共查询到20条相似文献,搜索用时 15 毫秒
1.
Uptake and distribution of cadmium in maize inbred lines 总被引:39,自引:0,他引:39
Genotypic variation in uptake and distribution of cadmium (Cd) was studied in 19 inbred lines of maize (Zea mays L.). The inbred lines were grown for 27 days on an in situ Cd-contaminated sandy soil or for 20 days on nutrient solution culture with 10 µg Cd L-1. The Cd concentrations in the shoots showed large genotypic variation, ranging from 0.9 to 9.9 µg g-1 dry wt. for the Cd-contaminated soil and from 2.5 to 56.9 µg g-1 dry wt. for the nutrient solution culture. The inbred lines showed a similar ranking for the Cd concentrations in the shoots for both growth media (r2=0.89). Two main groups of inbreds were distinguished: a group with low shoot, but high root Cd concentrations (shoot: 7.4±5.3 µg g-1 dry wt.; root: 206.0±71.2 µg g-1 dry wt.; shoot Cd excluder) and a group with similar shoot and root Cd concentrations (shoot: 54.2±3.4 µg g-1 dry wt.; root: 75.6±11.2 µg g-1 dry wt.; non-shoot Cd excluder). The classification of the maize inbred lines and the near equal whole-plant Cd uptake between the two groups demonstrates that internal distribution rather than uptake is causing the genotypic differences in shoot Cd concentration of maize inbred lines. Zinc (Zn), a micronutrient chemically related to Cd, showed an almost similar distribution pattern for all maize inbred lines. The discrepancy in the internal distribution between Cd and Zn emphasizes the specificity of the Cd distribution in maize inbred lines. 相似文献
2.
In order to investigate the physiological basis of the differential Cd distribution and the degree of variation of this Cd
distribution among maize inbred lines, six inbreds designated earlier as ‘shoot Cd excluders’ (B73, H99, and H96) and ‘non-shoot
Cd excluders’ (B37, H98, and N28) were grown in nutrient solution culture at different external Cd levels or at different
pH. The characterization of the inbreds according to their shoot/root partitioning of Cd was consistent, independent of pH
or level of Cd supply. The Cd concentrations in the plants were highest at the highest pH of the solution cultures. Generally,
there was a positive correlation between the Cd concentrations in shoots and xylem exudates. It was shown that the Cd concentration
in the roots is particularly important in the Cd distribution process. Above a ‘critical’ internal Cd concentration in the
roots, specific for each inbred, the ability to retain Cd is strongly diminished. It is concluded that structural and/or physiological
characteristics of the roots are involved in Cd partitioning. 相似文献
3.
The vertical distribution of maize roots was studied in four contrasting soils, (arenosols, luvisols, planosols and vertisols) by using in-situ root mapping on vertical planes. The relationship between root contact frequency and depth was different for each soil, with a relatively low field-to-field variability within each soil type. The general aspect of this relationship did not change appreciably for three years in arenosols, with a low colonization in sandy layers probably being due to mechanical barriers. The relationship was consistently non-monotonic in luvisols and planosols, because of the sparse colonization of sandy layers. In planosols, these layers were traversed by some primary roots, which were essentially clustered in animal burrows. The distribution of root contact frequency was closer to an exponential function in vertisols. In these soils rooting depth and colonization of deep soil layers showed a marked increase during two dry years compared with a wet year. This was probably due to a denser net of shrinkage cracks and slickensides, where roots were essentially located in dry years. These results raise the possibility of modelling the decrease in root distribution with depth using soil information and climatic characteristics. 相似文献
4.
M. Lee J. L. Geadelmann R. L. Phillips 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1988,75(6):841-849
Summary Tissue culture-induced variation has been proposed as a novel source of variation for crop improvement. In maize (Zea mays L.), chromosome aberrations and qualitative genetic variants have been induced during in vitro culture. The proportion of regenerated plants carrying such variants has been shown to increase with culture age. The objective of this research was to evaluate the relationship between culture age and somaclonal variation for several agronomic traits. Six sib-pollinated ears of S0 (F2) plants in four OH43 ms/A188 populations each provided control seed and embryos for culture initiation. S2 lines derived from control seed and from plants regenerated 4 and 8 months after culture initiation were grouped according to their source ear and grown in 6 separate trials. A total of 305 tissue culture-derived and 48 control lines were evaluated as lines per se and in a testcross at each of three locations. Tissue culturederived lines and their testcrosses generally had lower grain yield and moisture. Since grain yield and moisture were not positively correlated in any trial, the highest yielding lines could be selected without increasing grain moisture. Grain yield and plant height tended to decrease with culture age. Although tissue culture-derived lines were, on average, inferior, the highest yielding line per se in three of six trials and the top-ranked line in five of six trials for yield and moisture were derived from tissue culture. The results indicate that tissue culture may generate variation for agronomic traits. Some of the variation, particularly the trend towards earlier maturity, could be useful. However, this method may require screening large populations because of the tendency to generate a large proportion of inferior lines.Contribution from Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108. Minnesota Agric. Exp. Stn. Scientific Journal Series Paper No. 15,172 相似文献
5.
