首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stevia [Stevia rebaudiana (Bertoni)] is a perennial herb which accumulates sweet diterpenoid steviol glycosides (SGs) in its leaf tissue. SGs are synthesized by 2C-methyl-d-erythritol 4-phosphate (MEP) pathway. Of the various enzymes of the MEP pathway, 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (MDS) (encoded by MDS) catalyzes the cyclization of 4-(cytidine 5′ diphospho)-2C-methyl-d-erythritol 2-phosphate into 2C-methyl-d-erythritol 2,4-cyclodiphosphate. Complementation of the MDS knockout mutant strain of Escherichia coli, EB370 with putative MDS of stevia (SrMDS) rescued the lethal mutant, suggesting SrMDS to be a functional gene. Experiments conducted in plant growth chamber and in the field suggested SrMDS to be a light regulated gene. Indole 3-acetic acid (IAA; 50, 100?μM) down-regulated the expression of SrMDS at 4?h of the treatment, whereas, abscisic acid did not modulate its expression. A high expression of SrMDS was observed during the light hours of the day as compared to the dark hours. The present work established functionality of SrMDS and showed the role of light and IAA in regulating expression of SrMDS.  相似文献   

2.
Biogenesis and recycling of iron–sulfur (Fe–S) clusters play important roles in the iron homeostasis mechanisms involved in mitochondrial function. In Saccharomyces cerevisiae, the Fe–S clusters are assembled into apoproteins by the iron–sulfur cluster machinery (ISC). The aim of the present study was to determine the effects of ISC gene deletion and consequent iron release under oxidative stress conditions on mitochondrial functionality in S. cerevisiae. Reactive oxygen species (ROS) generation, caused by H2O2, menadione, or ethanol, was associated with a loss of iron homeostasis and exacerbated by ISC system dysfunction. ISC mutants showed increased free Fe2+ content, exacerbated by ROS-inducers, causing an increase in ROS, which was decreased by the addition of an iron chelator. Our study suggests that the increment in free Fe2+ associated with ROS generation may have originated from mitochondria, probably Fe–S cluster proteins, under both normal and oxidative stress conditions, suggesting that Fe–S cluster anabolism is affected. Raman spectroscopy analysis and immunoblotting indicated that in mitochondria from SSQ1 and ISA1 mutants, the content of [Fe–S] centers was decreased, as was formation of Rieske protein-dependent supercomplex III2IV2, but this was not observed in the iron-deficient ATX1 and MRS4 mutants. In addition, the activity of complexes II and IV from the electron transport chain (ETC) was impaired or totally abolished in SSQ1 and ISA1 mutants. These results confirm that the ISC system plays important roles in iron homeostasis, ROS stress, and in assembly of supercomplexes III2IV2 and III2IV1, thus affecting the functionality of the respiratory chain.  相似文献   

3.
The biosynthesis of iron–sulfur (Fe–S) clusters in Bacillus subtilis is mediated by the SUF‐like system composed of the sufCDSUB gene products. This system is unique in that it is a chimeric machinery comprising homologues of E. coli SUF components (SufS, SufB, SufC and SufD) and an ISC component (IscU). B. subtilis SufS cysteine desulfurase transfers persulfide sulfur to SufU (the IscU homologue); however, it has remained controversial whether SufU serves as a scaffold for Fe–S cluster assembly, like IscU, or acts as a sulfur shuttle protein, like E. coli SufE. Here we report that reengineering of the isoprenoid biosynthetic pathway in B. subtilis can offset the indispensability of the sufCDSUB operon, allowing the resultant Δsuf mutants to grow without detectable Fe–S proteins. Heterologous bidirectional complementation studies using B. subtilis and E. coli mutants showed that B. subtilis SufSU is interchangeable with E. coli SufSE but not with IscSU. In addition, functional similarity in SufB, SufC and SufD was observed between B. subtilis and E. coli. Our findings thus indicate that B. subtilis SufU is the protein that transfers sulfur from SufS to SufB, and that the SufBCD complex is the site of Fe–S cluster assembly.  相似文献   

