首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antennae are known to be olfactory organs in Drosophila. The leg-aristae-wing complex (lawc) mutation causes a homeotic transformation of the arista (the fifth element of antenna) into tarsal elements. To test how the homeotic transformation of the arista into the tarsus can affect behavior, we studied the olfactory response in the lawc mutants. The data were carefully processed by statistical methods. In spite of a low penetrance of the trait of arista transformation, the mutant flies were found to be approximately half as perceptible to attractant odors than the wild-type flies.  相似文献   

2.
3.
Antennapedia is one of the homeotic selector genes required for specification of segment identity in Drosophila. Dominant mutations that ectopically express Antennapedia cause transformation of antenna to leg. Loss-of-function mutations cause partial transformation of leg to antenna. Here we examine the role of Antennapedia in the establishment of leg identity in light of recent advances in our understanding of antennal development. In Antennapedia mutant clones in the leg disc, Homothorax and Distal-less are coexpressed and act via spineless to transform proximal femur to antenna. Antennapedia is negatively regulated during leg development by Distal-less, spineless, and dachshund and this reduced Antennapedia expression is needed for the proper development of distal leg elements. These findings suggest that the temporal and spatial regulation of the homeotic selector gene Antennapedia in the leg disc is necessary for normal leg development in Drosophila.  相似文献   

4.
To identify novel factors that lead a fly imaginal disc to adopt its developmental fate, we carried out a modular dominant misexpression screen in imaginal discs. We have identified two factors that appear to change the fate of the respective body structure and appear to lead to the transformation of a body part. In one mutant line, notum tissue, normally derived from wing imaginal tissue, formed close to the site of the sternopleural bristles, which are leg disc derivatives. In the other line, the arista is transformed into a tubular structure, resembling an abnormal leg. We found that ectopic expression of abrupt was responsible for this potential transformation of the arista.  相似文献   

5.
The Drosophila spineless (ss) gene is regulated downstream of the appendage gene Distal-less (Dll) and is involved in leg and antenna development. Specifically, loss of ss leads to the homeotic transformation of the arista, the distalmost antennal segment, into tarsal identity, and the loss or fusion of distal leg segments. Here we show that the ss homolog from the red flour beetle Tribolium castaneum also homeotically transforms the beetle antenna into leg, but the extent of the transformation is significantly larger than in Drosophila, as the entire antenna (except for the basal antennifer) is transformed into pretarsal, tibiotarsal, and femoral identity; i.e., the transformation comprises the Dll positive area in both appendages. We interpret the antennal phenotype in Tribolium as evidence for a more exclusive role of ss in antennal determination downstream of Dll in the beetle. By contrast, the fact that, in Drosophila ss mutants, only a small portion of the Dll positive area in the antenna is homeotically transformed indicates that Dll uses additional targets to govern the development of the other antennal segments in the fly.  相似文献   

6.
Summary Nasobemia (Ns) is a dominant homeotic mutant ofDrosophila melanogaster which converts parts or all of the antenna to mesothoracic leg.Ns has a temperature sensitive period between 48 and 60 h. The hypothesis thatNs acts during this period and is not required thereafter to maintain the homeotic transformation to leg was tested by removingNs fromNs/+ cells at different stages of development through X-ray induced somatic recombination. The expression of theNs homeotic transformation in recombinant wild type (+/+) cells increased sharply between 48 and 65 h. In clones induced after 65 h the expression of the leg transformation was equal in large and small +/+ clones. We interpret these results as supporting the hypothesis that transient action ofNs between 48 and 65 h switches antennal cells to a clonally stable leg determined state whose maintenance does not require futherNs action.  相似文献   