D. Mišević 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,77(3):402-408
Summary The identification of inbred lines useful for improvement of an elite single cross hybrid is an essential part of a pedigree maize (Zea mays L.) breeding program. The objectives of this study were to identify lines that could be useful for improvement of hybrid B73 × Mo17 and to relate the values of estimators of new favorable alleles with test cross yields. Crosses of parents of hybrid B73 × Mo17 with 10 public lines from the United States (US), and 14 Maize Research Institute Zemun Polje proprietary lines (lines per se, and test crosses from 3 F2 populations) were evaluated at 4 locations in Yugoslavia in 1986. Significant differences in grain yield were found among lines in minimally biased estimates of favorable alleles (G) present in a donor inbred but not present in a B73 × Mo17, in minimum upper bound (UBND) estimates and in predicted three-way performance (PTC). Twenty-one lines had a significant number of dominant favorable alleles for grain yield not present in B73 × Mo17. The highest values for all estimators of new favorable alleles were found for donor lines which belonged to different heterotic groups than the B73 and Mo17. For most of the inbreds, the (C + F) – (D + E) statistics agreed with predigree information. Simultaneous increases in grain yield and decreases in grain moisture content for B73 × Mo17 are possible with several donor inbred lines. All of the lines with a high number of new favorable alleles for grain yield not present in B73 × Mo17 had negative D (F)-G values for low plant height. Line N152 had the most new favorable alleles for grain yield not present in single cross B73 × Mo17. Population (N152 × Mo17) F2 had the highest difference of observed test cross means from check mean, the most test crosses with significantly higher yields than the check, and the largest estimate of number of segregating loci.This project was partly supported by the United States Department of Agriculture and Republic Funds for Scientific Work of Serbia through funds available to the United States-Yugoslav Joint Board on Scientific and Technological Cooperation. Project No. JFP 662 相似文献
6.
The relationship between the age of leaf tissue and response of the photosynthetic apparatus and phytochelatin accumulation to Cd treatment was studied. Studies were carried out with seedlings of Zea mays L. cv. Hidosil grown in the presence of 100-200 mumol/L Cd for 14 days under low light conditions. The third leaf was divided into 3 segments of equal length differing in the stage of tissue maturity and used for measurements of chlorophyll content, chlorophyll fluorescence, glutathione and phytochelatin content and Cd accumulation. A close relationship between the age of leaf tissue and response of the photosynthetic apparatus to Cd was shown. Cadmium (200 mumol/L) reduced photochemical processes more in older than younger leaf segments as seen in the Chl fluorescence parameters Fv/F0, and t1/2, while the chlorophyll fluorescence decrease ratio (Rfd) was inhibited more strongly in younger ones. Fv/Fm was slightly affected. Cd-induced enhancement of GSH content was correlated with higher phytochelatin accumulation to a greater extent in younger than in older leaf segments. Phytochelatin level corresponded to changes of photochemical processes in older leaves. The peptide thiol:Cd molar ratio for the phytochelatins varied depending on Cd concentration and age of leaf segments. The protective role of phytochelatins for the photosynthetic apparatus is discussed. 相似文献
7.
Mohammadreza Shiri 《Archives Of Phytopathology And Plant Protection》2017,50(5-6):197-212
Reaction of 10 maize inbred lines against Fusarium verticillioides and fumonisin accumulation were evaluated under field conditions with three replications in Pars Abad-e-Moghan, Iran. For artificial inoculation, the inbred lines were inoculated with spore suspension in concentration of 1 × 106 ml?1 7–10 days after emergence of silk, using nail punch method. To evaluate the development of the disease, its severity percent and grain yield (g plant?1) was determined two months after inoculation. Total fumonisin produced on maize grains were also evaluated by ELISA kits. The results showed inbred lines K19, K19/1 and K74/1 were susceptible and the rest of the inbred lines were moderately resistant to the diseases. Among moderately resistant inbred lines, A679 and K18 had lowest fumonisin accumulation. Average of the fumonisin accumulation under natural infection condition (control) was 3.37 mg kg?1 while it was 29 mg kg?1 under artificial infection condition, which was 760% more than control. 相似文献
8.
