首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Before jumping to a landing object, praying mantids determine the distance, using information obtained from retinal image motion resulting from horizontal peering movements. The present study investigates the peering-jump behaviour of Mantis religiosa larvae with regard to jump targets differing in shape and size. The experimental animals were presented with square, triangular and round target objects with visual extensions of 20 degrees and 40 degrees. The cardboard objects, presented against a uniform white background, were solid black or shaded with a gradation from white to black. It was found that larger objects were preferred to smaller ones as jump targets, and that the square and triangle were preferred to the round disk. When two objects were presented, no preference was exhibited between square and triangular objects. However, when three objects were presented, the square was preferred. For targets with a visual angle of 40 degrees, the amplitude and velocity of the horizontal peering movements were greater for the round disk than for the square or triangle. This amplification of the peering movements suggests that weaker motion signals are generated in the case of curved edges. This may help to account for the preference for the square and triangle as jump targets.  相似文献   

2.
In decapod crustaceans, the dorsal light reflex rotates the eyestalk so that the dorsal retina faces the brightest segment of dorsal visual space. Stepwise displacements of white stripes elicit eyestalk rotations in the same direction as that of the stripe. Conversely, stepwise displacements of black stripes on a white background elicit eyestalk rotations in the opposite direction as that of the stripe. The reversal of the response with contrast inversion distinguishes the dorsal light reflex from an optokinetic reflex. When the visual scene is composed of polarized light, segmented by variations in e-vector orientation, displacement of segments containing near vertical e-vectors elicit responses similar to those elicited by a white stripe. Displacement of polarized stripes containing near horizontal e-vectors elicit eyestalk rotations similar to those elicited by a black stripe. The results are consistent with the use of polarized light in orientation. The stimulus conditions described above were also applied to visual interneurons (sustaining fibers) and oculomotor neurons and the results were generally in accord with the behavior. In the neural studies, it was possible to show that responses to polarized stripe displacements are predictable from the receptive field location and the neuron’s polarization tuning function. John P. Schroeter deceased on September 14, 2006.  相似文献   

3.
The aim of the present study was to investigate the distance at which vertical black and white stripes (contrast boundaries) elicit object-related behavioral responses in 6th instar and adults of the praying mantis Mantis religiosa. The mantids reacted when the contrast boundaries were not further away than 60 cm. However, with increasing distance (>20 cm), the contrast boundaries became progressively less significant for the mantids. Jumps/preparation of jumps could be observed between 10 and 30 cm. The results are supportive for distance measurement of up to 20–30 cm, which corresponds to distance accessible for the insect. It seems that image motion cues induced by peering movements play an important role.  相似文献   

4.
Visual deprivation and distance estimation in the praying mantis larva   总被引:1,自引:0,他引:1  
Abstract. Young larvae of the praying mantis, Tenodera sinensis Saussure, were placed on an off-centre island surrounded by a round arena with six black bars painted on a white inner wall. In this situation, it was shown that the horizontal peering movements of the head often seen in mantids are in fact used to measure distances; motion parallax may be involved in this process. Aimed jumps that followed peering were taken to be the distinct result of an absolute distance measurement. Specific visual deprivation such as painting over of certain parts of the eye with opaque black varnish or degeneration of the fovea with sulforhodamine showed that: absolute evaluation of distance is only possible with two fully intact eyes; the peering mechanism is under visual control; and visual experience has a long-term effect on distance measurement involving peering movements.  相似文献   

5.
In transfer tests the ability of bees to generalize visual stimuli was tested by using differently inclined stripes and stripe patterns offered on a vertical screen. After having been trained to single stripes or equidistant stripe patterns, which were orientated by α+ = 45° to the horizontal, the bees had to discriminate between the training direction α+ and the competition direction αc = 135° by means of special stripe configurations. These transfer patterns were obtained by varying different stimulus parameters of the original training stripes, for example by (1) reversing contrast between a stripe and the surrounding visual field, (2) changing the ratio of length/width and by this the dimensions of the stripe, and (3) inserting white intervals into the black stripes. In all three test series the bees succeeded in detecting the α+-direction along a broad range of stimulus variations. As the bees in the transfer tests positively responded to patterns, which on the other side were significantly discriminated from the training pattern (control tests), the information about the direction of the visual cue had been transferred to a new pattern configuration never seen by the bees during the training situation.  相似文献   

6.
Summary The visual orientation towards single black stripes and more complex patterns, comprising smooth gradients of brightness was studied in walking gypsy moths. Depending on the width of a black stripe, up to three walking directions are preferred within one stimulus situation: towards the centre of the stripe and towards a region within the stripe closer to each edge. The observed responses are explained by a compromise between edge-fixation and negative phototaxis. This hypothesis turned out to be also applicable to more complex patterns.  相似文献   

