PRA, and PA levels increased significantly (p ≤ 0.05), whereas during the initial days of post-HK, the levels of the measured parameters decreased significantly (p ≤ 0.05) in the SHKS and UHKS groups as compared with the SACS and UACS groups, respectively. During HK, body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly (p ≤ 0.05), whereas during the initial days of post-HK period remained significantly (p ≤ 0.05) depressed and fluid intake increased in SHKS and UHKS groups when compared with the SACS and UACS groups, respectively. However, during HK and post-HK plasma, urinary, and fecal K changed significantly (p ≤ 0.05) more in the SHKS group than in the UHKS group. The deposition of K was significantly (p ≤ 0.05) lower and K deficiency much higher in the SHKS group than in the UHKS group. Fecal K loss, urinary K and Na loss, plasma K, Na, PRA, and PA levels, body weight, body fat, peak oxygen uptake, and food and fluid intake did not change significantly in the SACS and UACS when compared with their baseline control values. It was shown that plasma K concentration and urinary and fecal K excretion increased during HK and decreased significantly (p ≤ 0.05) during post-HK. post-HK. Oral K supplements did not influence plasma or fecal and urinary K either during HK or post-HK. It was concluded that the low plasma K level and fecal and urinary K loss during post-HK may indicate the presence of K deficiency, and increased K in plasma, urine, and feces during HK and in the presence of K deficiency may suggest the body’s inability to retain K during HK.  相似文献   

15.
Electrolyte supplements may be used to prevent changes in electrolyte balance during hypokinesia (diminished movement). The aim of this study was to measure the effect of potassium (K) supplements on K balance during prolonged hypokinesia (HK). Studies were done during 30 d of a pre-HK period and during 364 d of an HK period. Forty male athletes aged 25.1±4.4 yr were chosen as subjects. They were divided equally into four groups: unsupplemented ambulatory control subjects (UACS), unsupplemented hypokinetic subjects (UHKS), supplemented hypokinetic subjects (SHKS) and supplemented ambulatory control subjects (SACS). The SHKS and UHKS groups were kept under an average walking distance of 0.7 km/d. The SACS and SHKS groups were supplemented daily with 50.0 mg elemental potassium chloride (KCl) per kilogram body weight. The K balance, fecal K excretion, urinary K, sodium (Na), and chloride (Cl) excretion, plasma K, Na, and Cl concentration, plasma renin activity (PRA) and plasma aldosterone (PA) concentration, anthropometric characteristics and peak oxygen uptake were measured. Negative K balance, fecal K excretion, urinary K, Na, and Cl excretion, plasma K, Na, and Cl concentration, and PRA and PA concentration increased significantly (p≤0.01), whereas body weight and peak oxygen uptake decreased significantly in the SHKS and UHKS groups when compared with SACS and UACS groups. However, the measured parameters changed much faster and much more in SHKS group than UHKS group. By contrast, K balance, fecal, urinary, and plasma K, plasma hormones, body weight, and peak oxygen uptake did not change significantly in the SACS and UACS groups when compared with the baseline control values. It was concluded that prolonged HK induces a significant negative K balance associated with increased plasma K concentration and urinary and fecal K excretion. However, negative K balance appeared much faster and was much greater in the SHKS group than UHKS group. Thus, K supplementation was not effective in preventing negative K balance during prolonged HK.  相似文献   

16.
In order to describe fluid-electrolyte shift and endocrine response to exercise under moderate acute hypoxia, 8 healthy male subjects (24 +/- 3 years old) were evaluated at 40, 60, 80 and 100% VO2 max in normoxic (N) and hypoxic (H) conditions (14.5% O2). VO2 max decreased from 55.5 +/- 1.3 to 45.8 +/- 1.4 ml/kg X min in H condition. Plasma volume reductions with increasing relative workloads were similar in N (9.4%) and H (9.9%) conditions. The rise in plasma osmolality was in part related to blood lactate accumulation which occurred in both conditions. However, variations in plasma solute content and osmolality suggested that exercise under hypoxia results in a greater electrolyte loss from vascular space and in a greater K+ loss from working skeletal muscles. Increase in catecholamine concentrations were similar in normoxic and hypoxic conditions except for lower maximal norepinephrine concentration under hypoxia. Finally, although plasma renin activity increased with workload in both conditions, plasma aldosterone did not significantly change. This dissociation between renin and aldosterone suggest that aldosterone release during exercise might depend upon other factors. However, changes in plasma potassium concentration do not appear as an important stimulus for aldosterone secretion during exercise.  相似文献   