4.
The MEP pathway genes were modulated to investigate whether there were new rate-limiting steps and toxic intermediates in this pathway. Activating IspG led to significant decrease of cell growth and β-carotene production. It was found that ispG overexpression led to accumulation of intermediate HMBPP, which seriously interfered with synthesis machinery of nucleotide and protein in Escherichia coli. Activation of the downstream enzyme IspH could solve HMBPP accumulation problem and eliminate the negative effects of ispG overexpression. In addition, intermediate MECPP accumulated in the starting strain, while balanced activation of IspG and IspH could push the carbon flux away from MECPP and led to 73% and 77% increase of β-carotene and lycopene titer respectively. Our work for the first time identified HMBPP to be a cytotoxic intermediate in MEP pathway and demonstrated that balanced activation of IspG and IspH could eliminate accumulation of HMBPP and MECPP and improve isoprenoids production.  相似文献   

5.
Despite the prominence of iron–sulfur cluster (ISC) proteins in bioenergetics, intermediary metabolism, and redox regulation of cellular, mitochondrial, and nuclear processes, these proteins have been given scarce attention in Drosophila. Moreover, biosynthesis and delivery of ISCs to target proteins requires a highly regulated molecular network that spans different cellular compartments. The only Drosophila ISC biosynthetic protein studied to date is frataxin, in attempts to model Friedreich’s ataxia, a disease arising from reduced expression of the human frataxin homologue. One of several proteins involved in ISC biogenesis is heat shock protein cognate 20 (Hsc20). Here we characterize two piggyBac insertion mutants in Drosophila Hsc20 that display larval growth arrest and deficiencies in aconitase and succinate dehydrogenase activities, but not in isocitrate dehydrogenase activity; phenotypes also observed with ubiquitous frataxin RNA interference. Furthermore, a disruption of iron homeostasis in the mutant flies was evidenced by an apparent reduction in induction of intestinal ferritin with ferric iron accumulating in a subcellular pattern reminiscent of mitochondria. These phenotypes were specific to intestinal cell types that regulate ferritin expression, but were notably absent in the iron cells where ferritin is constitutively expressed and apparently translated independently of iron regulatory protein 1A. Hsc20 mutant flies represent an independent tool to disrupt ISC biogenesis in vivo without using the RNA interference machinery.  相似文献   

6.
An ordinary differential equation-based mathematical model was developed to describe trafficking and regulation of iron in growing fermenting budding yeast. Accordingly, environmental iron enters the cytosol and moves into mitochondria and vacuoles. Dilution caused by increasing cell volume is included. Four sites are regulated, including those in which iron is imported into the cytosol, mitochondria, and vacuoles, and the site at which vacuolar FeII is oxidized to FeIII. The objective of this study was to determine whether cytosolic iron (Fecyt) and/or a putative sulfur-based product of iron-sulfur cluster (ISC) activity was/were being sensed in regulation. The model assumes that the matrix of healthy mitochondria is anaerobic, and that in ISC mutants, O2 diffuses into the matrix where it reacts with nonheme high spin FeII ions, oxidizing them to nanoparticles and generating reactive oxygen species. This reactivity causes a further decline in ISC/heme biosynthesis, which ultimately gives rise to the diseased state. The ordinary differential equations that define this model were numerically integrated, and concentrations of each component were plotted versus the concentration of iron in the growth medium and versus the rate of ISC/heme biosynthesis. Model parameters were optimized by fitting simulations to literature data. The model variant that assumed that both Fecyt and ISC biosynthesis activity were sensed in regulation mimicked observed behavior best. Such “dual sensing” probably arises in real cells because regulation involves assembly of an ISC on a cytosolic protein using Fecyt and a sulfur species generated in mitochondria during ISC biosynthesis and exported into the cytosol.  相似文献   

7.
8.
Iron–sulphur (Fe–S) cluster assembly occurs in chloroplasts, mitochondria and cytosol, involving dozens of genes in higher plants. In this study, we have identified 41 putative Fe–S cluster assembly genes in rice (Oryza sativa) genome, and the expression of all genes was verified. To investigate the role of Fe–S cluster assembly as a metabolic pathway, we applied abiotic stresses to rice seedlings and analysed Fe–S cluster assembly gene expression by qRT‐PCR. Our data showed that genes for Fe–S cluster assembly in chloroplasts of leaves are particularly sensitive to heavy metal treatments, and that Fe–S cluster assembly genes in roots were up‐regulated in response to iron toxicity, oxidative stress and some heavy metal assault. The effect of each stress treatment on the Fe–S cluster assembly machinery demonstrated an unexpected tissue or organelle specificity, suggesting that the physiological relevance of the Fe–S cluster assembly is more complex than thought. Furthermore, our results may reveal potential candidate genes for molecular breeding of rice.  相似文献   