7.
In the present study, peering behaviour, which is used to measure distance by the image motion caused by head movement, is examined in two types of mantid. Mantis religiosa inhabits a region of dense grass consisting of uniform, generally uniformly aligned, and closely spaced elements and executes slow, simple peering movements. In contrast, Empusa fasciata climbs about in open regions of shrubs and bushes which consist of irregular, variably aligned and variably spaced elements and it executes comparatively quick, complex peering movements. Hence, it seems that in these two species of mantid, the same orientation mechanism has been adapted to the unique structures of their visual surroundings. Apparently M. religiosa uses motion parallax and E. fasciata uses a combination of motion parallax and forward and backward movements (image expansion/contraction over time) to detect object distances.  相似文献   

8.
This review article is devoted to results on distance measurement in locusts (e.g., Wallace, 1959; Collett, 1978; Sobel, 1990) and mantids. Before locusts or mantids jump toward a stationary object, they perform characteristic pendulum movements with the head or body, called peering movements, in the direction of the object. The fact that the animals over- or underestimate the distance to the object when the object is moved with or against the peering movement, and so perform jumps that are too long or short, would seem to indicate that motion parallax is used in this distance measurement. The behavior of the peering parameters with different object distances also indicates that not only retinal image motion but also the animal’s own movement is used in calculating the distance.  相似文献   

9.
1. Bees respond by a characteristic reflex to a movement of their visual field. By confining the field to a series of parallel stripes of two alternating different brightnesses it is possible to determine for any width of stripe, at any brightness of one of the two sets of stripes, the brightness of the second at which the bee will first respond to a displacement of the field. Thus the relations between visual acuity and intensity discrimination can be studied. 2. For each width of stripe and visual angle subtended by the stripe the discrimination power of the bee''s eye for different brightnesses was studied. For each visual acuity the intensity discrimination varies with illumination in a characteristic, consistent manner. The discrimination is poor at low illuminations; as the intensity of illumination increases the discrimination increases, and reaches a constant level at high illuminations. 3. From the intensity discrimination curves obtained at different visual acuities, visual acuity curves can be reconstructed for different values of ΔI/I. The curves thus obtained are identical in form with the curve found previously by direct test for the relation between visual acuity and illumination.  相似文献   

10.
有大量的研究提出,大熊猫具有发达的嗅觉和听觉系统但是视力很差。 虽然有些关于大熊猫视力和色觉方面的研究,但是至今我们对大熊猫的具体视力值方面的内容知之甚少。为了定量化大熊猫的视力值,我们观察并记录了8只圈养大熊猫(雌:雄=4:4)对于移动不同水平黑白相间条纹宽度的纸片的行为反应。我们发现,在测量距离为50 cm的情况下,大熊猫能够区分大约为0.46mm宽的黑白相间条纹。这个研究结果为大熊猫视网膜结构的解剖学研究提供了行为学支持,也为今后研究大熊猫的通讯和认知提供一定的参考。  相似文献   

11.
Molecular mechanisms that produce pigment patterns in the insect cuticle were studied. Larvae of the armyworm Pseudaletia separata have stripe patterns that run longitudinally along the body axis. The pattern in the cuticle became clear by being emphasized by the increasing contrast between the black and white colors of the lines after the last larval molt. We demonstrated that dopa decarboxylase (DDC) mRNA as well as protein are expressed specifically in the epidermal cells under the black stripes. The pigmentation on the stripes was clearly diminished by injection of a DDC inhibitor (m-hydroxybenzylhydrazine) to penultimate instar larvae for 1 day before molting, suggesting that DDC contributes to the production of melanin. Further, electron microscopic observation showed that the epidermal cells under the gap cuticle region (white stripe) between the black stripes contain many uric acid granules, which gives a white color. Our findings suggest that the spatially regulated expression of DDC in the epidermal cells produces the black stripes while abundant granules of uric acid in the cells generate the white stripes in the cuticle. Based on these results, we concluded that this heterogeneity in the epidermal cells forms cuticular stripe patterns in the armyworm larvae.  相似文献   

12.
Peering behavior (prolonged gazing within 30 cm by an animal toward another) in wild bonobos (Pan paniscus) at Wamba, Zaire, was studied. A total of 230 peering episodes were observed in various social contexts. Peering behavior was often directed from younger animals toward older ones. In particular, adult females were most frequently involved in peering, with individuals of all age-sex classes. On the other hand, male bonobos seldom took part in peering behavior. Four types of behavior patterns followed the peering behavior: (1) the peerer left; (2) the peeree left; (3) both peerer and peeree stayed but had no further social interaction; and (4) some other social interaction followed. Type (1) was the most frequent. Peering usually led to tolerance by older (dominant) animals of a younger (subordinate) animal’s subsequent actions directed towards the former. Peering was thus concluded to be a unilateral action for initiating affinitive interactions by the peerer.  相似文献   

