共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of tubulin and microtubules in a growing axon is essential for axonal growth and maintenance. However, the molecular mechanism underlying the linkage of tubulin and microtubules to motor proteins is not yet clear. Collapsin response mediator protein-2 (CRMP-2) is enriched at the distal part of growing axons in primary hippocampal neurons and plays a critical role in axon differentiation through its interaction with tubulin dimer and Numb. In this study, we show that CRMP-2 regulates tubulin transport by linking tubulin and Kinesin-1. The C-terminal region of CRMP-2 directly binds to the tetratricopeptide repeat domain of kinesin light chain 1 (KLC1). Soluble tubulin binds to the middle of CRMP-2 and forms a trimeric complex with CRMP-2/KLC1. Furthermore, the movement of GFP-tubulin in the photobleached area is weakened by knockdown of KLCs or CRMP-2. These results indicate that the CRMP-2/Kinesin-1 complex regulates soluble tubulin transport to the distal part of the growing axon. 相似文献
2.
Anat Shmueli Ryouhei Tsutsumi Jun Noritake Avi Bar Sivan Sapoznik Yuko Fukata Irit Orr Masaki Fukata Orly Reiner 《The EMBO journal》2010,29(1):107-119
Regulated activity of the retrograde molecular motor, cytoplasmic dynein, is crucial for multiple biological activities, and failure to regulate this activity can result in neuronal migration retardation or neuronal degeneration. The activity of dynein is controlled by the LIS1–Ndel1–Nde1 protein complex that participates in intracellular transport, mitosis, and neuronal migration. These biological processes are subject to tight multilevel modes of regulation. Palmitoylation is a reversible posttranslational lipid modification, which can dynamically regulate protein trafficking. We found that both Ndel1 and Nde1 undergo palmitoylation in vivo and in transfected cells by specific palmitoylation enzymes. Unpalmitoylated Ndel1 interacts better with dynein, whereas the interaction between Nde1 and cytoplasmic dynein is unaffected by palmitoylation. Furthermore, palmitoylated Ndel1 reduced cytoplasmic dynein activity as judged by Golgi distribution, VSVG and short microtubule trafficking, transport of endogenous Ndel1 and LIS1 from neurite tips to the cell body, retrograde trafficking of dynein puncta, and neuronal migration. Our findings indicate, to the best of our knowledge, for the first time that Ndel1 palmitoylation is a new mean for fine‐tuning the activity of the retrograde motor cytoplasmic dynein. 相似文献
3.
Sadiya Malik Hiroko Saito Miho Takaoka Akira Nakanishi 《Cell cycle (Georgetown, Tex.)》2016,15(16):2145-2156
BRCA2 is responsible for familial breast and ovarian cancer and has been linked to DNA repair and centrosome duplication. Here we analyzed the mechanism by which the centrosomal localization signal (CLS) of BRCA2 interacts with cytoplasmic dynein 1 to localize BRCA2 to the centrosome. In vitro pull-down assays demonstrated that BRCA2 directly binds to the cytoplasmic dynein 1 light intermediate chain 2. A dominant-negative HA-CLS-DsRed fusion protein, the depletion of dynein by siRNA, and the inactivation of dynein by EHNA, inhibited the localization of BRCA2 at centrosomes and caused the separation of centrosome pairs during the S-phase. The double depletion of BRCA2 and C-Nap1 caused a larger dispersion of centrosome distances than the silencing of C-Nap1. These results suggest that cytoplasmic dynein 1 binds to BRCA2 through the latter's CLS and BRCA2 mediates the cohesion between centrosomes during the S phase, potentially serving as a cell-cycle checkpoint. 相似文献
4.