9.
An engineered Escherichia coli strain was developed for enhanced isoprene production using d-galactose as substrate. Isoprene is a valuable compound that can be biosynthetically produced from pyruvate and glyceraldehyde-3-phosphate (G3P) through the methylerythritol phosphate pathway (MEP). The Leloir and De Ley–Doudoroff (DD) pathways are known existing routes in E. coli that can supply the MEP precursors from d-galactose. The DD pathway was selected as it is capable of supplying equimolar amounts of pyruvate and G3P simultaneously. To exclusively direct d-galactose toward the DD pathway, an E. coli ΔgalK strain with blocked Leloir pathway was used as the host. To obtain a fully functional DD pathway, a dehydrogenase encoding gene (gld) was recruited from Pseudomonas syringae to catalyze d-galactose conversion to d-galactonate. Overexpressions of endogenous genes known as MEP bottlenecks, and a heterologous gene, were conducted to enhance and enable isoprene production, respectively. Growth test confirmed a functional DD pathway concomitant with equimolar generation of pyruvate and G3P, in contrast to the wild-type strain where G3P was limiting. Finally, the engineered strain with combined DD–MEP pathway exhibited the highest isoprene production. This suggests that the equimolar pyruvate and G3P pools resulted in a more efficient carbon flux toward isoprene production. This strategy provides a new platform for developing improved isoprenoid producing strains through the combined DD–MEP pathway.  相似文献   

10.
11.
York gum (Eucalyptus loxophleba Benth) is widely planted in semi-arid regions of Australia for the production of Eucalyptus oil, a mixture of terpenes dominated by the monoterpene 1,8-cineole. Increasing oil yield in this species would improve the profitability of this crop and enhance its use in sustainable land management systems in Australia. To this end, we sequenced ten structural genes in the terpene biosynthetic pathway of ~400 individuals of E. loxophleba. Of the 4353 allelic variants identified, 1347 had a minor allele frequency >0.01. These were associated with three key traits of essential oil yield (concentration of 1,8-cineole, α-pinene and total terpenes). Three variants associated with α-pinene, two with 1,8-cineole and eight with total terpenes (13 total). The variants were mostly located in introns of the final three biosynthetic steps of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway (mcs, hds and hdr). Effect size varied from 2.7 to 6.8%, comparable to similar studies in forest trees. The cumulative effect size of the unlinked variants was 34.8% for total terpenes, although this is likely to be a high estimate. These results provide the basis for the development of molecular breeding methods for improving essential oil yield in this industrially important species.  相似文献   

12.
Iron–sulfur clusters perform essential functions in enzymatic catalysis and homeostatic regulation. Here we for the first time identified Ssq1 as an essential component for iron–sulfur cluster assembly in Candida albicans. Ssq1 played an important role in cell growth. Shutting off SSQ1 led to accumulation of intracellular iron, especially in mitochondria, and disorder of intracellular iron regulation. In tetO-SSQ1, iron overloading triggered the oxidative damage of mitochondrial function. Surprisingly, disruption of SSQ1 activated autophagic pathway. The mitochondrial dysfunction was further aggravated when CCZ1 (which is essential for autophagy) and SSQ1 was simultaneously deleted, suggesting that autophagy played a critical role in maintenance of mitochondrial function in tetO-SSQ1. In addition, double deletion of SSQ1 and CCZ1 further elevated cellular iron levels in comparison with tetO-SSQ1, indicating that autophagy participated in maintenance of iron homeostasis. Furthermore, we found that loss of SSQ1 led to increasing protein expression of Rnr1 and redistribution of Rnr2 from the nucleus to cytoplasm, and further resulted in cell cycle arrest. The results implied that cell cycle arrest was caused by activating the checkpoint pathway because of impairing the iron–sulfur cluster assembly in tetO-SSQ1. Shutting off SSQ1 led to a significant defect in filamentous development. Interestingly, the tetO-SSQ1ccz1Δ/Δ growth was inhibited on hyphae-inducing solid media. Both tetO-SSQ1 and tetO-SSQ1ccz1Δ/Δ exhibited extremely attenuated virulence, indicating that Ssq1 might provide a promising target for antifungal drugs development. In summary, our findings provide new insights into the understanding of iron–sulfur cluster assembly-related gene in C. albicans.  相似文献   