7.
The insect leg and antenna are thought to be homologous structures, evolved from a common ancestral appendage. The homeotic transformations of antenna to leg in Drosophila produced by mutation of the Hox gene Antennapedia are position-specific, such that every particular antenna structure is transformed into a specific leg counterpart. This has been taken to suggest that the developmental programmes of these two appendages are still similar. In particular, the mechanisms for the specification of a cell's position within the appendage would be identical, only their interpretation would be different and subject to homeotic gene control. Here we explore the degree of conservation between the developmental programmes of leg and antenna in Drosophila and other dipterans, in wild-type and homeotic conditions. Most of the appendage pattern-forming genes are active in both appendages, and their expression domains are partially conserved. However, the regulatory relationships and interactions between these genes are different, and in fact cells change their expression while undergoing homeotic transformation. Thus, the positional information, and the mechanisms which generate it, are not strictly conserved between leg and antenna; and homeotic genes alter the establishment of positional clues, not only their interpretation. The partial conservation of pattern-forming genes in both appendages ensures a predictable re-specification of positional clues, producing the observed positional specificity of homeotic transformations.  相似文献   

8.
The effects of homeotic mutations on transdetermination in eye-antenna imaginal discs of Drosophila melanogaster were studied. After 12 days of culture in vivo, antenna discs transformed to ventral mesothorax by AntpNs or AntpZ, transdetermined to notum and wing structures four to five times more frequently than the corresponding wild-type antenna discs. Likewise, eye discs transformed to dorsal mesothorax by eyopt transdetermined to leg structures, also extremely frequently (90%). It seems that, during culture, homeotic antenna as well as homeotic eye discs tend to complete the structural inventory of the mesothoracic segment. Transdetermination in the homeotic disc parts is interpreted as a regeneration process which reestablishes an entire segment, i.e., the ventral mesothoracic portion (leg) in the antenna disc regenerates dorsal mesothoracic parts, and the dorsal mesothoracic portion in the eye disc (wing) regenerates ventral mesothoracic parts, respectively. This implies that antenna and leg discs (ventral qualities) as well as eye and wing discs (dorsal qualities) are serially homologous. The transdetermination frequency of the untransformed eye disc to notum and wing structures is enhanced by Antp to the same extent as is the transdetermination frequency of the antenna disc. The first allotypic wing disc structure formed by the eye disc is notum, followed by structures of the anterior wing compartment and finally by posterior wing structures. No evidence for such a sequence was found in the transdetermination pattern of the antenna disc.  相似文献   

9.
The extraordinary positional conservation of the homeotic genes within the Antennapedia and the Bithorax Complexes (ANT-C and BX-C) in Drosophila melanogaster and the murine Hox and human HOX clusters of genes can be interpreted as a reflection of functional necessity. The homeotic gene proboscipedia (pb) resides within the ANT-C, and its sequence is related to that of Hox-1.5. We show that two independent pb minigene P-element insertion lines completely rescue the labial palp-to-first leg homeotic transformation caused by pb null mutations; thus, a homeotic gene of the ANT-C can properly carry out its homeotic function outside of the complex. Despite the complete rescue of the null, the minigene expresses pb protein in only a subset of pb's normal domains of expression. Therefore, the biological significance of the excluded expression pattern elements remains unclear except to note they appear unnecessary for specifying normal labial identity. Additionally, by using reporter gene constructs inserted into the Drosophila genome and by comparing pb-associated genomic sequences from two divergent species, we have located cis-acting regulatory elements required for pb expression in embryos and larvae.  相似文献   

10.
The development of the sensory neuron pattern in the antennal disc of Drosophila melanogaster was studied with a neuron-specific monoclonal antibody (22C10). In the wild type, the earliest neurons become visible 3 h after pupariation, much later than in other imaginal discs. They lie in the center of the disc and correspond to the neurons of the adult aristal sensillum. Their axons join the larval antennal nerve and seem to establish the first connection towards the brain. Later on, three clusters of neurons appear in the periphery of the disc. Two of them most likely give rise to the Johnston's organ in the second antennal segment. Neurons of the olfactory third antennal segment are formed only after eversion of the antennal disc (clusters t1-t3). The adult pattern of antennal neurons is established at about 27% of metamorphosis. In the mutant lozenge3 (lz3), which lacks basiconic antennal sensilla, cluster t3 fails to develop. This indicates that, in the wild type, a homogeneous group of basiconic sensilla is formed by cluster t3. The possible role of the lozenge gene in sensillar determination is discussed. The homeotic mutant spineless-aristapedia (ssa) transforms the arista into a leg-like tarsus. Unlike leg discs, neurons are missing in the larval antennal disc of ssa. However, the first neurons differentiate earlier than in normal antennal discs. Despite these changes, the pattern of afferents in the ectopic tarsus appears leg specific, whereas in the non-transformed antennal segments a normal antennal pattern is formed. This suggests that neither larval leg neurons nor early aristal neurons are essential for the outgrowth of subsequent afferents.  相似文献   