Despite the existence of multiple subunit isoforms for the microtubule motor cytoplasmic dynein, it has not yet been directly shown that dynein complexes with different compositions exhibit different properties. The 14-kD dynein light chain Tctex-1, but not its homologue RP3, binds directly to rhodopsin's cytoplasmic COOH-terminal tail, which encodes an apical targeting determinant in polarized epithelial Madin-Darby canine kidney (MDCK) cells. We demonstrate that Tctex-1 and RP3 compete for binding to dynein intermediate chain and that overexpressed RP3 displaces endogenous Tctex-1 from dynein complexes in MDCK cells. Furthermore, replacement of Tctex-1 by RP3 selectively disrupts the translocation of rhodopsin to the MDCK apical surface. These results directly show that cytoplasmic dynein function can be regulated by its subunit composition and that cytoplasmic dynein is essential for at least one mode of apical transport in polarized epithelia. 相似文献
5.
We have used an antibody-Fab tag to mark the position of the cytoplasmic dynein amino-terminal tail domain, as it emerges from the main mass of the motor. Electron microscopy and single-particle image analysis reveal that the tag does not assume a rigidly fixed position, but instead can be found at various locations around the planar ring that comprises the motor's backbone. The work suggests that the tail is attached to the motor at a point near the ring center, and that the sequence immediately adjacent to this connection is flexible. Such flexibility argues against a simple-lever arm model for dynein force production. 相似文献
6.
It is now clear that transport on microtubules by dynein and kinesin family motors has an important if not critical role in the replication and spread of many different viruses. Understanding how viruses hijack dynein and kinesin motors using a limited repertoire of proteins offers a great opportunity to determine the molecular basis of motor recruitment. In this review, we discuss the interactions of dynein and kinesin-1 with adenovirus, the α herpes viruses: herpes simplex virus (HSV1) and pseudorabies virus (PrV), human immunodeficiency virus type 1 (HIV-1) and vaccinia virus. We highlight where the molecular links to these opposite polarity motors have been defined and discuss the difficulties associated with identifying viral binding partners where the basis of motor recruitment remains to be established. Ultimately, studying microtubule-based motility of viruses promises to answer fundamental questions as to how the activity and recruitment of the dynein and kinesin-1 motors are coordinated and regulated during bi-directional transport. 相似文献
7.
Yamada M Toba S Yoshida Y Haratani K Mori D Yano Y Mimori-Kiyosue Y Nakamura T Itoh K Fushiki S Setou M Wynshaw-Boris A Torisawa T Toyoshima YY Hirotsune S 《The EMBO journal》2008,27(19):2471-2483
LIS1 was first identified as a gene mutated in human classical lissencephaly sequence. LIS1 is required for dynein activity, but the underlying mechanism is poorly understood. Here, we demonstrate that LIS1 suppresses the motility of cytoplasmic dynein on microtubules (MTs), whereas NDEL1 releases the blocking effect of LIS1 on cytoplasmic dynein. We demonstrate that LIS1, cytoplasmic dynein and MT fragments co-migrate anterogradely. When LIS1 function was suppressed by a blocking antibody, anterograde movement of cytoplasmic dynein was severely impaired. Immunoprecipitation assay indicated that cytoplasmic dynein forms a complex with LIS1, tubulins and kinesin-1. In contrast, immunoabsorption of LIS1 resulted in disappearance of co-precipitated tubulins and kinesin. Thus, we propose a novel model of the regulation of cytoplasmic dynein by LIS1, in which LIS1 mediates anterograde transport of cytoplasmic dynein to the plus end of cytoskeletal MTs as a dynein-LIS1 complex on transportable MTs, which is a possibility supported by our data. 相似文献
8.
Neurofibromin, encoded by the neurofibromatosis type 1 (NF1) gene, regulates the Ras and cAMP pathways and plays a role in proliferation and neuronal morphogenesis. The details of the molecular mechanism of neurofibromin action in these processes are still unclear. In this study, immunoprecipitation and proteomics were used to identify novel proteins from rat brain that interact with neurofibromin. Mass spectrometry analysis showed that two proteins, the collapsin response mediator protein-2 (CRMP-2) and propionyl-CoA carboxylase alpha chain (PCCA), associated with neurofibromin. Immunoprecipitation-immunoblotting analysis confirmed the interactions between neurofibromin and CRMP-2 and CRMP-4, but not CRMP-1, in rat brain. CDK5, a kinase that regulates CRMP-2 in axonal outgrowth, was required for the interaction between neurofibromin and CRMP-2. Since both neurofibromin and CRMP proteins are involved in proliferation and axonal morphogenesis, these results suggest that the interaction with CRMPs contributes to the function of neurofibromin in tumorigenesis and neuronal morphogenesis. 相似文献
9.
