首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant pathogenic bacteria of the genera Dickeya and Pectobacterium are broad-host-range necrotrophs which cause soft-rot diseases in important crops. A metabolomic analysis, based on (13)C-NMR spectroscopy, was used to characterize the plant-bacteria interaction. Metabolic profiles revealed a decline in plant sugars and amino acids during infection and the concomitant appearance of a compound identified as 2,3-butanediol. Butanediol is the major metabolite found in macerated tissues of various host plants. It is accumulated during the symptomatic phase of the disease. Different species of Dickeya or Pectobacterium secrete high levels of butanediol during plant infection. Butanediol has been described as a signalling molecule involved in plant/bacterium interactions and, notably, able to induce plant systemic resistance. The bud genes, involved in butanediol production, are conserved in the phytopathogenic enterobacteria of the genera Dickeya, Pectobacterium, Erwinia, Pantoea and Brenneria. Inactivation of the bud genes of Dickeya dadantii revealed that the virulence of budA, budB and budR mutants was clearly reduced. The genes budA, budB and budC are highly expressed during plant infection. These data highlight the importance of butanediol metabolism in limiting acidification of the plant tissue during the development of the soft-rot disease caused by pectinolytic enterobacteria.  相似文献   

2.
The cryptic plasmid (pAT) of Agrobacterium tumefaciens was not required for virulence or attachment to plant surfaces. However, mutations in the attC and attG genes located on pAT caused the bacteria to become avirulent and non-attaching on tomato, carrot, and Bryophyllum daigremontiana. This was the case whether the mutation was in the copy of the genes located on pAT or whether it was carried in a second copy of the attA-G operon located on a plasmid in cells that contained a wild-type copy of pAT. Thus attC and attG mutations are dominant negative mutations. The mechanism by which these mutations block attachment and virulence is unknown.  相似文献   

3.
Phytopathogenic bacteria possess a large number of genes that allow them to grow and cause disease on plants. Many of these genes should be induced when the bacteria come in contact with plant tissue. We used a modified in vivo expression technology (IVET) approach to identify genes from the plant pathogen Pseudomonas syringae pv. tomato that are induced upon infection of Arabidopsis thaliana and isolated over 500 in planta-expressed (ipx) promoter fusions. Sequence analysis of 79 fusions revealed several known and potential virulence genes, including hrp/hrc, avr and coronatine biosynthetic genes. In addition, we identified metabolic genes presumably important for adaptation to growth in plant tissue, as well as several genes with unknown function that may encode novel virulence factors. Many ipx fusions, including several corresponding to novel genes, are dependent on HrpL, an alternative RNA polymerase sigma factor that regulates the expression of virulence genes. Expression analysis indicated that several ipx fusions are strongly induced upon inoculation into plant tissue. Disruption of one ipx gene, conserved effector locus (CEL) orf1, encoding a putative lytic murein transglycosylase, resulted in decreased virulence of P. syringae. Our results demonstrate that this screen can be used successfully to isolate genes that are induced in planta, including many novel genes potentially involved in pathogenesis.  相似文献   

4.
Galactose metabolism mutants of Erwinia amylovora were created by transposon insertions and characterized for their growth properties and interaction with plant tissue. The nucleotide sequence of the galE gene was determined. The gene, which encodes UDP-galactose 4-epimerase, shows homology to the galE genes of Escherichia coli, Neisseria gonorrhoeae, Rhizobium meliloti, and other gram-negative bacteria. Cloned DNA with the galE and with the galT and galK genes did not share borders, as judged by the lack of common fragments in hybridization with chromosomal DNA. These genes are thus located separately on the bacterial chromosome. In contrast to the gal operon of E. coli, the galE gene of E. amylovora is constitutively expressed, independently of the presence of galactose in the medium. The function of the galE gene but not of the galT or galK gene is required for bacterial virulence on pear fruits and seedlings. In the absence of galactose, the galE mutant was deficient in amylovoran synthesis. Subsequently, the galE mutant cells elicited host defense reactions, and they were not stained by fluorescein isothiocyanate-labelled lectin, which efficiently binds to amylovoran capsules of E. amylovora. The mutation affected the side chains of bacterial lipopolysaccharide, but an intact O antigen was not required for virulence. This was shown with another mutant, which could be complemented for virulence but not for side chain synthesis of lipopolysaccharide.  相似文献   