Phosphoglucomutase (PGM; EC 2.7.5.1) isozyme variants were studied in a large number of inbred lines, crosses, and races of maize (Zea mays L.). Patterns of Mendelian inheritance demonstrated for PGM isozyme variants indicated that they are encoded by nuclear genes. Two unlinked loci, Pgm1 and Pgm2, located on the long arm of chromosome 1 and the short arm of chromosome 5, respectively, specify the observed electrophoretic variation on starch gels. No intra- or interlocus hybrid bands were found, suggesting that each isozyme band consists of a single polypeptide. PGM isozymes were present in all plant parts studied and the activity specified by both loci appears to reside in the cytoplasm. In studies of 520 racial collections of maize from Latin America, a single allele at each locus predominated in most collections. Likewise, the same alleles predominated in a set of 406 inbred lines of maize from the United States and Canada.This work was supported in part by NIH Research Grant GM 11546.Paper No. 8496 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina. 相似文献
9.
Most existing water and nutrient uptake models are based on the assumption that roots are evenly distributed in the soil volume. This assumption is not realistic for field conditions, and significantly alters water or nutrient uptake calculations. Therefore, development of models of root system growth that account for the spatial distribution of roots is necessary.The objective of this work was to test a three dimensional architectural model of the maize root system by comparing simulated horizontal root maps with observed root maps obtained from the field. The model was built using the current knowledge on maize root system morphogenesis and parameters obtained under field conditions. Simulated root maps (0.45 × 0.75 m) of horizontal cross sections at 3 depths and 3 dates were obtained by using the model for a plant population. Actual root maps were obtained in a deep, barrier-free clay-loamy soil by digging pits, preparing selected horizontal planes and recording root contacts on plastic sheets.Results showed that both the number of cross-sections of axile roots, and their spatial distribution characterized with the R-index value of Clark and Evans (1954), were correctly accounted for by the model at all dates and depths. The number of cross-sections of laterals was also correctly predicted. However, laterals were more clustered around axile roots on simulated root maps than on observed root maps. Although slight discrepancies appeared between simulated and observed root maps in this respect, it was concluded that the model correctly accounted for the general colonization pattern of the soil volume by roots under a maize crop. 相似文献
10.
Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants 总被引:9,自引:0,他引:9
The present study investigated the possible mediatory role of salicylic acid (SA) in protecting photosynthesis from cadmium (Cd) toxicity. Seeds of maize (Zea mays L., hybrid Norma) were sterilized and divided into two groups. Half of the seeds were presoaked in 500muM SA solution for only 6h, after which both groups were allowed to germinate for 3d and were then grown for 14d in Hoagland solution at 22/18 degrees C in a 16/8-h light/dark period and 120mumolm(-2)s(-1) PAR. All seedlings (without H(2)O and SA controls) were transferred to Cd-containing solutions (10, 15, and 25muM) and grown for 14d. The rate of CO(2) fixation and the activity of ribulose 1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were measured. Changes in the levels of several important parameters associated with oxidative stress, namely H(2)O(2) and proline production, lipid peroxidation, electrolyte leakage, and the activities of antioxidative enzymes (superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), and guaiacol peroxidase (POD, EC 1.11.1.7)) were measured. Exposure of the plants to Cd caused a gradual decrease in the shoot and root dry weight accumulation, with the effect being most pronounced at 25muM Cd. Seed pretreatment with SA alleviated the negative effect of Cd on plant growth parameters. The same tendency was observed for the chlorophyll level. The rate of CO(2) fixation was lower in Cd-treated plants, and the inhibition was partially overcome in SA-pretreated plants. A drop in the activities of RuBPC and PEPC was observed for Cd-treated plants. Pretreatment with SA alleviated the inhibitory effect of Cd on enzyme activity. Proline production and the rates of lipid peroxidation and electrolyte leakage increased in Cd-treated plants, whereas the values of these parameters were much lower in SA-pretreated plants. Treatment of plants with Cd decreased APX activity, but more than doubled SOD activity. Pretreatment with SA caused an increase in both APX and SOD activity, but caused a strong reduction in CAT activity. The data suggest that SA may protect cells against oxidative damage and photosynthesis against Cd toxicity. 相似文献
11.