为研究坍塌反应调节蛋白-1(collapsin response mediator protein-1,CRMP-1对神经元突起生长的作用,构建了CRMP-1真核表达载体,以神经生长因子(NGF)诱导的PC12细胞为模型,采用基因转染、突起生长时差成像、突起提取和免疫印迹技术进行观察.结果显示,NGF诱导的PC12细胞具有典型的神经元形态特征,脂质体转染技术可成功地把CRMP-1基因导入细胞.过表达CRMP-1可明显抑制突起生长,促进突起坍塌,首先是细小突起缩短,然后是长突起,细胞突起的长度随CRMP-1蛋白表达时间延长呈逐渐缩短的趋势.突起提取液的测定显示,CRMP-1过表达的细胞较NGF诱导的和转染空载体的细胞突起明显减少(P<0.01.说明CRMP-1具有明显的突起生长抑制作用. 相似文献
10.
For proper chromosome segregation, all kinetochores must achieve bipolar microtubule (MT) attachment and subsequently align at the spindle equator before anaphase onset. The MT minus end-directed motor dynein/dynactin binds kinetoehores in prometaphase and has long been implicated in chromosome congression. Unfortunately, inactivation of dynein usually disturbs spindle organization, thus hampering evaluation of its kinetochore roles. Here we specifically eliminated kinetochore dynein/dynactin by RNAi-mediated depletion of ZW10, a protein essential for kinetochore localization of the motor. Time-lapse microscopy indicated markedly-reduced congression efficiency, though congressing chromosomes displayed similar velocities as in control cells. Moreover, cells frequently failed to achieve full chromosome alignment, despite their normal spindles. Confocal microcopy revealed that the misaligned kinetochores were monooriented or unattached and mostly lying outside the spindle, suggesting a difficulty to capture MTs from the opposite pole. Kinetoehores on monoastral spindles were dispersed farther away from the pole and exhibited only mild oscillation. Furthermore, inactivating dynein by other means generated similar phenotypes. Therefore, kinetochore dynein produces on monooriented kinetochores a poleward pulling force, which may contribute to efficient bipolar attachment by facilitating their proper microtubule captures to promote congression as well as full chromosome alignment. 相似文献
11.
Masami Yamada Shiori Toba Takako Takitoh Yuko Yoshida Daisuke Mori Takeshi Nakamura Atsuko H Iwane Toshio Yanagida Hiroshi Imai Li‐yuan Yu‐Lee Trina Schroer Anthony Wynshaw‐Boris Shinji Hirotsune 《The EMBO journal》2010,29(3):517-531
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein–LIS1–microtubule complex in a kinesin‐1‐dependent manner. However, the underlying mechanism by which a cytoplasmic dynein–LIS1–microtubule complex binds kinesin‐1 is unknown. Here, we report that mNUDC (mammalian NUDC) interacts with kinesin‐1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin‐1. mNUDC is also required for anterograde transport of a dynactin‐containing complex. Inhibition of mNUDC severely suppressed anterograde transport of distinct cytoplasmic dynein and dynactin complexes, whereas motility of kinesin‐1 remained intact. Reconstruction experiments clearly demonstrated that mNUDC mediates the interaction of the dynein or dynactin complex with kinesin‐1 and supports their transport by kinesin‐1. Our findings have uncovered an essential role of mNUDC for anterograde transport of dynein and dynactin by kinesin‐1. 相似文献
12.
Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella 总被引:20,自引:0,他引:20
Pazour GJ Dickert BL Vucica Y Seeley ES Rosenbaum JL Witman GB Cole DG 《The Journal of cell biology》2000,151(3):709-718
Intraflagellar transport (IFT) is a rapid movement of multi-subunit protein particles along flagellar microtubules and is required for assembly and maintenance of eukaryotic flagella. We cloned and sequenced a Chlamydomonas cDNA encoding the IFT88 subunit of the IFT particle and identified a Chlamydomonas insertional mutant that is missing this gene. The phenotype of this mutant is normal except for the complete absence of flagella. IFT88 is homologous to mouse and human genes called Tg737. Mice with defects in Tg737 die shortly after birth from polycystic kidney disease. We show that the primary cilia in the kidney of Tg737 mutant mice are shorter than normal. This indicates that IFT is important for primary cilia assembly in mammals. It is likely that primary cilia have an important function in the kidney and that defects in their assembly can lead to polycystic kidney disease. 相似文献
13.
Xuan Li Hiroshi Kuromi Laura Briggs David B Green João J Rocha Sean T Sweeney Simon L Bullock 《The EMBO journal》2010,29(5):992-1006
Cargo transport by microtubule‐based motors is essential for cell organisation and function. The Bicaudal‐D (BicD) protein participates in the transport of a subset of cargoes by the minus‐end‐directed motor dynein, although the full extent of its functions is unclear. In this study, we report that in Drosophila zygotic BicD function is only obligatory in the nervous system. Clathrin heavy chain (Chc), a major constituent of coated pits and vesicles, is the most abundant protein co‐precipitated with BicD from head extracts. BicD binds Chc directly and interacts genetically with components of the pathway for clathrin‐mediated membrane trafficking. Directed transport and subcellular localisation of Chc is strongly perturbed in BicD mutant presynaptic boutons. Functional assays show that BicD and dynein are essential for the maintenance of normal levels of neurotransmission specifically during high‐frequency electrical stimulation and that this is associated with a reduced rate of recycling of internalised synaptic membrane. Our results implicate BicD as a new player in clathrin‐associated trafficking processes and show a novel requirement for microtubule‐based motor transport in the synaptic vesicle cycle. 相似文献
14.
Horiuchi M Loebrich S Brandstaetter JH Kneussel M Betz H 《Journal of neurochemistry》2005,94(2):307-315
Unc-33-like protein (Ulip)6, a brain-specific phosphoprotein of the Ulip/collapsin response mediator protein family, was originally identified in our laboratory by yeast two-hybrid screening using the cytoplasmic N-terminal domain of the neuronal glycine transporter, glycine transporter (GlyT) 2, as a bait. Here, the interaction of Ulip6 with the N-terminal domain of GlyT2 was found to be specific for this member of the Ulip/collapsin response mediator protein family and to involve amino acids 135-184 of GlyT2. In pull-down assays and coimmunoprecipitation experiments with rat spinal cord extract, the presence of phosphatase inhibitors significantly enhanced binding of Ulip6 to GlyT2. Subcellular fractionation of spinal cord and retina homogenates at different developmental stages showed Ulip6 immunoreactivity to be associated with light vesicles that were distinct from GlyT2-containing and synaptic vesicles. Immunocytochemistry revealed punctate Ulip6 immunoreactivity in both somatic regions and processes of cultured spinal neurones; no colocalization with GlyT2 or other synaptic marker proteins was found. In retina, which expresses only GlyT1 but not GlyT2, Ulip6 was detected in the inner plexiform layer and along the somata and processes of selected bipolar, amacrine and ganglion cells. Our data support a model in which Ulip6 transiently interacts with GlyT2 in a phosphorylation-dependent manner. 相似文献
15.