5.
To identify secreted virulence factors involved in bacterial wilt disease caused by the phytopathogen Ralstonia solanacearum, we mutated tatC, a key component of the twin-arginine translocation (Tat) secretion system. The R. solanacearum tatC mutation was pleiotropic; its phenotypes included defects in cell division, nitrate utilization, polygalacturonase activity, membrane stability, and growth in plant tissue. Bioinformatic analysis of the R. solanacearum strain GMI1000 genome predicted that this pathogen secretes 70 proteins via the Tat system. The R. solanacearum tatC strain was severely attenuated in its ability to cause disease, killing just over 50% of tomato plants in a naturalistic soil soak assay where the wild-type parent killed 100% of the plants. This result suggested that elements of the Tat secretome may be novel bacterial wilt virulence factors. To identify contributors to R. solanacearum virulence, we cloned and mutated three genes whose products are predicted to be secreted by the Tat system: RSp1521, encoding a predicted AcvB-like protein, and two genes, RSc1651 and RSp1575, that were identified as upregulated in planta by an in vivo expression technology screen. The RSc1651 mutant had wild-type virulence on tomato plants. However, mutants lacking either RSp1521, which appears to be involved in acid tolerance, or RSp1575, which encodes a possible amino acid binding protein, were significantly reduced in virulence on tomato plants. Additional bacterial wilt virulence factors may be found in the Tat secretome.  相似文献   

6.
Many proteins from plant pathogens affecting the interaction with the host plant have dual functions: they promote virulence on the host species and they function as avirulence determinants by eliciting defense reactions in host cultivars expressing the appropriate resistance genes. In viruses all proteins encoded by the small genomes can be expected to be essential for viral development in the host. However, in different plants surveillance systems have evolved that are able to recognize most of these proteins. Bacteria and fungi have specialized pathogenicity and virulence genes. Many of the latter were originally identified through the resistance gene-dependent elicitor activity of their products. Their role in virulence only became apparent when they were inactivated or transferred to different microbes or after their ectopic expression in host plants. Many microbes appear to maintain these genes despite their disadvantageous effect, introducing only few mutations to abolish the interaction of their products with the plant recognition system. This has been interpreted as been indicative of a virulence function of the gene products that is not impaired by the mutations. Alternatively, in particular in bacteria there is now evidence that pathogenicity was acquired through horizontal gene transfer. Genes supporting virulence in the donor organism's original host appear to have traveled along. Being gratuitous in the new situation, they may have been inactivated without loss of any beneficial function for the pathogen.  相似文献   

7.
The study of plant pathogenesis and the development of effective treatments to protect plants from diseases could be greatly facilitated by a high-throughput pathosystem to evaluate small-molecule libraries for inhibitors of pathogen virulence. The interaction between the Gram-negative bacterium Pseudomonas syringae and Arabidopsis thaliana is a model for plant pathogenesis. However, a robust high-throughput assay to score the outcome of this interaction is currently lacking. We demonstrate that Arabidopsis seedlings incubated with P. syringae in liquid culture display a macroscopically visible 'bleaching' symptom within 5 days of infection. Bleaching is associated with a loss of chlorophyll from cotyledonary tissues, and is correlated with bacterial virulence. Gene-for-gene resistance is absent in the liquid environment, possibly because of the suppression of the hypersensitive response under these conditions. Importantly, bleaching can be prevented by treating seedlings with known inducers of plant defence, such as salicylic acid (SA) or a basal defence-inducing peptide of bacterial flagellin (flg22) prior to inoculation. Based on these observations, we have devised a high-throughput liquid assay using standard 96-well plates to investigate the P. syringae-Arabidopsis interaction. An initial screen of small molecules active on Arabidopsis revealed a family of sulfanilamide compounds that afford protection against the bleaching symptom. The most active compound, sulfamethoxazole, also reduced in planta bacterial growth when applied to mature soil-grown plants. The whole-organism liquid assay provides a novel approach to probe chemical libraries in a high-throughput manner for compounds that reduce bacterial virulence in plants.  相似文献   

