首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel mechanism for protein-assisted group I intron splicing   总被引:3,自引:0,他引:3       下载免费PDF全文
Previously it was shown that the Aspergillus nidulans (A.n.) mitochondrial COB intron maturase, I-AniI, facilitates splicing of the COB intron in vitro. In this study, we apply kinetic analysis of binding and splicing along with RNA deletion analysis to gain insight into the mechanism of I-AniI facilitated splicing. Our results are consistent with I-AniI and A.n. COB pre-RNA forming a specific but labile encounter complex that is resolved into the native, splicing-competent complex. Significantly, kinetic analysis of splicing shows that the resolution step is rate limiting for splicing. RNA deletion studies show that I-AniI requires most of the A.n. COB intron for binding suggesting that the integrity of the I-AniI-binding site depends on overall RNA tertiary structure. These results, taken together with the observation that A.n. COB intron lacks significant stable tertiary structure in the absence of protein, support a model in which I-AniI preassociates with an unfolded COB intron via a "labile" interaction that facilitates correct folding of the intron catalytic core, perhaps by resolving misfolded RNAs or narrowing the number of conformations sampled by the intron during its search for native structure. The active intron conformation is then "locked in" by specific binding of I-Anil to its intron interaction site.  相似文献   

2.
The mitochondrial tyrosyl-tRNA synthetases (mt TyrRSs) of Pezizomycotina fungi are bifunctional proteins that aminoacylate mitochondrial tRNA(Tyr) and are structure-stabilizing splicing cofactors for group I introns. Studies with the Neurospora crassa synthetase (CYT-18 protein) showed that splicing activity is dependent upon Pezizomycotina-specific structural adaptations that form a distinct group I intron-binding site in the N-terminal catalytic domain. Although CYT-18's C-terminal domain also binds group I introns, it has been intractable to X-ray crystallography in the full-length protein. Here, we determined an NMR structure of the isolated C-terminal domain of the Aspergillus nidulans mt TyrRS, which is closely related to but smaller than CYT-18's. The structure shows an S4 fold like that of bacterial TyrRSs, but with novel features, including three Pezizomycontia-specific insertions. (15)N-(1)H two-dimensional NMR showed that C-terminal domains of the full-length A. nidulans and Geobacillus stearothermophilus synthetases do not tumble independently in solution, suggesting restricted orientations. Modeling onto a CYT-18/group I intron cocrystal structure indicates that the C-terminal domains of both subunits of the homodimeric protein bind different ends of the intron RNA, with one C-terminal domain having to undergo a large shift on its flexible linker to bind tRNA(Tyr) or the intron RNA on either side of the catalytic domain. The modeling suggests that the C-terminal domain acts together with the N-terminal domain to clamp parts of the intron's catalytic core, that at least one C-terminal domain insertion functions in group I intron binding, and that some C-terminal domain regions bind both tRNA(Tyr) and group I intron RNAs.  相似文献   

3.
A large number of group I introns encode a family of homologous proteins that either promote intron splicing (maturases) or are site-specific DNA endonucleases that function in intron mobility (a process called "homing"). Genetic studies have shown that some of these proteins have both activities, yet how a single protein carries out both functions remains obscure. The similarity between respective DNA-binding sites and the RNA structure near the 5' and 3' splice sites has fueled speculation that such proteins may use analogous interactions to perform both functions. The Aspergillus nidulans mitochondrial COB group I intron encodes a bi-functional protein, I-AniI, that has both RNA maturase and site-specific DNA endonuclease activities in vitro. Here, we show that I-AniI shows distinctive features of the endonuclease family to which it belongs, including highly specific, tight binding and sequential DNA strand cleavage. Competition experiments demonstrate that I-AniI binds the COB intron RNA even in saturating concentrations of its DNA target site substrate, suggesting that the protein has a separate binding site for RNA. In addition, we provide evidence that two different DNA-binding site mutants of I-AniI have little effect on the protein's RNA maturation activity. Since RNA splicing is likely a secondary adaptation of the protein, these observations support a model in which homing endonucleases may have developed maturase function by utilizing a hitherto "non-functional" protein surface.  相似文献   