11.
Central projections of sensory neurons from homeotic mutant appendages (Antennapedia) of Drosophila melanogaster were compared with those of wild-type antennae and wild-type legs by means of degeneration and cobalt backfilling methods. Sensory axons originating from wild-type thoracic legs terminate within the ventral ipsilateral half of the corresponding neuropile segment and do not project to the brain. Sensory fibers from the third antennal segment (AIII) of wild-type animals project into the ipsilateral antennal glomerulus (AG) and to a lesser extent into the contralateral AG, whereas those from the second antennal segment terminate principally within the ipsilateral posterior antennal center. The sensory terminals of femur, tibia, and tarsi of the homeotic leg show a distribution very similar to that of the homologous wild-type antennal segment AIII, differing to a minor degree only in the size and precise localization of terminals within the antennal glomeruli. No degenerating axons were evident in ultrastructural examination of neck connectives after removal of homeotic legs. It is thus very improbable that any sensory fibers of the homeotic leg project to normal leg projection areas in the thoracico-abdominal ganglion. Several alternative explanations are offered for the apparent retention of antennal specificity by axons from the transformed appendage.  相似文献   

12.
The study of homeotic-transformation mutants in model organisms such as Drosophila revolutionized the field of developmental biology, but how these mutants relate to human developmental defects remains to be elucidated. Here, we show that Liebenberg syndrome, an autosomal-dominant upper-limb malformation, shows features of a homeotic limb transformation in which the arms have acquired morphological characteristics of a leg. Using high-resolution array comparative genomic hybridization and paired-end whole-genome sequencing, we identified two deletions and a translocation 5′ of PITX1. The structural changes are likely to remove active PITX1 forelimb suppressor and/or insulator elements and thereby move active enhancer elements in the vicinity of the PITX1 regulatory landscape. We generated transgenic mice in which PITX1 was misexpressed under the control of a nearby enhancer and were able to recapitulate the Liebenberg phenotype.  相似文献   

13.
Gibson G  Wemple M  van Helden S 《Genetics》1999,151(3):1081-1091
Introgression of homeotic mutations into wild-type genetic backgrounds results in a wide variety of phenotypes and implies that major effect modifiers of extreme phenotypes are not uncommon in natural populations of Drosophila. A composite interval mapping procedure was used to demonstrate that one major effect locus accounts for three-quarters of the variance for haltere to wing margin transformation in Ultrabithorax flies, yet has no obvious effect on wild-type development. Several other genetic backgrounds result in enlargement of the haltere significantly beyond the normal range of haploinsufficient phenotypes, suggesting genetic variation in cofactors that mediate homeotic protein function. Introgression of Antennapedia produces lines with heritable phenotypes ranging from almost complete suppression to perfect antennal leg formation, as well as transformations that are restricted to either the distal or proximal portion of the appendage. It is argued that the existence of "potential" variance, which is genetic variation whose effects are not observable in wild-type individuals, is a prerequisite for the uncoupling of genetic from phenotypic divergence.  相似文献   

