首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The red/far-red reversible phytochromes play a central role in regulating the development of plants in relation to their light environment. Studies on the roles of different members of the phytochrome family have mainly focused on light-labile, phytochrome A and light-stable, phytochrome B. Although these two phytochromes often regulate identical responses, they appear to have discrete photosensory functions. Thus, phytochrome A predominantly mediates responses to prolonged far-red light, as well as acting in a non-red/far-red-reversible manner in controlling responses to light pulses. In contrast, phytochrome B mediates responses to prolonged red light and acts photoreversibly under light-pulse conditions. However, it has been reported that rice (Oryza sativa L.) phytochrome A operates in a classical red/far-red reversible fashion following its expression in transgenic tobacco plants. Thus, it was of interest to determine whether transgenic rice phytochrome A could substitute for loss of phytochrome B in phyB mutants of Arabidopsis thaliana (L.) Heynh. We have observed that ectopic expression of rice phytochrome A can correct the reduced sensitivity of phyB hypocotyls to red light and restore their response to end-of-day far-red treatments. The latter is widely regarded as a hallmark of phytochrome B action. However, although transgenic rice phytochrome A can correct other aspects of elongation growth in the phyB mutant it does not restore other responses to end-of-day far-red treatments nor does it restore responses to low red:far-red ratio. Furthermore, transgenic rice phytochrome A does not correct the early-flowering phenotype of phyB seedlings. Received: 12 July 1998 / Accepted: 13 August 1998  相似文献   

3.
Elementary processes of photoperception by phytochrome A (PhyA) for the high-irradiance response (HIR) of hypocotyl elongation in Arabidopsis were examined using a newly designed irradiator with LED. The effect of continuous irradiation with far-red (FR) light could be replaced by intermittent irradiation with FR light pulses if given at intervals of 3 min or less for 24 h. In this response, the Bunsen-Roscoe law of reciprocity held in each FR light pulse. Therefore, we determined the action spectrum for the response by intermittent irradiation using phyB and phyAphyB double mutants. The resultant action spectrum correlated well with the absorption spectrum of PhyA in far-red-absorbing phytochrome (Pfr). Intermittent irradiation with 550 to 667 nm of light alone had no significant effect on the response. In contrast, intermittent irradiation with red light immediately after each FR light pulse completely reversed the effect of FR light in each cycle. The results indicate that neither red-absorbing phytochrome synthesized in darkness nor photoconverted Pfr are physiologically active, and that a short-lived signal is induced during photoconversion from Pfr to red-absorbing phytochrome. The mode of photoperception by PhyA for HIR is essentially different from that by PhyA for very-low-fluence responses and phytochrome B for low-fluence responses.  相似文献   

4.
Phytochrome A signaling shows two photobiologically discrete outputs: so-called very-low-fluence responses (VLFR) and high-irradiance responses (HIR). By modifying previous screening protocols, we isolated two Arabidopsis mutants retaining VLFR and lacking HIR. Phytochrome A negatively or positively regulates phytochrome B signaling, depending on light conditions. These mutants retained the negative but lacked the positive regulation. Both mutants carry the novel phyA-302 allele, in which Glu-777 (a residue conserved in angiosperm phytochromes) changed to Lys in the PAS2 motif of the C-terminal domain. The phyA-302 mutants showed a 50% reduction in phytochrome A levels in darkness, but this difference was compensated for by greater stability under continuous far-red light. phyA-302:green fluorescent protein fusion proteins showed normal translocation from the cytosol to the nucleus under continuous far-red light but failed to produce nuclear spots, suggesting that nuclear speckles could be involved in HIR signaling and phytochrome A degradation. We propose that the PAS2 domain of phytochrome A is necessary to initiate signaling in HIR but not in VLFR, likely via interaction with a specific partner.  相似文献   

5.
The occurrence of phytochrome-mediated highirradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice.Abbreviations FR far-red light - FRc continuous far-red light - FRp pulses of far-red light - HIR high-irradiance responses - LFR low-fluence responses - OPHYA transgenic rice overexpressing oat phytochrome A - Pfr far-red light-absorbing form of phytochrome - phyA phytochrome A - R red light - Rc continuous red light - VLFR very low-fluence responses - WT wildtype We thank Marcelo J. Yanovsky for his help with the photographs and Professor Rodolfo A. Sanchez for providing a reprint of the paper by P.J.A.L. de Lint. This work was supported by grants from UBA (AG041) and Fundacion Antorchas (A-13218/1-15) to J.J.C.  相似文献   