4.
The AnCOB group I intron from Aspergillus nidulans encodes a homing DNA endonuclease called I-AniI which also functions as a maturase, assisting in AnCOB intron RNA splicing. In this investigation we biochemically characterized the endonuclease activity of I-AniI in vitro and utilized competition assays to probe the relationship between the RNA- and DNA-binding sites. Despite functioning as an RNA maturase, I-AniI still retains several characteristic properties of homing endonucleases including relaxed substrate specificity, DNA cleavage product retention and instability in the reaction buffer, which suggest that the protein has not undergone dramatic structural adaptations to function as an RNA-binding protein. Nitrocellulose filter binding and kinetic burst assays showed that both nucleic acids bind I-AniI with the same 1 : 1 stoichiometry. Furthermore, in vitro competition activity assays revealed that the RNA substrate, when prebound to I-AniI, stoichiometrically inhibits DNA cleavage activity, yet in reciprocal experiments, saturating amounts of prebound DNA substrate fails to inhibit RNA splicing activity. The data suggest therefore that both nucleic acids do not bind the same single binding site, rather that I-AniI appears to contain two binding sites.  相似文献   

5.
Members of the CUG-BP and ETR-3 like factor (CELF) protein family bind within conserved intronic elements (called MSEs) flanking the cardiac troponin T (cTNT) alternative exon 5 and promote exon inclusion in vivo and in vitro. Here we use a comparative deletion analysis of two family members (ETR-3 and CELF4) to identify separate domains required for RNA binding and splicing activity in vivo. CELF proteins contain two adjacent RNA binding domains (RRM1 and RRM2) near the N-terminus and one RRM (RRM3) near the C-terminus, which are separated by a 160–230 residue divergent domain of unknown function. Either RRM1 or RRM2 of CELF4 are necessary and sufficient for binding MSE RNA and RRM2 plus an additional 66 amino acids of the divergent domain are as effective as full-length protein in activating MSE-dependent splicing in vivo. Non-overlapping N- and C-terminal regions of ETR-3 containing either RRM1 and RRM2 or RRM3 plus segments of the adjacent divergent domain activate MSE-dependent exon inclusion demonstrating an unusual functional redundancy of the N- and C-termini of the protein. These results identify specific regions of ETR-3 and CELF4 that are likely targets of protein–protein interactions required for splicing activation.  相似文献   

6.
7.
SR proteins are essential pre-mRNA splicing factors that have been shown to bind a number of exonic splicing enhancers where they function to stimulate the splicing of adjacent introns. Members of the SR protein family contain one or two N-terminal RNA binding domains, as well as a C-terminal arginine–serine (RS) rich domain. The RS domains mediate protein–protein interactions with other RS domain containing proteins and are essential for many, but not all, SR protein functions. Hybrid proteins containing an RS domain fused to the bacteriophage MS2 coat protein are sufficient to activate enhancer-dependent splicing in HeLa cell nuclear extract when bound to the pre-mRNA. Here we report progress towards determining the protein sequence requirements for RS domain function. We show that the RS domains from non-SR proteins can also function as splicing activation domains when tethered to the pre-mRNA. Truncation experiments with the RS domain of the human SR protein 9G8 identified a 29 amino acid segment, containing 26 arginine or serine residues, that is sufficient to activate splicing when fused to MS2. We also show that synthetic domains composed solely of RS dipeptides are capable of activating splicing, although their potency is proportional to their size.  相似文献   

8.
CRM (chloroplast RNA splicing and ribosome maturation) is a recently recognized RNA-binding domain of ancient origin that has been retained in eukaryotic genomes only within the plant lineage. Whereas in bacteria CRM domains exist as single domain proteins involved in ribosome maturation, in plants they are found in a family of proteins that contain between one and four repeats. Several members of this family with multiple CRM domains have been shown to be required for the splicing of specific plastidic group II introns. Detailed biochemical analysis of one of these factors in maize, CRS1, demonstrated its high affinity and specific binding to the single group II intron whose splicing it facilitates, the plastid-encoded atpF intron RNA. Through its association with two intronic regions, CRS1 guides the folding of atpF intron RNA into its predicted "catalytically active" form. To understand how multiple CRM domains cooperate to achieve high affinity sequence-specific binding to RNA, we analyzed the RNA binding affinity and specificity associated with each individual CRM domain in CRS1; whereas CRM3 bound tightly to the RNA, CRM1 associated specifically with a unique region found within atpF intron domain I. CRM2, which demonstrated only low binding affinity, also seems to form specific interactions with regions localized to domains I, III, and IV. We further show that CRM domains share structural similarities and RNA binding characteristics with the well known RNA recognition motif domain.  相似文献   