13.
There is a need to develop renewable fuels and chemicals that will help meet global demands for energy and synthetic chemistry feedstock, without contributing to climate change or environmental degradation. Isoprene (C5H8) is one such key chemical ingredient, required for the production of synthetic rubber or plastic products, and a potential biofuel. Enabling a sustainable microbial fermentation for the production of isoprene is an attractive alternative to a petroleum origin. This work demonstrates transgenic expression of the Pueraria montana (kudzu vine) isoprene synthase gene (kIspS) and heterologous isoprene production in Escherichia coli. Enhancements in the amount of E. coli isoprene production were achieved upon over-expression of the native 2-C-methyl-d-erythritol-4-phosphate (MEP) biosynthetic pathway and, independently, upon heterologous over-expression of the entire mevalonic acid (MVA) pathway. A direct comparison of the efficiency of cellular organic carbon flux through the MEP and MVA pathways is provided, under conditions when these are expressed in the same host using the same plasmid, and same ribosome-binding sites (RBS). These alternative isoprenoid biosynthetic pathways were assembled in and expressed through a superoperon, suitable for transformation of E. coli. Introduction of specific RBS and nucleotide spacers between individual genes in the superoperon structure enabled maximal expression in E. coli batch cultures and translated to an improved production from 0.4?mg isoprene per liter of culture (control) to 5?mg isoprene per liter of culture (MEP superoperon transformants) and up to 320?mg isoprene per liter of culture (MVA superoperon transformants). This 800-fold increase in isoprene concentration from the MVA transformants and the attendant isoprene-to-biomass 0.78:1 carbon partitioning ratio suggested that the engineered MVA pathway introduces a bypass in the flux of endogenous substrate in E. coli to isopentenyl-diphosphate and dimethylallyl-diphosphate, thus overcoming flux limitations imposed upon the regulation of the native MEP pathway by the cell.  相似文献   

14.
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), an important enzyme in the 2-c-methyl-d-erythritol-4-phosphate (MEP) pathway in plant plastids, provides the basic five-carbon units for isoprenoid biosynthesis. To investigate the roles of the MEP pathway in regulating growth, development and artemisinin biosynthesis of Artemisia annua L., we used RNA interference technology to generate transgenic plants with suppressed expression of DXR in A. annua (AaDXR). Suppression of AaDXR resulted in shorter stems, decreased branch numbers and leaf area, lower density of leaf trichomes. Although AaDXR-RNAi plants had no significant changes on the stomatal conductance, the net photosynthesis rate was decreased by 20.0–31.4% due to the marked decline in the contents of chlorophyll. Decreased levels of endogenous gibberellic acid (GA3) and abscisic acid were also detected in the transgenic lines. The artemisinin contents in leaves of all tested transgenic lines declined by 41.8–73.4% at the vegetative stage and 61.5–63.6% at the stages of flowering. The enhancement of artemisinin contents by methyl jasmonate at 300 µM has been abolished at seedling and vegetative stages in AaDXR-RNAi plants. These results demonstrate that AaDXR play import roles in the control of plan vegetative growth and artemisinin biosynthesis in A. annua.  相似文献   