6.
Seeds of the wild type (WT) and of the phyA and phyB mutants of Arabidopsis thaliana were exposed to single red light (R)/far-red light (FR) pulses predicted to establish a series of calculated phytochrome photoequilibria (Pfr/P). WT and phyB seeds showed biphasic responses to Pfr/P. The first phase, i.e. the very-low-fluence response (VLFR), occurred below Pfr/P = 10-1%. The second phase, i.e. the low-fluence response, occurred above Pfr/P = 3%. The VLFR was similarly induced by either a FR pulse saturating photoconversion or a subsaturating R pulse predicted to establish the same Pfr/P. The VLFR was absent in phyA seeds, which showed a strong low-fluence response. In the field, even brief exposures to the very low fluences of canopy shade light (R/FR ratio < 0.05) promoted germination above dark controls in WT and phyB seeds but not in the phyA mutant. Seeds of the phyA mutant germinated normally under canopies providing higher R/FR ratios or under deep canopy shade light supplemented with R from light-emitting diodes. We propose that phytochrome A mediates VLFR of A. thaliana seeds.  相似文献   

7.
Hypocotyls of dark-grown seedlings of Ara bidosis thaliana exhibit a strong negative gravitropism, which is reduced by red and also by long-wavelength, far-red light treatments. Light treatments using phytochrome A (phyA)- and phytochrome B (phyB)-deficient mutants showed that this response is controlled by phyB in a red/far-red reversible way, and by phyA in a non-reversible, very-low-fluence response. Crosses of the previously analyzed phyB-1 allele (in the ecotype Landsberg erecta background) to the ecotype Nossen wild-type (WT) background resulted in a WT-like negative gravitropism in darkness, indicating that the previously described gravitropic randomization observed with phyB-1 in the dark is likely due to a second mutation independent of that in the PHYB gene.Abbreviations FR long-wavelength far-red light - phyA phytochrome A (holoprotein) - phyB phytochrome B (holoprotein) - Pr red-absorbing form of phytochrome - WT wild type We thank Dr. A. Nagatani (RIKEN Institute, Wako-City, Japan) and Dr. M. Furuya (Hitachi, Hatoyama, Japan) for the phyA-201/phyB-5 double mutant. The work was supported by Deutsche Forschungsgemeinschaft and Human Frontier Science Program grants to E.S.  相似文献   

8.
E. Liscum  R. P. Hangarter 《Planta》1993,191(2):214-221
Fluence rate-response curves were generated for red-, far-red-, and blue-light-stimulated apical-hook opening in seedlings of several photomorphogenic mutants of Arabidopsis thaliana (L.) Heynh. Compared to wild-type plants, hook opening was reduced in the phytochrome-deficient hy1, hy2, and hy6 mutants in red and far-red light at all fluence rates tested, and in low-fluence blue light, but was normal under high-irradiance blue light. In contrast, the blue-light-response mutants (blu1, blu2, and blu3) lacked the high-irradiance-dependent hook-opening response in blue light while hook opening was normal in low-fluence blue light and in red and farred light at all fluence rates tested. Hook opening in the phytochrome-B-deficient hy3 mutant was similar to wild type in all light conditions tested. The effects of the different mutations on light-induced hook opening indicate that a phytochrome(s) other than phytochrome B mediates hook opening stimulated by red, far-red and lowfluence blue light, while a blue-light-absorbing photoreceptor mediates the blue-light-sensitive high-irradiance response. Although the phytochrome and blue-light photosensory systems appear to work independently for the most part, some of their signal-transduction components may interact since the hy4, and hy5 mutants showed reduced hook-opening responses under conditions dependent on the phytochrome and blue-light-photosensory systems.We thank Jeff Young and Brian Parks for their many helpful suggestions during the progress of this research. This work was supported by National Science Foundation Grant No. DCB-9106697.  相似文献   