9.
10.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by stabilizing the catalytically active RNA structure. To accomplish this, CYT-18 recognizes conserved structural features of group I intron RNAs using regions of the N-terminal nucleotide-binding fold, intermediate alpha-helical, and C-terminal RNA-binding domains that also function in binding tRNA(Tyr). Curiously, whereas the splicing of the N. crassa mitochondrial large subunit rRNA intron is completely dependent on CYT-18's C-terminal RNA-binding domain, all other group I introns tested thus far are spliced efficiently by a truncated protein lacking this domain. To investigate the function of the C-terminal domain, we used an Escherichia coli genetic assay to isolate mutants of the Saccharomyces cerevisiae mitochondrial large subunit rRNA and phage T4 td introns that can be spliced in vivo by the wild-type CYT-18 protein, but not by the C-terminally truncated protein. Mutations that result in dependence on CYT-18's C-terminal domain include those disrupting two long-range GNRA tetraloop/receptor interactions: L2-P8, which helps position the P1 helix containing the 5'-splice site, and L9-P5, which helps establish the correct relative orientation of the P4-P6 and P3-P9 domains of the group I intron catalytic core. Our results indicate that different structural mutations in group I intron RNAs can result in dependence on different regions of CYT-18 for RNA splicing.  相似文献   

11.
A Kumar  S H Wilson 《Biochemistry》1990,29(48):10717-10722
A1 is a major core protein of the mammalian hnRNP complex, and as a purified protein of approximately 34 kDa, A1 is a strong single-stranded nucleic acid binding protein. Several lines of evidence suggest that the protein is organized in discrete domains consisting of an N-terminal segment of approximately 22 kDa and a C-terminal segment of approximately 12 kDa. Each of these domains as a purified fragment is capable of binding to both ssDNA and RNA. We report here that A1 and its C-terminal domain fragment are capable of potent strand-annealing activity for base-pair complementary single-stranded polynucleotides of both RNA and DNA. This effect is not stimulated by ATP. Compared with A1 and the C-terminal fragment, the N-terminal domain fragment has negligible annealing activity. These results indicate that A1 has biochemical activity consistent with a strand-annealing role in relevant reactions, such as pre-mRNA splicing.  相似文献   

12.
Yeast mitochondrial leucyl-tRNA synthetase (LeuRS) binds to the bI4 intron and collaborates with the bI4 maturase to aid excision of the group I intron. Deletion analysis isolated the inserted LeuRS CP1 domain as a critical factor in the protein's splicing activity. Protein fragments comprised of just the LeuRS CP1 region rescued complementation of a yeast strain that expressed a splicing-defective LeuRS. Three-hybrid analysis determined that these CP1-containing LeuRS fragments, ranging from 214 to 375 amino acids, bound to the bI4 intron. In each case, interactions with only the LeuRS protein fragment specifically stimulated bI4 intron splicing activity. Substitution of a homologous CP1 domain from isoleucyl-tRNA synthetase or mutation within the LeuRS CP1 region of the smallest protein fragment abolished RNA binding and splicing activity. The CP1 domain is best known for its amino acid editing activity. However, these results suggest that elements within the LeuRS CP1 domain also play a novel role, independent of the full-length tRNA synthetase, in binding the bI4 group I intron and facilitating its self-splicing activity.  相似文献   

13.
14.
15.
The Cbp2 protein is encoded in the nucleus and is required for the splicing of the terminal intron of the mitochondrial COB gene in Saccharomyces cerevisiae . Using a yeast strain that lacks this intron but contains a related group I intron in the precursor of the large ribosomal RNA, we have determined that Cbp2 protein is also required for the normal accumulation of 21S ribosomal RNA in vivo . Such strains bearing a deletion of the CBP2 gene adapt slowly to growth in glycerol/ethanol media implying a defect in derepression. At physiologic concentrations of magnesium, Cbp2 stimulates the splicing of the ribosomal RNA intron in vitro . Nevertheless, Cbp2 is not essential for splicing of this intron in mitochondria nor is it required in vitro at magnesium concentrations >5 mM. A similar intron exists in the large ribosomal RNA (LSU) gene of Saccharomyces douglasii . This intron does need Cbp2 for catalytic activity in physiologic magnesium. Similarities between the LSU introns and COB intron 5 suggest that Cbp2 may recognize conserved elements of the these two introns, and protein-induced UV crosslinks occur in similar sites in the substrate and catalytic domains of the RNA precursors.  相似文献   

