首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulation of acylcoenzyme A:cholesterol acyltransferase (ACAT) activity by cholesterol was studied in an established enterocyte cell line. CaCo-2 cells were grown in culture to confluency and dome formation. They were characterized morphologically by light and transmission electron microscopy. During the culture period, ACAT activity remained stable while the activities of the brush border enzymes sucrase and alkaline phosphatase progressively increased with time and plateaued 12 days after plating. As determined by the rate of incorporation of oleic acid into the individual lipid classes, the rate of triglyceride synthesis was twice that of phospholipid and 15 times that of cholesteryl ester synthesis in these cells. Incubating CaCo-2 cells with cholesterol solubilized in taurocholate micelles resulted in a significant increase in ACAT activity (149 +/- 5 pmol/dish per 2 hr vs. 366 +/- 5, (P less than 0.001) without changing the rates of triglyceride or phospholipid synthesis. The stimulation of ACAT activity by micellar cholesterol was rapid, occurring within 5 min and reaching a maximal effect by 2 hr. The regulation of ACAT activity by cholesterol was directly dependent upon the concentration of cholesterol solubilized in the micelle and was independent of protein synthesis. Incubating CaCo-2 cells with micellar cholesterol did not increase the esterification of, nor did the cholesterol enter the pool of, newly synthesized or performed cholesterol within 2 hr. The micellar cholesterol that was taken up by the cells was esterified within 5 min after starting the incubation. Progesterone, a known ACAT inhibitor, significantly decreased the rate of esterification of intracellular micellar cholesterol proving that the cholesterol taken up by CaCo-2 cells was indeed entering the ACAT pool. Despite increasing amounts of unesterified cholesterol entering the cells via micelles, the percent of cholesterol that was esterified at any one time remained constant at 1%. The results suggest that ACAT activity in CaCo-2 cells is stimulated by cholesterol delivered to the cells by way of taurocholate micelles. The rapid entry of this sterol into the ACAT substrate pool suggests that ACAT activity in CaCo-2 cells is regulated by the expansion of the cholesterol substrate pool that is being utilized by an unsaturated ACAT enzyme.  相似文献   

2.
Lovastatin, a potent competitive inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity, was used to study the regulation of cholesterol metabolism and the basolateral-membrane secretion of triacylglycerol and cholesterol in the human intestinal cell line CaCo-2. At 0.1 microgram/ml, lovastatin decreased 3H2O incorporation into cholesterol by 71%. In membranes prepared from cells incubated with lovastatin for 18 h, HMG-CoA reductase activity was induced 4-8-fold. Mevalonolactone prevented this induction. In intact cells, lovastatin (10 micrograms/ml) decreased cholesterol esterification by 50%. The reductase inhibitor decreased membrane acyl-CoA:cholesterol O-acyltransferase (ACAT) activity by 50% at 5 micrograms/ml. ACAT inhibition by lavastatin was not reversed by adding excess of cholesterol or fatty acyl-CoA to the assay. Lovastatin, in the presence or absence of mevalonolactone, decreased the basolateral secretion of newly synthesized cholesteryl esters and triacylglycerols. Lovastatin also inhibited the esterification of absorbed cholesterol and the secretion of this newly synthesized cholesteryl ester. Lovastatin is a potent inhibitor of cholesterol synthesis in CaCo-2 cells. Moreover, it is a direct inhibitor of ACAT activity, independently of its effect on HMG-CoA reductase and cholesterol synthesis.  相似文献   