9.
Phytochromes are the red/far-red photoreceptors in higher plants. Among them, phytochrome A (PHYA) is responsible for the far-red high-irradiance response and for the perception of very low amounts of light, initiating the very-low-fluence response. Here, we report a detailed physiological and molecular characterization of the phyA-5 mutant of Arabidopsis (Arabidopsis thaliana), which displays hyposensitivity to continuous low-intensity far-red light and shows reduced very-low-fluence response and high-irradiance response. Red light-induced degradation of the mutant phyA-5 protein appears to be normal, yet higher residual amounts of phyA-5 are detected in seedlings grown under low-intensity far-red light. We show that (1) the phyA-5 mutant harbors a new missense mutation in the PHYA amino-terminal extension domain and that (2) the complex phenotype of the mutant is caused by reduced nuclear import of phyA-5 under low fluences of far-red light. We also demonstrate that impaired nuclear import of phyA-5 is brought about by weakened binding affinity of the mutant photoreceptor to nuclear import facilitators FHY1 (for FAR-RED ELONGATED HYPOCOTYL1) and FHL (for FHY1-LIKE). Finally, we provide evidence that the signaling and degradation kinetics of constitutively nuclear-localized phyA-5 and phyA are identical. Taken together, our data show that aberrant nucleo/cytoplasmic distribution impairs light-induced degradation of this photoreceptor and that the amino-terminal extension domain mediates the formation of the FHY1/FHL/PHYA far-red-absorbing form complex, whereby it plays a role in regulating the nuclear import of phyA.  相似文献   

10.
Phytochromes (phy) A and B provide higher plants the ability to perceive divergent light signals. phyB mediates red/far-red light reversible, low fluence responses (LFR). phyA mediates both very-low-fluence responses (VLFR), which saturate with single or infrequent light pulses of very low fluence, and high irradiance responses (HIR), which require sustained activation with far-red light. We investigated whether VLFR, LFR, and HIR are genetically coregulated. The Arabidopsis enhanced very-low-fluence response1 mutant, obtained in a novel screening under hourly far-red light pulses, showed enhanced VLFR of hypocotyl growth inhibition, cotyledon unfolding, blocking of greening, and anthocyanin synthesis. However, eve1 showed reduced LFR and HIR. eve1 was found allelic to the brassinosteroid biosynthesis mutant dim/dwarf1. The analysis of both the brassinosteroid mutant det2 in the Columbia background (where VLFR are repressed) and the phyA eve1 double mutant indicates that the negative effect of brassinosteroid mutations on LFR requires phyA signaling in the VLFR mode but not the expression of the VLFR. Under sunlight, hypocotyl growth of eve1 showed little difference with the wild type but failed to respond to canopy shadelight. We propose that the opposite regulation of VLFR versus LFR and HIR could be part of a context-dependent mechanism of adjustment of sensitivity to light signals.  相似文献   

11.
Arabidopsis thaliana lacking phytochrome A, phytochrome B or both (double mutant) were analyzed by comparing their photoresponse with that of the wild type. Results indicate that root hair formation in Arabidopsis was strongly stimulated by light irradiation. Both phytochrome A and phytochrome B are responsible for photoinduction by continuous red light irradiation, while only phytochrome A mediates the response under continuous far-red light. The fluence response relationships to a red light pulse in the wild type displayed a biphasic trend similar to that previously observed in lettuce seedlings, with the first phase showing a sharp maximum at 78.3 Jm−2, and the second one operating over a wider fluence range (3,100–9,400 Jm−2) two orders of magnitude higher than the first one. Analysis of the fluence response curves for red light induction in the phytochrome mutants revealed that phytochrome A is responsible for the first phase in the wild type, while the second is the result of the combined action of both phytochrome A and phytochrome B. Received 13 August 1999/ Accepted in revised form 22 December 1999  相似文献   

12.
13.
14.
De-etiolation results in phytochrome destruction, greening, and the loss of the far-red high irradiance responses (HIR). Evidence is presented against the hypothesis that the loss of the far-red HIR is a direct consequence of phytochrome destruction. Loss of the far-red HIR for the inhibition of elongation in hypocotyls of Raphanus sativus involves two different, but linked, actions of phytochrome. An induction reaction requires the far-red absorbing form of phytochrome for about 20 min after which accumulation of its product depends only on time. A second reaction requires continuous light or frequent short irradiations and involves cycling of the phytochrome system. This acts on the product of the induction reaction. It is proposed that in green plants an important mode of operation of phytochrome in the light depends on pigment cycling, and that during de-etiolation this system is established under phytochrome control.Abbreviations HIR high irradiance response - R red - FR farred light - Ptot phytochrome, Pr its red absorbing form, Pfr its far-red absorbing form A.M. Jose was the holder of Ministry of Agriculture, Fisheries and Food award AE 6819  相似文献   