Conor P. Horgan Rushee S. Jolly Mary W. McCaffrey 《Biochemical and biophysical research communications》2010,394(2):387-392
The mechanochemical forces that move and position intracellular organelles and their intermediates in eukaryotic cells are provided by molecular motor proteins which include the cytoplasmic dynein-1 motor complex. Recently, we identified the Rab11 GTPase effector protein Rab11-FIP3 (henceforth, FIP3) as a novel binding-partner for dynein light intermediate chain 1 (DLIC-1, gene symbol DYNC1LI1), a subunit of cytoplasmic dynein-1. Here, we show that FIP3 also binds the dynein light intermediate chain 2 subunit (DLIC-2, gene symbol DYNC1LI2). We show that like DLIC-1, DLIC-2 binds the amino-terminal 435 amino acids of FIP3 and that FIP3 links Rab11a to DLIC-2. We also show that FIP3 recruits DLIC-2 onto membranes and that DLIC-2 is necessary for the accumulation of endocytosed-transferrin (Tfn) at the pericentrosomal endosomal-recycling compartment (ERC). Finally, we demonstrate that overexpression of FIP3 fragments the Golgi complex by sequestering cytoplasmic dynein-1. In conclusion, we have identified FIP3 as the first membrane-associated interacting-partner for DLIC-2 and propose that this interaction serves to control endosomal trafficking from sorting endosomes to the ERC. 相似文献
16.
The free form of human cytoplasmic arginyl-tRNA synthetase (hcArgRS) is hypothesized to participate in ubiquitin-dependent protein degradation by offering arginyl-tRNA(Arg) to arginyl-tRNA transferase (ATE1). We investigated the effect of hemin on hcArgRS based on the fact that hemin regulates several critical proteins in the "N-end rule" protein degradation pathway. Extensive biochemical evidence has established that hemin could bind to both forms of hcArgRS in vitro. Based on the spectral changes of the Soret band on site-directed protein mutants, we identified Cys-115 as a specific axial ligand of hemin binding that is located in the Add1 domain. Hemin inhibited the catalytic activity of full-length and N-terminal 72-amino acid-truncated hcArgRSs by blocking amino acid activation. Kinetic analysis demonstrated that the K(m) values for tRNA(Arg), arginine, and ATP in the presence of hemin were not altered, but k(cat) values dramatically decreased compared with those in the absence of hemin. By comparison, the activity of prokaryotic ArgRS was not affected obviously by hemin. Gel filtration chromatography suggested that hemin induced oligomerization of both the isolated Add1 domain and the wild type enzyme, which could account for the inhibition of catalytic activity. However, the catalytic activity of an hcArgRS mutant with Cys-115 replaced by alanine (hcArgRS-C115A) was also inhibited by hemin, suggesting that hemin binding to Cys-115 is not responsible for the inhibition of enzymatic activity and that the specific binding may participate in other biological functions. 相似文献
17.
Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer's disease progression 总被引:1,自引:0,他引:1
Cole AR Noble W van Aalten L Plattner F Meimaridou R Hogan D Taylor M LaFrancois J Gunn-Moore F Verkhratsky A Oddo S LaFerla F Giese KP Dineley KT Duff K Richardson JC Yan SD Hanger DP Allan SM Sutherland C 《Journal of neurochemistry》2007,103(3):1132-1144
Collapsin response mediator protein 2 (CRMP2) is an abundant brain-enriched protein that can regulate microtubule assembly in neurons. This function of CRMP2 is regulated by phosphorylation by glycogen synthase kinase 3 (GSK3) and cyclin-dependent kinase 5 (Cdk5). Here, using novel phosphospecific antibodies, we demonstrate that phosphorylation of CRMP2 at Ser522 (Cdk5-mediated) is increased in Alzheimer's disease (AD) brain, while CRMP2 expression and phosphorylation of the closely related isoform CRMP4 are not altered. In addition, CRMP2 phosphorylation at the Cdk5 and GSK3 sites is increased in cortex and hippocampus of the triple transgenic mouse [presenilin-1 (PS1)(M146V)KI; Thy1.2-amyloid precursor protein (APP)(swe); Thy1.2tau(P301L)] that develops AD-like plaques and tangles, as well as the double (PS1(M146V)KI; Thy1.2-APP(swe)) transgenic mouse. The hyperphosphorylation is similar in magnitude to that in human AD and is evident by 2 months of age, ahead of plaque or tangle formation. Meanwhile, there is no change in CRMP2 phosphorylation in two other transgenic mouse lines that display elevated amyloid beta peptide levels (Tg2576 and APP/amyloid beta-binding alcohol dehydrogenase). Similarly, CRMP2 phosphorylation is normal in hippocampus and cortex of Tau(P301L) mice that develop tangles but not plaques. These observations implicate hyperphosphorylation of CRMP2 as an early event in the development of AD and suggest that it can be induced by a severe APP over-expression and/or processing defect. 相似文献
18.