3.
Lipoproteins that are removed from the circulation by the liver can deliver both cholesterol and triglycerides to the hepatocyte. Relative proportions of these lipids may vary in lipoproteins and, thus, their uptake may have differing effects on cholesterol homeostasis. To study this, lipoproteins containing the same amounts of cholesterol but different amounts of triglyceride were administered to intact rats or to an isolated perfused rat liver. The responses of acyl coenzyme A:cholesterol acyltransferase (ACAT), very low density lipoprotein (VLDL) triglyceride and cholesterol secretion, and biliary cholesterol content were examined after 2 hr. Administration of triglyceride-rich chylomicrons (average triglyceride:cholesterol = 136.5 by mass) in vivo or their remnants (average triglyceride:cholesterol = 32.7 by mass) to the perfused liver resulted in an 80% decrease in ACAT activity. In the perfused liver system, VLDL cholesterol and triglyceride secretion was increased while biliary cholesterol content decreased. Administration of standard chylomicrons (average triglyceride:cholesterol = 33.9 by mass) or their remnants (average triglyceride:cholesterol = 11.4 by mass) lowered ACAT activity by 24% in vivo, but had no significant effect on any of the parameters measured in the perfused liver system. Administration of cholesterol-rich VLDL (average triglyceride:cholesterol = 0.47 by mass) in vivo increased ACAT activity 1.4-fold, but administration of their remnants (average triglyceride:cholesterol = 0.17 by mass) had little effect on any of the parameters measured in the perfused liver. Thus, the lipid composition of lipoproteins removed by the liver elicited acute responses by parameters important in the maintenance of hepatic cholesterol homeostasis. These responses reflected the net effects of both the cholesterol and the triglyceride contents of the particles.  相似文献   

4.
1. The ACAT inhibitors, CL 277082 and SA 58-035 were administered for 7 days to hamsters fed diets containing 0.5% cholesterol. 2. Both agents inhibited cholesterol absorption, decreased hepatic. VLDL and IDL cholesterol esters, plasma HDL and HDL apoE and A-I. 3. In addition, CL 277082 treatment produced significant decreases in plasma cholesterol, VLDL apoB and plasma IDL. 4. The cholesteryl esters in VLDL and LDL but not HDL were more polyunsaturated in CL 277082 treated animals. 5. These results support the hypothesis that ACAT inhibition in the cholesterol fed hamster results in an inhibition of dietary cholesterol absorption, thus limiting the cholesterol supply required for the hepatic production of triglyceride-rich lipoproteins.  相似文献   

5.
Cholesteryl ester accumulation in arterial wall macrophages (foam cells) is a prominent feature of atherosclerotic lesions. We have previously shown that J774 macrophages accumulate large amounts of cholesteryl ester when incubated with unmodified low density lipoprotein (LDL) and that this is related to sluggish down-regulation of the J774 LDL receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase. To further explore intracellular cholesterol metabolism and regulatory events in J774 macrophages, we studied the effect of inhibitors of acyl-CoA:cholesterol acyl transferase (ACAT) on the cells' ability to accumulate cholesterol and to down-regulate receptor and reductase. Treatment of J774 cells with LDL in the presence of ACAT inhibitor 58-035 (Sandoz) prevented both cholesteryl ester and total cholesterol accumulation. Furthermore, 58-035 markedly enhanced down-regulation of the J774 LDL receptor and 3-hydroxy-3-methylglutaryl-CoA reductase in the presence of LDL. In dose-response studies, down-regulation of the receptor by 58-035 paralleled its inhibition of ACAT activity. Compound 58-035 also increased the down-regulation of the J774 LDL receptor in the presence of 25-hydroxycholesterol and acetyl-LDL but not in the presence of cholesteryl hemisuccinate, which is not an ACAT substrate. The ability of 58-035 to enhance LDL receptor down-regulation was negated when cells were simultaneously incubated with recombinant high density lipoprotein3 discs, which promote cellular cholesterol efflux. In contrast to the findings with J774 macrophages, down-regulation of the human fibroblast LDL receptor was not enhanced by 58-035. These data suggest that in J774 macrophages, but not in fibroblasts, ACAT competes for a regulatory pool of intracellular cholesterol, contributing to diminished receptor and reductase down-regulation, LDL-cholesterol accumulation, and foam cell formation.  相似文献   