Pellerin Sylvain 《Plant and Soil》1993,148(2):155-161
The timing of root production is one of the parameters required for modelling the root system architecture. The objectives of this study are (1) to describe the rate of appearance of adventitious root primordia of maize and their rate of emergence out of the stem; (2) to test equations for the prediction of the rank of the phytomer on which root emergence occurs, in a wide range of field situations.Maize, cultivar Dea, was grown in controlled conditions and in the field in 1987, 1988, 1989 and 1991. Plants were regularly sampled and the following data were recorded: foliar stage, number of root primordia and number of emerged roots per phytomer. Root primordia were counted in transverse thin sections in the stem.At a single plant level, root primordia differentiation occurred sequentially on the successive phytomers, with no overlapping between two phytomers. The same was true for root emergence. Roots belonging to the same phytomer emerged at approximately the same time.At a plant population level, there was a linear relationship between the rank of the phytomer on which root primordia were differentiated and cumulated degree-days after sowing. A linear relationship was also observed between the rank of the phytomer on which roots were emerging and cumulated degree-days or foliar stage. In the range of field situations tested (several years, sowing dates and planting densities), both equations gave an accurate prediction of the timing of root emergence during the plant cycle. 相似文献
12.
Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants 总被引:2,自引:0,他引:2
Background and Aims
Silicon (Si) has been shown to ameliorate the negative influence of cadmium (Cd) on plant growth and development. However, the mechanism of this phenomenon is not fully understood. Here we describe the effect of Si on growth, and uptake and subcellular distribution of Cd in maize plants in relation to the development of root tissues.Methods
Young maize plants (Zea mays) were cultivated for 10 d hydroponically with 5 or 50 µm Cd and/or 5 mm Si. Growth parameters and the concentrations of Cd and Si were determined in root and shoot by atomic absorption spectrometry or inductively coupled plasma mass spectroscopy. The development of apoplasmic barriers (Casparian bands and suberin lamellae) and vascular tissues in roots were analysed, and the influence of Si on apoplasmic and symplasmic distribution of 109Cd applied at 34 nm was investigated between root and shoot.Key Results
Si stimulated the growth of young maize plants exposed to Cd and influenced the development of Casparian bands and suberin lamellae as well as vascular tissues in root. Si did not affect the distribution of apoplasmic and symplasmic Cd in maize roots, but considerably decreased symplasmic and increased apoplasmic concentration of Cd in maize shoots.Conclusions
Differences in Cd uptake of roots and shoots are probably related to the development of apoplasmic barriers and maturation of vascular tissues in roots. Alleviation of Cd toxicity by Si might be attributed to enhanced binding of Cd to the apoplasmic fraction in maize shoots. 相似文献13.
The objective of this work was to study elongation curves of maize axile roots throughout their elongation period under field
conditions. Relationships between their elongation rate and the extension rate of their branched region were also studied.
Maize, early-maturing cultivar Dea, was grown on a deep, barrier-free clay loam (depth 1.80m). Trenches were dug during four
periods until after silking and axile roots were excavated. Parameters measured were total length and the lengths of basal
and apical unbranched zones. The rank of the bearing phytomer and general data about the carrying plant were also recorded.
Results showed that axile roots from lower phytomers had similar elongation rates irrespective of the rank of the carrying
phytomer. This elongation rate declined with root age. A monomolecular elongation model was fitted to the experimental data.
Elongation was much slower in roots from upper phytomers. A rough linear relationship was found between the elongation rate
of axile roots and the length of the apical unbranched zone. This result suggests that laterals appeared on a root segment
a constant time after it was formed.
Possible mechanisms with may account for the declining elongation rate with root age (increasing distance from aerial parts
or adverse environmental conditions in deep soil layers) and variability between individual roots are also discussed. 相似文献
14.