Bidirectional transport of early endosomes (EEs) involves microtubules (MTs) and associated motors. In fungi, the dynein/dynactin motor complex concentrates in a comet-like accumulation at MT plus-ends to receive kinesin-3-delivered EEs for retrograde transport. Here, we analyse the loading of endosomes onto dynein by combining live imaging of photoactivated endosomes and fluorescent dynein with mathematical modelling. Using nuclear pores as an internal calibration standard, we show that the dynein comet consists of ~55 dynein motors. About half of the motors are slowly turned over (T(1/2): ~98 s) and they are kept at the plus-ends by an active retention mechanism involving an interaction between dynactin and EB1. The other half is more dynamic (T(1/2): ~10 s) and mathematical modelling suggests that they concentrate at MT ends because of stochastic motor behaviour. When the active retention is impaired by inhibitory peptides, dynein numbers in the comet are reduced to half and ~10% of the EEs fall off the MT plus-ends. Thus, a combination of stochastic accumulation and active retention forms the dynein comet to ensure capturing of arriving organelles by retrograde motors. 相似文献
19.
Stenmark P Ogg D Flodin S Flores A Kotenyova T Nyman T Nordlund P Kursula P 《Journal of neurochemistry》2007,101(4):906-917
Axonal growth cone guidance is a central process in nervous system development and repair. Collapsin response mediator protein 2 (CRMP-2) is a neurite extension-promoting neuronal cytosolic molecule involved in the signalling of growth inhibitory cues from external stimuli, such as semaphorin 3A and the myelin-associated glycoprotein. We have determined the crystal structure of human tetrameric CRMP-2, which is structurally related to the dihydropyriminidases; however, the active site is not conserved. The wealth of earlier functional mapping data for CRMP-2 are discussed in light of the three-dimensional structure of the protein. The differences in oligomerisation interfaces between CRMP-1 and CRMP-2 are used to model CRMP-1/2 heterotetramers. 相似文献
20.
Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization 总被引:1,自引:0,他引:1
Lansbergen G Komarova Y Modesti M Wyman C Hoogenraad CC Goodson HV Lemaitre RP Drechsel DN van Munster E Gadella TW Grosveld F Galjart N Borisy GG Akhmanova A 《The Journal of cell biology》2004,166(7):1003-1014
Cytoplasmic linker protein (CLIP)-170, CLIP-115, and the dynactin subunit p150(Glued) are structurally related proteins, which associate specifically with the ends of growing microtubules (MTs). Here, we show that down-regulation of CLIP-170 by RNA interference results in a strongly reduced accumulation of dynactin at the MT tips. The NH(2) terminus of p150(Glued) binds directly to the COOH terminus of CLIP-170 through its second metal-binding motif. p150(Glued) and LIS1, a dynein-associating protein, compete for the interaction with the CLIP-170 COOH terminus, suggesting that LIS1 can act to release dynactin from the MT tips. We also show that the NH(2)-terminal part of CLIP-170 itself associates with the CLIP-170 COOH terminus through its first metal-binding motif. By using scanning force microscopy and fluorescence resonance energy transfer-based experiments we provide evidence for an intramolecular interaction between the NH(2) and COOH termini of CLIP-170. This interaction interferes with the binding of the CLIP-170 to MTs. We propose that conformational changes in CLIP-170 are important for binding to dynactin, LIS1, and the MT tips. 相似文献