6.
7.
Compound 58-035 (3-[decyldimethylsilyl]-N-[2-(4-methylphenyl)-1-phenylethyl]pro panamide) has been found to inhibit the accumulation of cholesteryl esters in both rat hepatoma (Fu5AH) cells and arterial smooth muscle cells in culture. To explore the specificity of 58-035, we have studied the esterification of cholesterol, retinol, and glycerides by the Fu5AH cell and by isolated membranes. Exposure of Fu5AH to cholesterol/phospholipid dispersions and 58-035 (greater than 100 ng/ml) for 24 h resulted in greater than 95% inhibition of cholesterol esterification while cellular free cholesterol increased slightly. Inhibition was also rapid; incorporation of [3H]oleate into cholesteryl [3H]oleate equaled only 12% of control value after 30 min with 58-035 at 5 micrograms/ml. In contrast, there was no decrease in [3H]oleate incorporation into phospholipids or diglycerides, nor was the esterification of [3H]retinol inhibited by 58-035. In microsomal fractions, acyl-CoA:cholesterol acyltransferase could be inhibited completely by 58-035, while activities of acyl-CoA: retinol acyltransferase and triglyceride synthesis proceeded at 75-100% of control values. These observations that 58-035 is highly selective allow the inference that acyl-CoA:cholesterol acyltransferase is a separate microsomal enzyme whose activity can be modulated independently from acyl-CoA:retinol acyltransferase and other cellular acyltransferases.  相似文献   

8.
The relative importance of each core lipid in the assembly and secretion of very low density lipoproteins (VLDL) has been of interest over the past decade. The isolation of genes encoding diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) provided the opportunity to investigate the effects of isolated increases in triglycerides (TG) or cholesteryl esters (CE) on apolipoprotein B (apoB) lipoprotein biogenesis. Overexpression of human DGAT1 in rat hepatoma McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of TG. These effects were associated with decreased intracellular degradation and increased secretion of newly synthesized apoB as VLDL. Similarly, overexpression of human ACAT1 or ACAT2 in McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of CE. This led to decreased intracellular degradation and increased secretion of VLDL apoB. Overexpression of ACAT2 had a significantly greater impact upon assembly and secretion of VLDL from liver cells than did overexpression of ACAT1. The addition of oleic acid (OA) to media resulted in a further increase in VLDL secretion from cells expressing DGAT1, ACAT1, or ACAT2. VLDL secreted from DGAT1-expressing cells incubated in OA had a higher TG:CE ratio than VLDL secreted from ACAT1- and ACAT2-expressing cells treated with OA. These studies indicate that increasing DGAT1, ACAT1, or ACAT2 expression in McA-RH7777 cells stimulates the assembly and secretion of VLDL from liver cells and that the core composition of the secreted VLDL reflects the enzymatic activity that is elevated.  相似文献   

9.
Membrane fatty acid composition of CaCo-2 cells was modified by incubating the cells for 8 days in medium containing 100 microM eicosapentaenoic acid or palmitic acid. The effect of membrane fatty acid changes on cholesterol metabolism was then studied. Cells incubated with eicosapentaenoic acid had significant changes in membrane fatty acid composition with an accumulation of 20:5 and 22:5 and a reduction in monoenoic fatty acids compared to cells grown in palmitic acid. Intracellular cholesteryl esters could not be detected in CaCo-2 cells grown in the presence of the n-3 polyunsaturated fatty acid. In contrast, cells incubated with the saturated fatty acid contained 2 micrograms/mg protein of cholesteryl esters. Cells grown in eicosapentaenoic acid, however, accumulated significantly more triglycerides compared to cells modified with palmitic acid. The rate of oleic acid incorporation into triglycerides was significantly increased in cells incubated with eicosapentaenoic acid. CaCo-2 cells modified by eicosapentaenoic acid had lower rates of HMG-CoA reductase and ACAT activities compared to cells modified with palmitic acid. The incorporation of the two fatty acids into cellular lipids also differed. Palmitic acid was predominantly incorporated into cellular triglycerides, whereas eicosapentaenoic acid was preferentially incorporated into phospholipids with 60% of it in the phosphatidylethanolamine fraction. The data indicate that membrane fatty acid composition is significantly altered by growing CaCo-2 cells in eicosapentaenoic acid. These modifications in membrane fatty acid saturation are accompanied by a decrease in the rates of cholesterol synthesis and cholesterol esterification.  相似文献   