13.
Foraging mode influences the dominant sensory modality used by a forager and likely the strategies of information gathering used in foraging and anti-predator contexts. We assessed three components of visual information gathering in a sit-and-wait avian predator, the black phoebe (Sayornis nigricans): configuration of the visual field, degree of eye movement, and scanning behavior through head-movement rates. We found that black phoebes have larger lateral visual fields than similarly sized ground-foraging passerines, as well as relatively narrower binocular and blind areas. Black phoebes moved their eyes, but eye movement amplitude was relatively smaller than in other passerines. Black phoebes may compensate for eye movement constraints with head movements. The rate of head movements increased before attacking prey in comparison to non-foraging contexts and before movements between perches. These findings suggest that black phoebes use their lateral visual fields, likely subtended by areas of high acuity in the retina, to track prey items in a three-dimensional space through active head movements. These head movements may increase depth perception, motion detection and tracking. Studying information gathering through head movement changes, rather than body posture changes (head-up, head-down) as generally presented in the literature, may allow us to better understand the mechanisms of information gathering from a comparative perspective.  相似文献   

14.
Abstract A field study in Zimbabwe of Glossina pallidipes Austen and G. morsitans morsitans Westwood supported Waage's (1981) hypothesis that the striped pattern of zebras may protect them from being bitten by blood-sucking flies. In addition, the results suggest that the orientation of the stripes may be crucially important for the unattractiveness of zebras. The relative attractiveness of five different stationary targets (black, white, grey, vertically-striped and horizontally-striped; stripe width = 5 cm) were each tested on their own and in pairs of all combinations, with artificial host odour (CO2 plus acetone) always present. Electric nets were used to catch flies as they attempted to land on or circle the targets. The results were similar for the two species of tsetse. When tested on their own, grey and vertically-striped targets caught similar numbers of flies and both caught significantly fewer than black or white targets (c. 36% as many). Horizontally-striped targets caught <10% as many flies as any other single target. Although there was no significant difference between the attractiveness of grey and vertically striped targets when they were presented together, when paired with the other targets, grey was as attractive as black or white, but the vertically-striped target was significantly less attractive than black or white (P < 0.001). In other words, a difference between grey and vertical stripes was found only in their attractiveness in relation to other targets. The horizontally-striped target, however, always caught the fewest flies, regardless of whether it was presented alone or alongside another target.  相似文献   

15.
Because background matching improves concealment, prey animals have traditionally been expected to prefer parts of the habitat that match their visual appearance. However, empirical support for this is scarce. Moreover, this idea has recently been challenged by an alternative hypothesis: visual complexity of the background impedes prey detection, and hence prey could instead prefer complex parts of the habitat. We used the least killifish to test, with and without predation threat, for the importance of the visual similarity between the fish and the background, and the level of visual complexity of the background. We observed their choice between backgrounds patterned with elements based on the longitudinal black stripe of the fish. Predation risk was important under some circumstances, and induced a preference for a background of matching horizontal stripes compared with mismatching vertical stripes. Interestingly, females under predation threat showed a preference for a complex background of randomly oriented and overlapping stripes compared with matching stripes, whereas males did not discriminate between these two. Additionally, males showed a preference for matching stripes compared with complex shapes, whereas females did not discriminate between these backgrounds. We conclude that matching is important in the choice for safe habitat, but some aspects of visual complexity may override or act together with background matching.  相似文献   

16.
《Acta Oecologica》1999,20(3):197-208
Mosaics consisting of vegetation stripes surrounded by bare areas have been described in several arid and semiarid ecosystems. The dynamics of the system depends on the redistribution of rainwater which is preferentially stored and evapotranspired in the vegetated stripes. A process of plant `colonization' in the upslope fringe of the stripes has been described in some cases and a consequent upslope migration of the stripes has been inferred, but not confirmed in all cases quoted in the literature. In this paper, we studied the spatial distribution of mesquite (Prosopis glandulosa var. torreyana) and the soil parameters in three vegetation stripes and their associated bare areas in the southern Chihuahuan Desert. The spatial distribution of mesquites of different sizes do not coincide with that expected under the hypothesis of an uniform upslope stripe migration, but soil data suggest that current bare areas had been vegetated some time ago. Dispersion and establishment abilities enhanced by overgrazing may explain the observed mesquite distribution, but the presence of trees with high basal diameters in any part of the stripes suggests stripe permanence at the same site and no upslope migration. These results point to the conflicting evidence on stripe migration that has been already found in other areas. The most probable scenario in our study area is that of a general long-term change of form of the stripes taking place at very variable speeds in different stripes, including the possibility that some of them remain stationary for prolonged periods, and showing different histories of colonization according to the life-history of the different species concerned. The speed and regularity of the process would show a very high temporal and spatial variability due to the interaction of climatic, geomorphologic and biotic interactions.  相似文献   