15.
The lz-2 mutation in tomato ( Lycopersicon esculentum ) causes conditional reversal of shoot gravitropism by light. This response is mediated by phytochrome. To further elicit the mechanism by which phytochrome regulates the lz-2 phenotype, phytochrome-deficient lz-2 plants were generated. Introduction of au alleles, which severely block chromophore biosynthesis, eliminated the reversal of hypocotyl gravitropism in continuous red and far-red light. The fri 1 and tri 1 alleles were introduced to specifically deplete phytochromes A and B1, respectively. In dark-grown seedlings, phytochrome A was necessary for response to high-irradiance far-red light, a complete response to low fluence red light, and also mediated the effects of blue light in a far-red reversible manner. Loss of phytochrome B1 alone did not significantly affect the behaviour of lz-2 plants under any light treatment tested. However, dark-grown lz-2 plants lacking both phytochrome A and B1 exhibited reduced responses to continuous red and were less responsive to low fluence red light and high fluence blue light than plants that were deficient for phytochrome A alone. In high light, full spectrum greenhouse conditions, lz-2 plants grew downward regardless of the phytochrome deficiency. These results indicate that phytochromes A and B1 play significant roles in mediating the lz-2 phenotype and that at least one additional phytochrome is involved in reversing shoot gravitropism in this mutant.  相似文献   

16.
Overexpression of phytochrome A results in an increased inhibition of hypocotyl elongation under red and far-red light. We used this approach to assay for the function of N-terminal mutations of rice (Oryza sativa L.) phytochrome A. Transgenic tobacco seedlings that express the wild-type rice phytochrome A (RW), a rice phytochrome A lacking the first 80 amino acids (NTD) or a rice phytochrome A with a conversion of the first 10 serines into alanine residues (S/A) were compared with untransformed wild-type tobacco (Nicotiana tabacum L. cv. Xanthi) seedlings. Experiments under different fluence rates showed that RW and, even more strongly, S/A increased the response under both red and far-red light, whereas NTD decreased the response under far-red light but hardly altered the response under red light. These results indicate that NTD not only lacks residues essential for an increased response under red light but also distorts the wild-type response under far-red light. Wild-type rice phytochrome A and, even more so, S/A mediate an enhanced phytochrome A as well as phytochrome B function, whereas NTD interferes with the function of endogenous tobacco phytochrome A as well as that of rice phytochrome A when co-expressed in a single host. Experiments with seedlings of different ages and various times of irradiation under far-red light demonstrated that the effect of NTD is dependent on the stage of development. Our results suggest that the lack of the first 80 amino acids still allows a rice phytochrome A to interact with the phytochrome transduction pathway, albeit nonproductively in tobacco seedlings.Abbreviations HIR high-irradiance response - NTD N-terminal deletion mutant of rice phytochrome A - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - RW rice wild-type phytochrome A - S/A serine-to-alanine mu-tant of rice phytochrome A - wNTD weakly expressing NTD line - XAN wild-type tobacco cv. Xanthi We thank Masaki Furuya (Adv. Research Laboratory, Hitachi, Saitama, Japan) and Akira Nagatani (RIKEN Institute, Saitama, Japan) for providing the monoclonal antibodies mAP5 and mAR14. The work was supported by a grant from the Human Frontier Science Program. K.E. was a recipient of a Landesgraduiertenförderung fellowship.  相似文献   

17.
Dual effect of phytochrome A on hypocotyl growth under continuous red light   总被引:5,自引:1,他引:4  
The role of phytochrome A in the control of hypocotyl growth under continuous red light (Rc) was investigated using phyA and phyB mutants of Arabidopsis thaliana, which lack phytochrome A (phyA) or phytochrome B (phyB), respectively, and transgenic seedlings of Nicotiana tabacum overexpressing Avena phyA, compared to the corresponding wild type (WT). In WT seedlings of A. thaliana, hypocotyl growth inhibition showed a biphasic response to the fluence rate of Rc, with a brake at 10?2μmol m?2 s?1. At equal total fluence rate, hourly pulses of red light caused slightly more inhibition than Rc. The response to very low fluences of continuous or pulsed red light was absent in the phyA and phyA phyB mutants and present in the phyB mutant. The second part of the response was steeper in the phyA mutant than in the WT but was absent in the phyB mutant. In WT tobacco the response to Rc was biphasic. Overexpression of Avena phyA enhanced the response only at very low fluence rates of Rc (< 10?2μmol m?2 s?1). In both species, the effect of hourly pulses of far-red light was similar to the maximum inhibition observed in the first phase of the response to Rc. Using reciprocity failure (i.e. higher inhibition under continuous than pulsed light) as the operational criterion, a ‘true’ high-irradiance reaction occurred under continuous far-red light but not under Rc or red plus far-red light mixtures. Native and overexpressed phyA are proposed to mediate very low fluence responses under Rc. In WT A. thaliana, this effect is counteracted by a negative action of phyA on phyB-mediated low-fluence responses.  相似文献   