Chuanxiao Xie Marilyn Warburton Mingshun Li Xinhai Li Muji Xiao Zhuanfang Hao Qi Zhao Shihuang Zhang 《Molecular breeding : new strategies in plant improvement》2008,21(4):407-418
This study analyzes population structure and linkage disequilibrium (LD) among 187 commonly used Chinese maize inbred lines,
representing the genetic diversity among public, commercial and historically important lines for corn breeding. Seventy SSR
loci, evenly distributed over 10 chromosomes, were assayed for polymorphism. The identified 290 alleles served to estimate
population structure and analyze the genome-wide LD. The population of lines was highly structured, showing 6 subpopulations:
BSSS (American BSSS including Reid), PA (group A germplasm derived from modern U.S. hybrids in China), PB (group B germplasm
derived from modern U.S. hybrid in China), Lan (Lancaster Surecrop), LRC (derivative lines from Lvda Reb Cob, a Chinese landrace)
and SPT (derivative lines from Si-ping-tou, a Chinese landrace). Forty lines, which formerly had an unknown and/or miscellaneous
origin and pedigree record, were assigned to the appropriate group. Relationship estimates based on SSR marker data were quantified
in a Q matrix, and this information will inform breeder’s decisions regarding crosses. Extensive inter- and intra-chromosomal
LD was detected between 70 microsatellite loci for the investigated maize lines (2109 loci pairs in LD with D′ > 0.1 and 93 out of them at P < 0.01).This suggests that rapidly evolving microsatellites may track recent population structure. Interlocus LD decay among
the diverse maize germplasm indicated that association studies in QTLs and/or candidate genes might avoid nonfunctional and
spurious associations since most of the LD blocks were broken between diverse germplasm. The defined population structure
and the LD analysis present the basis for future association mapping.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
15.
Illumination of maize roots initiates changes in mRNA levels and in the activities of proteins within the root cap. Using Northern analysis we showed a 5–6-fold increase in the levels of three specific mRNAs and a 14-fold increase in plastid mRNA. This increase is rapid, occurring within 30 minutes of illumination. With prolonged periods of darkness following illumination, messages return to levels observed in dark, control caps. For two species of mRNA illumination results in a reduction in message levels. Light-stimulated increases in the levels of specific mRNAs are proportionally greater than are increases in the activities of corresponding proteins. We suggest that the light-stimulated increase in protein activity in root caps may be preceded by and occur as a consequence of enhanced levels of mRNA. Our work suggests that photomorphogenesis in roots could involve changes in the levels of a wide variety of mRNAs within the root cap. 相似文献
16.
Low-P tolerance by maize (Zea mays L.) genotypes: Significance of root growth,and organic acids and acid phosphatase root exudation 总被引:5,自引:0,他引:5
Gaume Alain Mächler Felix De León Carlos Narro Luis Frossard Emmanuel 《Plant and Soil》2001,228(2):253-264
We investigated some mechanisms, which allow maize genotypes to adapt to soils which are low in available P. Dry matter production, root/shoot-ratio, root length and root exudation of organic acids and acid phosphatase were investigated in four maize genotypes grown under P-deficient and P-sufficient conditions in sterile hydroponic culture. A low-P tolerant, an acid-tolerant and a low-P susceptible genotype of maize were compared with a Swiss commercial cultivar. The study found increased root development and increased exudation of acid phosphatase under P-deficient conditions in all maize genotypes, except for the Swiss cultivar. Effects on root formation and acid phosphatase were greater for the low-P tolerant than for the low-P susceptible, and the acid soil tolerant genotypes. Organic acid contents in root tissues were increased under P deficiency and related to increased PEPC activity. However, the increase in contents was associated with an increase in exudation for the low-P tolerant genotype only. The low-P susceptible genotype was characterized by high organic acid content in roots and low organic acid exudation. The organic acids content in the phloem exudates of shoots was related to root exudation under different P supply, to the difference between lines in organic acids root content, but not to the low-P tolerance or susceptibility of maize genotypes. 相似文献
17.
The effect of oxygen deficiency on uptake and distribution of nutrients in maize plants 总被引:2,自引:1,他引:2
Young maize (Zea mays L.) plants, 7 days after germination were exposed to nutrient solutions which were either aerated or not aerated for 14 days.
Nutrients were supplied as 50% strength Hoagland’s solution or, in the case of the four ‘low nutrient’ treatments, N, P, K
or Ca were supplied at the equivalent of 10% strength Hoagland’s solution.
Shoot fresh weight was decreased by 25% due to lack of aeration; O2 deficiency also impaired leaf elongation but not dry weights, suggesting that lack of O2 in the roots impaired cell expansion in shoots more than dry weight accumulation.
The distribution of N, P, K and Ca within shoots was consistent with their relative mobilities in the phloem; at least 7%
of Ca in plants after 14 days of treatments was found in the oldest leaf whereas N, P and K were rapidly remobilised to younger
tissues. Between 33 and 49% of the total N, P and K in the shoot was found in the 40 mm of tissue at the base of the growing
leaves in plants grown for 14 days at low nutrient concentrations. Concentrations (dry weight basis) of phloem-mobile nutrients
were also greatest in the growing zones of the leaves, especially in the case of N and P. Calcium, on the other hand, was
found in relatively low concentrations in the youngest tissue and as with the other nutrients, concentrations declined due
to low external supply, non-aeration or a combination of both.