17.
The aim of this study was to assess the effect of a daily intake of copper supplements on negative copper balance during prolonged exposure to hypokinesia (decreased number of kilometers per day). During hypokinesia (HK), negative copper balance is shown by increased, not by decreased, serum copper concentration, as it happens in other situations. Studies were done during a 30-d prehypokinetic period and a 364-d hypokinetic period. Forty male trained volunteers aged 22–26 yr with a peak oxygen uptake of 66.4 mL/min/kg and with an average of 13.7 km/d running distance were chosen as subjects. They were equally divided into four groups: unsupplemented ambulatory control subjects (UACS), unsupplemented hypokinetic subjects (UHKS), supplemented hypokinetic subjects (SHKS), and supplemented ambulatory control subjects (SACS). The SACS and SHKS groups took 0.09 mg copper carbonate/kg body weight daily. The SHKS and UHKS groups were maintained under an average running distance of 1.7 km/d, whereas the SACS and UACS groups did not experience any modifications in their normal training routines. During the 30-d prehypokinetic period and the 346-d hypokinetic period, urinary excretion of copper, calcium, and magnesium and serum concentrations of copper, calcium, and magnesium were measured. Copper loss in feces and copper balance was also determined. In both UHKS and SHKS groups, urinary excretion of copper, calcium, and magnesium and concentrations of copper, magnesium, and calcium in serum increased significantly when compared with the SACS and UACS groups. Loss of copper in feces was also increased significantly in the SHKS and UHKS groups when compared with the UACS and SACS groups. Throughout the study, the copper balance was negative in the SHKS and UHKS groups, whereas in the SACS and UACS groups, the copper balance was positive. It was concluded that a daily intake of copper supplements cannot be used to prevent copper deficiency shown by increased copper concentration. Copper supplements also failed to prevent negative copper balance and copper losses in feces and urine in endurancetrained subjects during prolonged exposure to HK.  相似文献   

18.
Concentration of free serotonin, adrenaline, noradrenaline, aldosterone and plasma renin activity have been assayed in blood of 18 patients with the primary arterial hypertension (WHO stage I) and in 10 healthy volunteers. It was found that blood free serotonin and noradrenaline are increased in hypertensive patient. No difference in adrenaline and aldosterone levels and plasma renin activity was seen. No significant correlation between free serotonin and assayed hormones was noted.  相似文献   

19.
To study the cause of the increased blood volume of endurance-trained athletes we assessed the renal blood volume regulating mechanisms in eight untrained (UT) and eight endurance-trained (TR) male subjects during a 4 h head-out immersion. In TR plasma volume remained constant whereas it decreased in UT by 2.4 ml/kg (p less than 0.025). Immersion diuresis of TR was only half as high as in UT (peak values: 3.22 ml/min in UT, 1.60 ml/min in TR). Free water clearance remained approximately constant in UT but temporarily decreased in TR (p less than 0.001). This points to poor or even absent inhibition of antidiuretic hormone secretion in the latter group. Osmolar clearance increased less in TR than in UT (p less than 0.02) which was partly due to a delayed increase of glomerular filtration rate. Plasma osmolality, creatinine, and protein concentrations as well as hematocrit values were reduced during immersion to a similar extent in both groups. The results indicate a reduced renal response of endurance-trained subjects to congestion of the low-pressure system resulting in an increase in blood volume.  相似文献   

20.
This study examines the effect of the initial state of hydration on hormone responses to prolonged exercise in the heat. Five subjects at two initial hydration levels (hypohydrated and hyperhydrated) were exposed to a 36 degrees C environment for 3 h of intermittent exercise. During exercise, the subjects were either fluid-deprived, or rehydrated with water or an isotonic electrolyte sucrose solution (ISO). Both the stress hormones, adrenocorticotropic hormone and cortisol, and the main fluid regulatory hormones, aldosterone, renin activity (PRA) and arginine vasopressin (AVP), were measured in blood samples taken every hour. Prior hyperhydration significantly reduced initial AVP, aldosterone and PRA levels. However, except for AVP, which responded to exercise significantly less in previously hyperhydrated subjects (p less than 0.05), the initial hydration state did not influence the subsequent vascular and hormonal responses when the subjects were fluid-deprived while exercising. Concurrent rehydration, either with water or with ISO, reduced or even abolished the hormonal responses. There were no significant differences according to the initial hydration state, except for PRA responses, which were significantly lower (p less than 0.01) in previously hyperhydrated subjects who also received water during exercise. These results indicate that prior hydration levels influence only slightly the hormonal responses to prolonged exercise in the heat. Progressive rehydration during exercise, especially when extra electrolytes are given, is more efficient in maintaining plasma volume and osmolarity and in reducing the hormonal responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号