8.
Actinobacteria and Firmicutes comprise a group of highly divergent prokaryotes known as Gram-positive bacteria, which are ancestral to Gram-negative bacteria. Comparative genomics is revealing that, though plant virulence genes are frequently located on plasmids or in laterally acquired gene clusters, they are rarely shared with Gram-negative bacterial plant pathogens and among Gram-positive genera. Gram-positive bacterial pathogens utilize a variety of virulence strategies to invade their plant hosts, including the production of phytotoxins to allow intracellular and intercellular replication, production of cytokinins to generate gall tissues for invasion, secretion of proteins to induce cankers and the utilization and manipulation of sap-feeding insects for introduction into the phloem sieve cells. Functional analysis of novel virulence genes utilized by Actinobacteria and Firmicutes is revealing how these ancient prokaryotes manipulate plant, and sometimes insect, metabolic processes for their own benefit.  相似文献   

9.
10.
11.
The ability of the enterobacterium Erwinia chrysanthemi to induce pathogenesis in plant tissue is strongly related to the massive production of plant-cell-wall-degrading enzymes (pectinases, cellulases, and proteases). Additional factors, including flagellar proteins and exopolysaccharides (EPS), also are required for the efficient colonization of plants. Production of these virulence factors, particularly pectate lyases, the main virulence determinant, is tightly regulated by environmental conditions. The possible involvement of the protein H-NS in this process was investigated. The E. chrysanthemi hns gene was cloned by complementation of an Escherichia coli hns mutation. Its nucleotide sequence contains a 405-bp open reading frame that codes for a protein with 85% identity to the E. coli H-NS protein. An E. chrysanthemi hns mutant was constructed by reverse genetics. This mutant displays a reduced growth rate and motility but an increased EPS synthesis and sensitivity toward high osmolarity. Furthermore, pectate lyase production is dramatically reduced in this mutant. The hns mutation acts on at least two conditions affecting pectate lyase synthesis: induction of pectate lyase synthesis at low temperatures (25 degrees C) is no longer observed in the hns mutant and induction of pectate lyase production occurs in the late stationary growth phase in the hns background, instead of in the late exponential growth phase as it does in the parental strain. Moreover, the E. chrysanthemi hns mutant displays reduced virulence on plants. Taken together, these data suggest that H-NS plays a crucial role in the expression of the virulence genes and in the pathogenicity of E. chrysanthemi.  相似文献   

12.
Most plant pathogenic bacteria adopt the type III secretion systems to secrete virulence factors and/or avirulence gene products, which trigger the plant hypersensitive response (HR) and the oxidative burst with hydrogen peroxide (H2O2) as the main component. However, the soil-borne plant pathogen Agrobacterium tumefaciens uses the type IV secretion pathway to deliver its oncogenic T-DNA that causes crown gall tumours on many plant species. A. tumefaciens does not elicit a typical HR on those plants. Here, we report that inactivation of one of A. tumefaciens catalases (which converts H2O2 to H2O and O2) by a transposon insertion highly attenuated the bacterial ability to cause tumours on plants and to tolerate H2O2 toxicity, but not the bacterial viability in the absence of exogenous H2O2. This provides the first genetic evidence that the Agrobacterium-plant interaction involves a plant defence response, such as H2O2 production, and that catalase is a virulence factor for a plant pathogen.  相似文献   