10.
Cholesteryl ester synthesis by the acyl-CoA:cholesterol acyltransferase enzymes ACAT1 and ACAT2 is, in part, a cellular homeostatic mechanism to avoid toxicity associated with high free cholesterol levels. In hepatocytes and enterocytes, cholesteryl esters are secreted as part of apoB lipoproteins, the assembly of which is critically dependent on microsomal triglyceride transfer protein (MTP). Conditional genetic ablation of MTP reduces cholesteryl esters and enhances free cholesterol in the liver and intestine without diminishing ACAT1 and ACAT2 mRNA levels. As expected, increases in hepatic free cholesterol are associated with decreases in 3-hydroxy-3-methylglutaryl-CoA reductase and increases in ATP-binding cassette transporter 1 mRNA levels. Chemical inhibition of MTP also decreases esterification of cholesterol in Caco-2 and HepG2 cells. Conversely, coexpression of MTP and apoB in AC29 cells stably transfected with ACAT1 and ACAT2 increases cholesteryl ester synthesis. Liver and enterocyte microsomes from MTP-deficient animals synthesize lesser amounts of cholesteryl esters in vitro, but addition of purified MTP and low density lipoprotein corrects this deficiency. Enrichment of microsomes with cholesteryl esters also inhibits cholesterol ester synthesis. Thus, MTP enhances cellular cholesterol esterification by removing cholesteryl esters from their site of synthesis and depositing them into nascent apoB lipoproteins. Therefore, MTP plays a novel role in regulating cholesteryl ester biosynthesis in cells that produce lipoproteins. We speculate that non-lipoprotein-producing cells may use different mechanisms to alleviate product inhibition and modulate cholesteryl ester biosynthesis.  相似文献   

11.
The regulation of lipoprotein secretion in the cell line HepG2 was studied. HepG2 cells were preincubated with chylomicron remnants (triglyceride- and cholesterol-rich) or with beta very low density lipoproteins (beta-VLDL) (cholesterol-rich). The medium was removed and the cells were incubated for and additional 24 hr in a lipoprotein-free medium that contained either [2-3H]glycerol or DL-[2-3H]mevalonate. Cells and media were harvested, and lipoproteins were separated and fractionated. The mass and radioactivity of the lipids in cells and in the lipoproteins were measured. The activities of cellular acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase were also determined. Preincubation with chylomicron remnants induced an increase in cellular triglyceride and stimulated both HMG-CoA reductase and ACAT. Preincubation with beta-VLDL induced an increase in cellular free and esterified cholesterol, inhibited HMG-CoA reductase and stimulated ACAT. Although the absolute amount of VLDL is small, chylomicron remnants induced large relative increases in the amount of triglyceride and phospholipid secreted in VLDL and decreases in the amount of triglyceride secreted in low density (LDL) and high density (HDL) lipoproteins as well as a decrease in the amount of phospholipid secreted in HDL. In contrast, preincubation with beta-VLDL did not affect triglyceride secretion, but markedly stimulated the amount of phospholipid secreted in HDL. Comparison of the mass of glycerolipid actually secreted with that calculated from the cellular specific activity suggested that glycerolipids are secreted from single, rapidly equilibrating pools. Cholesterol and cholesteryl ester secretion were affected differently. Preincubation with chylomicron remnants increased the amount of free cholesterol secreted in both VLDL and LDL, but did not alter cholesteryl ester secretion. Preincubation with beta-VLDL increased free cholesterol secretion in all lipoprotein fractions and increased cholesteryl ester secretion in VLDL and LDL, but not HDL. Comparison of isotope and mass data suggested that the cholesteryl ester secreted came primarily from a preformed, rather than an newly synthesized, pool. In summary, these data provide insight to the mechanism whereby a liver cell regulates the deposition of exogenous lipid.  相似文献   