In spite of the failure of Ca to move from old to young leaves, the effect of the deficiencies of N, P and K was probably
as severe as that of Ca in the youngest tissues of treated plants. Calcium uptake by the whole shoot appeared to be slightly
less sensitive to O2 deficits than that of N, P and K. This compensated for the failure of Ca to move to growing tissues during periods of low
external Ca supply. 相似文献
18.
The trajectories of seventy three nodal roots of maize were studied in two fields with loose soil structure. Their projections
on horizontal and vertical planes were traced. These roots tended to remain in a vertical plane. Trajectories were related
to each other by an affine transformation. Thus, all the observed trajectories could be obtained by transformation of a common
root archetype. The horizontal component of the trajectories was mainly in the first 0.4 m depth of soil, in the layer where
soil structure was disturbed by ploughing. This horizontal component decreased with later appearance of roots (upper internodes),
but differed between the two sites. The average soil temperature during the week following root appearance accounted for differences
between internodes and sites. Lungley's algorithm, which is commonly used in modelling root trajectories, was tested. A general
pattern could be simulated, but the model failed to fit the trajectories in the first 100 to 200 mm of soil. As a consequence,
the initial angle between the stem and the root, which is a sensitive parameter in Lungley's model, did not account for differences
between root trajectories.
Laboratoire d'agronomie de Colmar 相似文献
19.
Junta Yanai Denis J. Linehan David Robinson Iain M. Young Christine A. Hackett Kazutake Kyuma Takashi Kosaki 《Plant and Soil》1996,180(1):1-9
The effect of inorganic nitrogen (N) fertilizer on the ionic composition of the soil solution under maize (Zea mays L.) was studied. A pot experiment was carried out with two treatments combined factorially, with or without N application (Ca(NO3)2; +N and –N treatments, respectively), and with or without plants. Three looped hollow fiber samplers were installed in each pot to sample soil solutions nondestructively from the root zone, seven times during the 50-day growth period. Plants were harvested on the 50th day, and their nutrient contents determined.Effects of N fertilizer on the soil solutions were observed by the first sampling, 2 days after sowing. The concentrations of Ca and NO3
– and electrical conductivity (EC) increased significantly in the +N treatments as direct effects of fertilizer application. In addition, the concentrations of Mg, K, Na and H+ also increased and that of P decreased significantly as indirect effects caused by the re-establishment of chemical equilibria. This suggested the greater supply as well as the greater possibility of leaching loss not only of NO3
– but also of Ca, Mg and K. In the treatments with plants, the concentrations of NO3
–, Ca, Mg and K decreased with time and pH increased significantly compared with the unplanted soil. The depletion of N in the soil solution roughly agreed with the amount of N taken up by the plant. The depletions of K from the soil solution amounted to less than 10% of the amount of the K taken up, suggesting intensive replenishment of K from exchange sites in the soil. Depletions of Ca and Mg were several times higher than the amounts taken up, indicating that the depletions resulted from the adsorption of the divalent cations by the soil rather than uptake by plants. Because NO3
– is hardly absorbed by exchange sites in soil and was the dominant anion in solution, it was concluded that NO3
– had a major role in controlling cation concentrations in the soil solution and, consequently, on their availability for uptake by plants as well as their possible leaching loss. ei]H Marschner 相似文献
20.
Trajectories of maize nodal roots were studied to test the hypothesis that roots which appear on a common internode have similar geometrical characteristics, and to assess the effect of soil temperature on root trajectory. Treatments consisted of three sowing dates, a comparison between mulched and non-mulched soil, a replication of one sowing date for two years in two locations, and a comparison between two cultivars at one sowing date. All these sources of variation, except the cultivar, had an appreciable effect on the trajectories of roots which appeared on the first four internodes. The horizontal component of the trajectory differed significantly between treatments, ranging from 93 to 700 mm in roots which appeared on the second internode, and from 71 to 569 for those on the third internode. The original hypothesis had, therefore, to be rejected. Mean soil temperature during the 100°C.days after root appearance accounted for the differences in trajectory between location, year, sowing date and mulch treatments, and for the differences between internodes within each location. The critical period during which temperature affected root trajectory probably began at root appearance, and ended between 50 and 100°C days after root appearance, i.e. when the root was less than 100 mm long. 相似文献