15.
Sufficient supply of NADPH is one of the most important factors affecting the productivity of biotransformation processes. In this study, construction of an efficient NADPH-regenerating system was attempted using direct phosphorylation of NADH by NADH kinase (Pos5p) from Saccharomyces cerevisiae for producing guanosine diphosphate (GDP)-l-fucose and ε-caprolactone in recombinant Escherichia coli. Expression of Pos5p in a fed-batch culture of recombinant E. coli producing GDP-l-fucose resulted in a maximum GDP-l-fucose concentration of 291.5 mg/l, which corresponded to a 51 % enhancement compared with the control strain. In a fed-batch Baeyer–Villiger (BV) oxidation of cyclohexanone using recombinant E. coli expressing Pos5p, a maximum ε-caprolactone concentration of 21.6 g/l was obtained, which corresponded to a 96 % enhancement compared with the control strain. Such an increase might be due to the enhanced availability of NADPH in recombinant E. coli expressing Pos5p. These results suggested that efficient regeneration of NADPH was possible by functional expression of Pos5p in recombinant E. coli, which can be applied to other NADPH-dependent biotransformation processes in E. coli.  相似文献   

16.
In eukaryotes, frataxin deficiency (FXN) causes severe phenotypes including loss of iron‐sulfur (Fe‐S) cluster protein activity, accumulation of mitochondrial iron and leads to the neurodegenerative disease Friedreich's ataxia. In contrast, in prokaryotes, deficiency in the FXN homolog, CyaY, was reported not to cause any significant phenotype, questioning both its importance and its actual contribution to Fe‐S cluster biogenesis. Because FXN is conserved between eukaryotes and prokaryotes, this surprising discrepancy prompted us to reinvestigate the role of CyaY in Escherichia coli. We report that CyaY (i) potentiates E. coli fitness, (ii) belongs to the ISC pathway catalyzing the maturation of Fe‐S cluster‐containing proteins and (iii) requires iron‐rich conditions for its contribution to be significant. A genetic interaction was discovered between cyaY and iscX, the last gene of the isc operon. Deletion of both genes showed an additive effect on Fe‐S cluster protein maturation, which led, among others, to increased resistance to aminoglycosides and increased sensitivity to lambda phage infection. Together, these in vivo results establish the importance of CyaY as a member of the ISC‐mediated Fe‐S cluster biogenesis pathway in E. coli, like it does in eukaryotes, and validate IscX as a new bona fide Fe‐S cluster biogenesis factor.  相似文献   

17.
Isoprenoid precursor biosynthesis occurs through the mevalonate or the methylerythritol phosphate (MEP) pathway, used i.e., by humans and by many human pathogens, respectively. In the MEP pathway, 2-C-methyl-d-erythritol-2,4-cyclo-diphosphate (MEcPP) is converted to (E)-1-hydroxy-2-methyl-but-2-enyl-4-diphosphate (HMBPP) by the iron-sulfur cluster enzyme HMBPP synthase (GcpE). The presented X-ray structure of the GcpE-MEcPP complex from Thermus thermophilus at 1.55 Å resolution provides valuable information about the catalytic mechanism and for rational inhibitor design. MEcPP binding inside the TIM-barrel funnel induces a 60° rotation of the [4Fe-4S] cluster containing domain onto the TIM-barrel entrance. The apical iron of the [4Fe-4S] cluster ligates with the C3 oxygen atom of MEcPP.  相似文献   

18.
Biological assembly of iron–sulfur (Fe–S) clusters is mediated by complex systems consisting of multiple proteins. Escherichia coli possesses two distinct systems called the ISC and SUF machineries encoded by iscSUA‐hscBA‐fdx‐iscX and sufABCDSE respectively. Deletion of both pathways results in absence of the biosynthetic apparatus for Fe–S clusters, and consequent lethality, which has hampered detailed genetic studies. Here we report that modification of the isoprenoid biosynthetic pathway can offset the indispensability of the Fe–S cluster biosynthetic systems and show that the resulting Δisc Δsuf double mutants can grow without detectable Fe–S cluster‐containing proteins. We also constructed a series of mutants in which each isc gene was disrupted in the deletion background of sufABCDSE. Phenotypic analysis of the mutants revealed that Fdx, an essential electron‐transfer Fe–S protein in the ISC machinery, is dispensable under anaerobic conditions, which is similar to the situation with IscA. Furthermore, we found that several suppressor mutations in IscU, an Fe–S scaffold protein responsible for the de novo Fe–S cluster assembly, could bypass the essential role of the chaperone system HscA and HscB. These findings pave the way toward a detailed molecular analysis to understand the mechanisms involved in Fe–S cluster biosynthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号