13.
Xanthomonas axonopodis pv. citri (Xac) is the phytopathogen responsible for citrus canker, one of the most devastating citrus diseases in the world. A broad range of pathogens is recognized by plants through so-called pathogen-associated molecular patterns (PAMPs), which are highly conserved fragments of pathogenic molecules. In plant pathogenic bacteria, lipopolisaccharyde (LPS) is considered a virulence factor and it is being recognized as a PAMP. The study of the participation of Xac LPS in citrus canker establishment could help to understand the molecular bases of this disease. In the present work we investigated the role of Xac LPS in bacterial virulence and in basal defense during the interaction with host and non host plants. We analyzed physiological features of Xac mutants in LPS biosynthesis genes (wzt and rfb303) and the effect of these mutations on the interaction with orange and tobacco plants. Xac mutants showed an increased sensitivity to external stresses and differences in bacterial motilities, in vivo and in vitro adhesion and biofilm formation. Changes in the expression levels of the LPS biosynthesis genes were observed in a medium that mimics the plant environment. Xacwzt exhibited reduced virulence in host plants compared to Xac wild-type and Xacrfb303. However, both mutant strains produced a lower increase in the expression levels of host plant defense-related genes respect to the parental strain. In addition, Xac LPS mutants were not able to generate HR during the incompatible interaction with tobacco plants. Our findings indicate that the structural modifications of Xac LPS impinge on other physiological attributes and lead to a reduction in bacterial virulence. On the other hand, Xac LPS has a role in the activation of basal defense in host and non host plants.  相似文献   

14.
avrPto in Pseudomonas syringae pv. tomato encodes an avirulence protein that triggers race-specific resistance in tomato plants carrying Pto. The AvrPto protein is secreted from P. syringae pv. tomato to plant cells through the type III secretion pathway and activates race-specific resistance by a direct interaction with the Pto protein. Here we report that avrPto enhances the virulence of P. syringae pv. tomato in a strain-dependent manner in tomato plants lacking Pto. To determine whether the virulence function can be structurally separated from the avirulence function, we examined the virulence activity of a group of AvrPto mutants that carry single amino acid substitutions and lack the avirulence activity on tomato plants. Three mutants that were clustered in the center of AvrPto exhibited virulence activity in tomato plants with or without Pto. The rest of the mutations abolished the virulence. The identification of these mutants suggested that the avirulence function of AvrPto can be structurally separated from the virulence function.  相似文献   

15.
16.
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In this study, we used a modified in vivo expression technology system to identify E. amylovora genes that are activated during infection of immature pear tissue, a process that requires the major pathogenicity factors of this organism. We identified 394 unique pear fruit-induced (pfi) genes on the basis of sequence similarity to known genes and separated them into nine putative function groups including host-microbe interactions (3.8%), stress response (5.3%), regulation (11.9%), cell surface (8.9%), transport (13.5%), mobile elements (1.0%), metabolism (20.3%), nutrient acquisition and synthesis (15.5%), and unknown or hypothetical proteins (19.8%). Known virulence genes, including hrp/hrc components of the type III secretion system, the major effector gene dspE, type II secretion, levansucrase (lsc), and regulators of levansucrase and amylovoran biosynthesis, were upregulated during pear tissue infection. Known virulence factors previously identified in E. (Pectobacterium) carotovora and Pseudomonas syringae were identified for the first time in E. amylovora and included HecA hemagglutinin family adhesion, Peh polygalacturonase, new effector HopPtoC(EA), and membrane-bound lytic murein transglycosylase MltE(EA). An insertional mutation within hopPtoC(EA) did not result in reduced virulence; however, an mltE(EA) knockout mutant was reduced in virulence and growth in immature pears. This study suggests that E. amylovora utilizes a variety of strategies during plant infection and to overcome the stressful and poor nutritional environment of its plant hosts.  相似文献   