17.
Visually targeted reaching to a specific object is a demanding neuronal task requiring the translation of the location of the object from a two-dimensionsal set of retinotopic coordinates to a motor pattern that guides a limb to that point in three-dimensional space. This sensorimotor transformation has been intensively studied in mammals, but was not previously thought to occur in animals with smaller nervous systems such as insects. We studied horse-head grasshoppers (Orthoptera: Proscopididae) crossing gaps and found that visual inputs are sufficient for them to target their forelimbs to a foothold on the opposite side of the gap. High-speed video analysis showed that these reaches were targeted accurately and directly to footholds at different locations within the visual field through changes in forelimb trajectory and body position, and did not involve stereotyped searching movements. The proscopids estimated distant locations using peering to generate motion parallax, a monocular distance cue, but appeared to use binocular visual cues to estimate the distance of nearby footholds. Following occlusion of regions of binocular overlap, the proscopids resorted to peering to target reaches even to nearby locations. Monocular cues were sufficient for accurate targeting of the ipsilateral but not the contralateral forelimb. Thus, proscopids are capable not only of the sensorimotor transformations necessary for visually targeted reaching with their forelimbs but also of flexibly using different visual cues to target reaches.  相似文献   

18.
Abstract. A behavioural test was used to determine the light sensitivity of the nocturnal mosquito Anopheles gambiae Giles s.s. to low intensities of 'white' light (tungsten filament), 'red' light (white light filtered by a darkroom safelight filter) and 'infra-red' light) of two types (white light filtered by a λ>700 nm filter, and light-emitting diodes with λ>900 nm). Mosquitoes were placed in a 20 cm diameter flight-tunnel and their 'optomotor' response to a pattern of stripes moving across their visual field (at 14.5 cm s-1) was recorded with infra-red-sensitive video. In free-flight, with ample light, the mosquitoes controlled their flight speed and direction in relation to the stripe movement, so that the stripes always appeared to move across their visual field from front to back. They did this by flying either with the moving stripes fast enough to overtake them (19.5 ± 0.7 cm s-1), or against them more slowly (10.3 ± 0.7 cm s-1)- The net ground speed of the mosquitoes was thus c. 4–5 cm s-1. This response was significant down to 10-5 W m-2 in 'white' light, and 10-3 W m-2 in 'red' light. At light intensities below threshold and in infra-red light, however, they appeared to fly at random with respect to the stripe movement. The assumption commonly made, that mosquitoes do not 'see' in red light, may thus have to be revised.  相似文献   

19.
ABSTRACT. Freely walking crickets were filmed from above during their visual orientation towards a black stripe. A frame-by-frame analysis enabled head and body movements to be recorded. The animals walk in 200ms bouts (runs) separated by pauses of similar duration. During each run, rotations of the body axis are observed and some corrections of the course direction occur between successive runs. Generally, the crickets do not walk straight ahead but slightly sideways. Because no lateral head movements were observed during visually orientated locomotion, retinal scanning results from both rotations of the body axis and translation of the head. While walking, one of the target edges is maintained by the cricket on a relatively limited area of the retina, generally between 10 and 25 laterally. Thus, the cricket often records three pieces of information about each edge: one in the monocular visual field, and two in the binocular visual field. Nevertheless, between two pauses, the images of each edge shift asymmetrically on the retinae. Such movement could prevent receptor adaptation by modulation of the ommatidial excitation, or by stimulation of the neighbouring ommatidia. It is also suggested that antennal movements are influenced by the positions of the visually fixated target edges.  相似文献   

20.
Animals must quickly recognize objects in their environment and act accordingly. Previous studies indicate that looming visual objects trigger avoidance reflexes in many species [1-5]; however, such reflexes operate over a close range and might not detect a threatening stimulus at a safe distance. We analyzed how fruit flies (Drosophila melanogaster) respond to simple visual stimuli both in free flight and in a tethered-flight simulator. Whereas Drosophila, like many other insects, are attracted toward long vertical objects [6-10], we found that smaller visual stimuli elicit not weak attraction but rather strong repulsion. Because aversion to small spots depends on the vertical size of a moving object, and not on looming, it can function at a much greater distance than expansion-dependent reflexes. The opposing responses to long stripes and small spots reflect a simple but effective object classification system. Attraction toward long stripes would lead flies toward vegetative perches or feeding sites, whereas repulsion from small spots would help them avoid aerial predators or collisions with other insects. The motion of flying Drosophila depends on a balance of these two systems, providing a foundation for studying the neural basis of behavioral choice in a genetic model organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号