18.
Long C  Iino M 《Plant physiology》2001,125(4):1854-1869
Light-induced changes in the volume of protoplasts bathed in a medium of constant osmolarity are useful indications of light-dependent cellular osmoregulation. With this in mind, we investigated the effect of light on the volume of protoplasts isolated from the elongating stems of pea (Pisum sativum) seedlings raised under red light. The protoplasts were isolated separately from epidermal peels and the remaining peeled stems. Under continuous red light, the protoplasts of peeled stems swelled steadily, but those of epidermal peels maintained a constant volume. Experiments employing far-red light and phytochrome-deficient mutants revealed that the observed swelling is a light-induced response mediated mainly by phytochromes A and B with a little greater contribution by phytochrome A. Protoplasts of epidermal peels and peeled stems shrank transiently in response to a pulse of blue light. The blue light responsiveness in this shrinking response, which itself is probably mediated by cryptochrome, is under the strict control of phytochromes A and B with equal contributions by these phytochromes. We suggest that the swelling response participates in the maintenance of high tissue tension of elongating stems and that the shrinking response is involved in stem growth inhibition. Other findings include the following: The swelling is caused by uptake of K+ and Cl-. The presence of Ca2+ in the bathing medium is required for phytochrome signaling in the swelling response, but not in the response establishing blue light responsiveness. Phytochrome A mediates the two responses in a totally red/far-red light reversible manner, as does phytochrome B.  相似文献   

19.
 We analysed the light-dependent acquisition of competence for adventitious shoot formation in hypocotyls of phytochrome A (fri) and phytochrome B1 (tri) mutants of tomato and their wild type by pre-growing the seedlings under different light quality. The regenerative response in vitro of explants from etiolated seedlings was reduced in comparison to that displayed by light-grown ones. Our results indicate that the light-dependent acquisition of competence for shoot regeneration in the tomato hypocotyl is regulated by phytochrome and antagonistically by a blue-light receptor. By using phytochrome mutants and narrow wave band light we showed that it is mediated at least by two distinct phytochrome species: phytochrome B1 and phytochrome A. The action of phytochrome B1 during seedling growth was sufficient to induce the full capacity of the subsequent regenerative response in vitro in explants from all positions along the hypocotyls. In contrast far-red light acting through phytochrome A did not induce the full capability of shoot regeneration from middle and basal segments of the hypocotyl when phytochrome B1 was absent (tri mutant). A few middle and basal hypocotyl explants pre-grown in blue light regenerated shoots. Received: 12 April 1999 / Revision received: 5 July 1999 · Accepted: 6 August 1999  相似文献   

20.
Seed germination of many plant species is influenced by light. Of the various photoreceptor systems, phytochrome plays an especially important role in seed germination. The existence of at least five phytochrome genes has led to the proposal that different members of the family have different roles in the photoregulation of seed germination. Physiological analysis of seed germination ofArabidopsis thaliana (L.) Heynh. with phytochrome-deficient mutants showed for the first time that phytochrome A and phytochrome B modulate the timing of seed germination in distinct actions. Phytochrome A photo-irreversibly triggers the photoinduction of seed germination after irradiation with extremely low fluence light in a wide range of wavelengths, from UV-A, to visible, to far-red. In contrast, phytochrome B mediates the well-characterized photoreversible reaction, responding to red and far-red light of fluences four orders of magnitude higher than those to which PhyA responds. Wild plants, such asA. thaliana, survive under ground as dormant seeds for long periods, and the timing of seed germination is crucial for optimizing growth and reproduction. It therefore seems reasonable for plants to possess at least two different physiological systems for sensing the light environment over a wide spectral range with exquisite sensitivity of different phytochromes. This redundancy seems to enhance plant survival in a fluctuating environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号