17.
Selection in plant parasites for virulence on resistant hosts and the resulting effects on parasite fitness may be considered as a driving force in host-parasite coevolution. In the present study, we tested the hypothesis that a fitness cost may be associated with nematode virulence, using the interaction between the parthenogenetic species Meloidogyne incognita and tomato as a model system. The reproductive parameters of near-isogenic lines of the nematode, selected for avirulence or virulence against the tomato Mi resistance gene, were analysed and combined into a reproductive index that was taken as a measure of fitness. The lower fitness of the virulent lines on the susceptible tomato cultivar showed for the first time that a measurable fitness cost is associated with unnecessary virulence in the nematode. Although parthenogenesis should theoretically lead to little genetic variability, such cost may impose a direct constraint on the coevolution between the plant and the nematode populations, and suggests an adaptive significance of trade-offs between selected characters and fitness-related traits. These results indicate that, although plant resistance can be broken, it might prove durable in some conditions if the virulent nematodes are counterselected in susceptible plants, which could have important consequences for the management of resistant cultivars in the field.  相似文献   

18.
The phytopathogenic bacterium Rhodococcus fascians provokes shoot meristem formation and malformations on aerial plant parts, mainly at the axils. The interaction is accompanied by bacterial colonization of the plant surface and tissues. Upon infection, the two bacterial loci required for full virulence, fas and att, were expressed only at the sites of symptom development, although their expression profiles differed both spatially and temporally. The att locus was expressed principally in bacteria located on the plant surface at early stages of infection. Expression of the fas locus occurred throughout infection, mainly in bacteria that were penetrating, or had penetrated, the plant tissues and coincided with sites of meristem initiation and proliferation. The implications for the regulation of virulence genes of R. fascians during plant infection are discussed.  相似文献   

19.
Higher plants are exposed to natural environmental organic chemicals, associated with plant–environment interactions, and xenobiotic environmental organic chemicals, associated with anthropogenic activities. The effects of these chemicals result not only from interaction with metabolic targets, but also from interaction with the complex regulatory networks of hormone signaling. Purpose-designed plant hormone analogues thus show extensive signaling effects on gene regulation and are as such important for understanding plant hormone mechanisms and for manipulating plant growth and development. Some natural environmental chemicals also act on plants through interference with the perception and transduction of endogenous hormone signals. In a number of cases, bioactive xenobiotics, including herbicides that have been designed to affect specific metabolic targets, show extensive gene regulation effects, which are more in accordance with signaling effects than with consequences of metabolic effects. Some of these effects could be due to structural analogies with plant hormones or to interference with hormone metabolism, thus resulting in situations of hormone disruption similar to animal cell endocrine disruption by xenobiotics. These hormone-disrupting effects can be superimposed on parallel metabolic effects, thus indicating that toxicological characterisation of xenobiotics must take into consideration the whole range of signaling and metabolic effects. Hormone-disruptive signaling effects probably predominate when xenobiotic concentrations are low, as occurs in situations of residual low-level pollutions. These hormone-disruptive effects in plants may thus be of importance for understanding cryptic effects of low-dosage xenobiotics, as well as the interactive effects of mixtures of xenobiotic pollutants.  相似文献   

20.
The viral component of Turnip mosaic virus (TuMV) determining virulence to the Brassica napus TuRB01 dominant resistance allele has been identified. Sequence comparisons of an infectious cDNA clone of the UK 1 isolate of TuMV (avirulent on TuRB01) and a spontaneous mutant capable of infecting plants possessing TuRB01 suggested that a single nucleotide change in the cylindrical inclusion (CI) protein coding region (gene) of the virus was responsible for the altered phenotype. A second spontaneous mutation involved a different change in the CI gene. The construction of chimeric genomes and subsequent inoculations to plant lines segregating for TuRB01 confirmed the involvement of the CI gene in this interaction. Site-directed mutagenesis of the viral coat protein (CP) gene at the ninth nucleotide was carried out to investigate its interaction with TuRB01. The identity of this nucleotide in the CP gene did not affect the outcome of the viral infection. Both mutations identified in the CI gene caused amino acid changes in the C terminal third of the protein, outside any of the conserved sequences reported to be associated with helicase or cell-to-cell transport activities. This is the first example of a potyvirus CI gene acting as a determinant for a genotype-specific resistance interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号