12.
Cholesteryl esters present in nascent very low density lipoproteins are generated in a reaction catalyzed by acyl CoA:cholesterol acyltransferase (ACAT). To examine the effect of cholesteryl esters on the secretion of apoB-containing lipoproteins, we transiently overexpressed human (h) ACAT-1 in the livers of low density lipoprotein (LDL) receptor(-/-) mice using adenovirus-mediated gene transfer. Overexpression of hACAT-1 increased hepatic total and esterified cholesterol but did not reduce hepatic free cholesterol due to a compensatory increase in the rate of de novo cholesterol synthesis. Overexpression of hACAT-1 markedly increased the plasma concentration and hepatic secretion of apoB-containing lipoproteins but had no effect on the clearance of very low density lipoprotein-apoB from plasma indicating that cholesteryl esters play an important role in regulating the assembly and secretion of apoB-containing lipoproteins. ACAT activity has been implicated in the regulation of the LDL receptor pathway by dietary fatty acids. It has been hypothesized that unsaturated fatty acids, by enhancing ACAT activity, reduce the amount of free cholesterol in a putative regulatory pool that feeds back on LDL receptor expression. We directly tested this hypothesis in hamsters by transiently overexpressing hACAT-1 in the liver. Enhanced cholesterol esterification in the liver resulted in a compensatory increase in de novo cholesterol synthesis but no induction of LDL receptor expression suggesting that fatty acids regulate LDL receptor expression via a mechanism independent of ACAT.  相似文献   

13.
The mechanism through which cholesteryl esters rich in oleic acid accumulate in the cytoplasm was studied. The fatty acid composition of the cholesteryl esters in acetyl-LDL was high in linoleic acid, while that of cholesteryl ester inclusion bodies accumulated in the cytoplasm was high in oleic acid. This compositional change of fatty acids in cholesteryl esters occurred even in the presence of an acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor, Sandoz 58-035. These results suggest that oleate-rich cholesteryl esters accumulated in the cytoplasm, even though the reesterification in microsome was inhibited by an ACAT inhibitor.  相似文献   

14.
1. The esterification of cholesterol was studied in Tetrahymena pyriformis an organism which does not synthesize sterols nor are sterols required for growth. 2. Microsomes catalyzed the esterification of cholesterol in the presence of oleoyl-CoA but not oleic acid or lecithin. 3. The enzyme has a similar sterol substrate specificity to that of mammalian acyl-CoA: cholesterol acyltransferase (ACAT) and was inhibited by the specific ACAT inhibitor 58-035. 4. The enzyme is constitutive since activity was observed in cells grown in sterol-free medium when cholesterol was added to the in vitro assay.  相似文献   

15.
Intestinal cholesterol absorption involves the chylomicron and HDL pathways and is dependent on microsomal triglyceride transfer protein (MTP) and ABCA1, respectively. Chylomicrons transport free and esterified cholesterol, whereas HDLs transport free cholesterol. ACAT2 esterifies cholesterol for secretion with chylomicrons. We hypothesized that free cholesterol accumulated during ACAT2 deficiency may be secreted with HDLs when chylomicron assembly is blocked. To test this, we studied cholesterol absorption in mice deficient in intestinal MTP, global ACAT2, and both intestinal MTP and global ACAT2. Intestinal MTP ablation significantly increased intestinal triglyceride and cholesterol levels and reduced their transport with chylomicrons. In contrast, global ACAT2 deficiency had no effect on triglyceride absorption but significantly reduced cholesterol absorption with chylomicrons and increased cellular free cholesterol. Their combined deficiency reduced cholesterol secretion with both chylomicrons and HDLs. Thus, contrary to our hypothesis, free cholesterol accumulated in the absence of MTP and ACAT2 is unavailable for secretion with HDLs. Global ACAT2 deficiency causes mild hypertriglyceridemia and reduces hepatosteatosis in mice fed high cholesterol diets by increasing hepatic lipoprotein production by unknown mechanisms. We show that this phenotype is preserved in the absence of intestinal MTP in global ACAT2-deficient mice fed a Western diet. Further, we observed increases in hepatic MTP activity in these mice. Thus, ACAT2 deficiency might increase MTP expression to avoid hepatosteatosis in cholesterol-fed animals. Therefore, ACAT2 inhibition might avert hepatosteatosis associated with high cholesterol diets by increasing hepatic MTP expression and lipoprotein production.  相似文献   