16.
The DEAD-box proteins CYT-19 in Neurospora crassa and Mss116p in Saccharomyces cerevisiae are general RNA chaperones that function in splicing mitochondrial group I and group II introns and in translational activation. Both proteins consist of a conserved ATP-dependent RNA helicase core region linked to N and C-terminal domains, the latter with a basic tail similar to many other DEAD-box proteins. In CYT-19, this basic tail was shown to contribute to non-specific RNA binding that helps tether the core helicase region to structured RNA substrates. Here, multiple sequence alignments and secondary structure predictions indicate that CYT-19 and Mss116p belong to distinct subgroups of DEAD-box proteins, whose C-terminal domains have a defining extended α-helical region preceding the basic tail. We find that mutations or C-terminal truncations in the predicted α-helical region of Mss116p strongly inhibit RNA-dependent ATPase activity, leading to loss of function in both translational activation and RNA splicing. These findings suggest that the α-helical region may stabilize and/or regulate the activity of the RNA helicase core. By contrast, a truncation that removes only the basic tail leaves high RNA-dependent ATPase activity and causes only a modest reduction in translation and RNA splicing efficiency in vivo and in vitro. Biochemical analysis shows that deletion of the basic tail leads to weaker non-specific binding of group I and group II intron RNAs, and surprisingly, also impairs RNA-unwinding at saturating protein concentrations and nucleotide-dependent tight binding of single-stranded RNAs by the RNA helicase core. Together, our results indicate that the two sub-regions of Mss116p's C-terminal domain act in different ways to support and modulate activities of the core helicase region, whose RNA-unwinding activity is critical for both the translation and RNA splicing functions.  相似文献   

17.
Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing.  相似文献   

18.
As shown by nitrocellulose filtration assays with RNA fragments transcribed from various regions of the human ribosomal protein (rp) S26 gene, proteins of the 40S ribosome subunit bind to the first intron of the rpS26 pre-mRNA. The binding involved mostly S23, S26 and, to a lesser extent, S13/16. Negligible binding was observed for S2/3a, S6, S8, S10, S11, and S20. Small-subunit proteins did not affect the efficiency of in vitro splicing of a pre-mRNA fragment corresponding to the first intron, second exon, second intron, and a part of the third exon of the rpS26 gene. However, ribosomal proteins substantially increased UV-induced adduction of the pre-mRNA fragments with nuclear extract proteins of HeLa cells. The same set of HeLa proteins was observed with each pre-mRNA fragment. Ribosomal proteins formed adducts only in the absence of HeLa proteins.  相似文献   

19.
Ivanov  A. V.  Malygin  A. A.  Karpova  G. G. 《Molecular Biology》2002,36(3):394-399
As shown by nitrocellulose filtration assays with RNA fragments transcribed from various regions of the human ribosomal protein (rp) S26 gene, proteins of the 40S ribosome subunit bind to the first intron of the rpS26 pre-mRNA. The binding involved mostly S23, S26 and, to a lesser extent, S13/16. Negligible binding was observed for S2/3a, S6, S8, S10, S11, and S20. Small-subunit proteins did not affect the efficiency of in vitro splicing of a pre-mRNA fragment corresponding to the first intron, second exon, second intron, and a part of the third exon of the rpS26 gene. However, ribosomal proteins substantially increased UV-induced adduction of the pre-mRNA fragments with nuclear extract proteins of HeLa cells. The same set of HeLa proteins was observed with each pre-mRNA fragment. Ribosomal proteins formed adducts only in the absence of HeLa proteins.  相似文献   

20.
E6 is an oncoprotein implicated in cervical cancers produced by " high risk " human papillomaviruses. E6 binds specifically to several cellular proteins, including the tumour suppressor p53 and the ubiquitin ligase E6-AP. However, E6 is also a DNA-binding protein which recognizes a structural motive present in four-way junctions. Here, we demonstrate that the C-terminal zinc-binding domain of E6, expressed separately from the rest of the protein, fully retains the selective four-way junction recognition activity. The domain can bind to two identical and independent sites on a single junction, whereas full-length E6 can only bind to one site. The junction bound to either one or two domains adopts an extended square conformation. These results allow us to assign the structure-dependent DNA recognition activity of E6 to its C-terminal domain, which therefore represents a new class of zinc-stabilized DNA-binding module. Comparison with the binding characteristics of other junction-specific proteins enlightens the rules which govern protein-induced deformation of four-way DNA junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号