16.
The purpose of the present study was to examine the effects of exogenous cholesterol on the apolipoprotein (Apo) B gene expression in HepG2 cells. Pure cholesterol had no significant effect on either the cellular content of cholesteryl esters or the net accumulation of neutral lipids and ApoB in the culture medium. By contrast, addition of 25-hydroxycholesterol increased the net accumulation of cholesteryl esters in cells and medium by 2-3-fold and decreased that of unesterified cholesterol by 50% in both compartments. A 33% reduction in the cellular content of triglycerides was commensurate with a 40% increase in their accumulation in the medium. A significant 3-fold increase in the net accumulation of ApoB in the medium was predominantly due to enhanced secretion of newly synthesized ApoB as established by pulse-chase studies. The stimulation in ApoB secretion was accompanied by a 55% increase in cellular ApoB mRNA. Under these experimental conditions, the low density lipoprotein receptor activity was decreased by only 12-20%. Addition of progesterone prevented the effects of 25-hydroxycholesterol. The changes in the concentration of neutral lipids and ApoB were reflected in the composition of secreted "low-density" lipoproteins. These particles had increased percentage contents of cholesteryl esters and ApoB and a decreased percentage content of unesterified cholesterol in comparison with lipoproteins produced by control cells. The rate of ApoB production was not correlated with the triglyceride mass in the cells but was positively correlated with the cellular and secreted cholesteryl esters and secreted triglycerides. With the exception of unchanged cellular unesterified cholesterol and ApoB mRNA levels, plasma low density lipoprotein had similar, although less pronounced, effects on the production of neutral lipids and ApoB. These results demonstrate that in HepG2 cells the synthesis and secretion of ApoB and cholesteryl esters are tightly coupled and that 25-hydroxycholesterol increased the concentration of ApoB-containing lipoproteins primarily by stimulating their production rather than reducing their catabolism.  相似文献   

17.
Insulin resistance, obesity, and diabetes are characterized by hyperglycemia, hyperinsulinemia, and hyperleptinemia and are associated with increased risk of atherosclerosis. In an effort to understand how this occurs, we have investigated whether these factors cause disregulation of cholesterol ester metabolism in J774.2 macrophages. Raising glucose levels alone was sufficient to increase uptake of acetylated low density lipoprotein but did not stimulate synthesis of cholesterol esters. In the presence of high glucose, both insulin and leptin increased the rate of cholesterol ester synthesis, although they did not further increase uptake of acetylated low density lipoprotein. However, in the presence of high glucose both insulin and leptin caused a significant increase in the activity of acyl-CoA: cholesterol O-acyltransferase (ACAT) combined with a significant reduction in the level of hormone-sensitive lipase (HSL). Because ACAT is the main enzyme responsible for cholesterol ester synthesis and HSL contributes significantly to neutral cholesterol ester hydrolase activity, this suggests that glucose primes the J774.2 cells so that in the presence of high insulin or leptin they will store cholesterol esters. This contrasts with 3T3-L1 adipocytes, where HSL activity and expression are increased by insulin in high glucose conditions. These findings may provide an explanation for the observation that in conditions characterized by hyperglycemia, hyperleptinemia, and hyperinsulinemia, triglyceride lipolysis in adipocytes is increased while hydrolysis of cholesterol esters in macrophages is decreased, contributing to foam cell formation.  相似文献   

18.
Several studies indicate that cholesterol esterification is deregulated in cancers. The present study aimed to characterize the role of cholesterol esterification in proliferation and invasion of two tumor cells expressing an activated cholecystokinin 2 receptor (CCK2R). A significant increase in cholesterol esterification and activity of Acyl-CoA:cholesterol acyltransferase (ACAT) was measured in tumor cells expressing a constitutively activated oncogenic mutant of the CCK2R (CCK2R-E151A cells) compared with nontumor cells expressing the wild-type CCK2R (CCK2R-WT cells). Inhibition of cholesteryl ester formation and ACAT activity by Sah58-035, an inhibitor of ACAT, decreased by 34% and 73% CCK2R-E151A cell growth and invasion. Sustained activation of CCK2R-WT cells by gastrin increased cholesteryl ester production while addition of cholesteryl oleate to the culture medium of CCK2R-WT cells increased cell proliferation and invasion to a level close to that of CCK2R-E151A cells. In U87 glioma cells, a model of autocrine growth stimulation of the CCK2R, inhibition of cholesterol esterification and ACAT activity by Sah58-035 and two selective antagonists of the CCK2R significantly reduced cell proliferation and invasion. In both models, cholesteryl ester formation was found dependent on protein kinase zeta/ extracellular signal-related kinase 1/2 (PKCζ/ERK1/2) activation. These results show that signaling through ACAT/cholesterol esterification is a novel pathway for the CCK2R that contributes to tumor cell proliferation and invasion.  相似文献   

19.
Macrophages which were incubated with acetylated low-density lipoproteins, resulting in cholesteryl ester accumulation, incorporated the monohydroxyeicosatetraenoic acids (5-, 15-, and 12-HETEs) into cholesteryl esters. The esterification of these hydroxy fatty acids to cholesterol by total membrane preparations of cholesterol-rich macrophages was dependent on the synthesis of the fatty acyl-CoA derivative, and was catalysed by acyl-CoA:cholesterol acyltransferase (ACAT). Stimulation of membrane ACAT activity by 25-hydroxycholesterol increased the synthesis of cholesteryl 12-HETE by 40%. In contrast, inhibiting ACAT activity by progesterone and compound 58-035 decreased cholesteryl 12-HETE production by 60% and 90% respectively. Although 5-, 15- and 12-HETE were esterified to cholesterol by ACAT, these monohydroxy fatty acids were less optimal as substrates compared with oleic acid or arachidonic acid. The hydrolysis and release of 12-HETE and the other monohydroxyeicosatetraenoic acids from intracellular cholesteryl esters and phospholipids occurred at a faster rate than for the more conventional fatty acids, oleate and arachidonate. Cholesteryl esters which contain hydroxy fatty acids therefore provide only a transient storage for lipoxygenase products, as these fatty acids are released into the medium as readily as hydroxy fatty acids found in phospholipids and triacylglycerols. The data provide evidence, for the first time, of an ACAT-dependent esterification of the lipoxygenase products 5-, 15- and 12-HETEs to cholesterol in the macrophage-derived foam cell. The channelling of these monohydroxy fatty acids to cholesteryl esters provides a mechanism which can alter the amount of lipoxygenase products incorporated into cellular phospholipids, thus averting deleterious changes to cell membranes. ACAT, by catalysing the esterification of monohydroxyeicosatetraenoic acids to cholesterol, could play a key role in regulating the amount of lipoxygenase products in the pericellular space of the cholesterol-enriched macrophage.  相似文献   

20.
Previously, we have shown, in vivo, that the acyl coenzyme A: cholesterol acyltransferase (ACAT) inhibitor avasimibe decreases hepatic apolipoprotein (apo) B secretion into plasma. To test the hypothesis that avasimibe modulates postprandial triglyceride-rich lipoprotein (TRL) metabolism in vivo, an oral fat load (2 g fat/kg) containing retinol was given to 9 control miniature pigs and to 9 animals after 28 days treatment with avasimibe (10 mg/kg/day, n=5; 25 mg/kg/day, n=4). The kinetic parameters for plasma retinyl palmitate (RP) metabolism were determined by multi-compartmental modeling using SAAM II. Avasimibe decreased the 2-h TRL (d<1.006 g/mL; S(f)>20) triglyceride concentrations by 34%. The TRL triglyceride 0-12 h area under the curve (AUC) was decreased by 21%. In contrast, avasimibe had no effect on peak TRL RP concentrations, time to peak, or its rate of appearance into plasma, however, the TRL RP 0-12 h AUC was decreased by 17%. Analysis of the RP kinetic parameters revealed that the TRL fractional clearance rate (FCR) was increased 1.4-fold with avasimibe. The TRL RP FCR was negatively correlated with very low density lipoprotein (VLDL) apoB production rate measured in the fasting state (r=-0.504). No significant changes in total intestinal lipid concentrations were observed. Thus, although avasimibe had no effect on intestinal TRL secretion, plasma TRL clearance was significantly increased; an effect that may relate to a decreased competition with hepatic VLDL for removal processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号