14.
Summary The ash-1 locus is in the proximal region of the left arm of the third chromosome of Drosophila melanogaster and the ash-2 locus is in the distal region of the right arm of the third chromosome. Mutations at either locus can cause homeotic transformations of the antenna to leg, proboscis to leg and/or antenna, dorsal prothorax to wing, first and third leg to second leg, haltere to wing, and genitalia to leg and/or antenna. Mutations at the ash-1 locus cause, in addition, transformations of the posterior wing and second leg to anterior wing and second leg, respectively. A similar spectrum of transformations is caused by mutations at yet another third chromosome locus, trithorax. One extraordinary aspect of mutations at all three of these loci is that they cause such a wide variety of transformations. For mutations at both of the loci that we have studied the expression of the homeotic phenotype is both disc-autonomous (as shown by injecting mutant discs into metamorphosing larvae) and cell autonomous (as shown by somatic recombination analysis). The original mutations which identified these two loci, although lethal, manifest variable expressivity and incomplete penetrance of the homeotic phenotype suggesting that they are hypomorphic. The phenotype of double mutants which were synthesized by combining different pairs of those original mutations manifest for two of the four pairs a greater degree of expressivity and slightly more penetrance of the homeotic transformations. This mutual enhancement suggests that the products of both loci interact in the same process. A third double mutant expresses a discless phenotype.Additional alleles have been recovered at both the ash-1 and the ash-2 loci. Some of these alleles as homozygotes or transheterozygotes express the wide range of transformations revealed first by double mutants. One of the alleles at the ash-1 locus when homozygous and several transheterozygous pairs can cause either the homeotic transformation of discs or the absence of those discs. The fact that these two defects, absence of specific discs and homeotic transformations of those same discs can be caused by mutations within a single gene suggests that the activity of the product of this gene is essential for normal imaginal disc cell proliferation. Loss of that activity leads to the absence of discs, whereas, reduction of that activity leads to homeotic transformations.  相似文献   

15.
In D. melanogaster the cross-sectioned nerve of the leg-like antenna in the homeotic mutant Antennapedia was ultrastructurally compared with the nerves of the morphologically related second leg and the wild-type antenna. The nerves of the normal antenna and the second leg differ from one another in both the numbers and arrangement of axons. According to these criteria the nerve of the homeotic appendage was structurally identified as a leg nerve. Most of the antennal nerves studied showed a consistent grouping of axons in the profile. This suggests that the assemblage of the axons does not occur randomly, but in an ordered fashion.  相似文献   

16.
In specific genetic backgrounds, a mutation in the tuh-3 gene results in the homeotic transformation of head structures to either leg disc derivatives or structures normally found in the extreme posterior end of wild-type animals. The origins of the homeotic structures were mapped to defined positions in the eye-antennal imaginal disc by transplanting abnormal regions of discs isolated from tuh-3 mutants into host mwh;e4 larvae. These metamorphosed implants were removed and differentiated structures were identified. Of 211 successfully recovered implants, 157 gave rise to homeotic tissue: abdominal tergite, male or female external genitalia and/or leg tissue. Transformations to abdominal tergite occurred primarily in cells taken from the eye region of the compound disc. Male and female genitalia arose most often in implants taken from the antennal portion of the disc, although some tissue taken from the lateral region of the eye disc also gave rise to external genitalia. Leg structures came exclusively from implants from the antennal region of the imaginal disc. These results suggest that cells from within specific regions of the eye-antennal compound disc are constrained in their developmental potential. An obvious constraint observed with this mutation is a dorsal/ventral one: Cells from the eye disc, a dorsal structure, primarily gave rise to other dorsal structures, abdominal tergite tissue. Cells from the antennal disc, a ventrally derived structure, primarily gave rise to other ventral structures including genital tissue and distal leg.  相似文献   

17.
Summary The proboscis extension response was used to prove the leg identity of chemosensory neurons in the homeotic appendage of theDrosophila mutantAntennapedia (Antp 73b). The data suggest that the homeotic appendage, which is morphologically characterized as a mesothoracic leg, corresponds to a mesothoracic leg as well when considering its gustatory responsiveness (Figs. 1A, B; 3A, B). The neuronal pathway which might mediate the reflex between homeotic chemoreceptors and motor neurons responsible for the proboscis extension is discussed.  相似文献   

18.
Kaufman TC 《Genetics》1978,90(3):579-596
Previous studies on proximal 3R have cytologically localized the dominant homeotic loci Antennapedia (Antp), Multiple Sex Comb (Msc), Nasobemia (Ns), and Extra Sex Comb (Scx). In this study we set out to find the site of the proboscipedia (pb) locus. In order to accomplish this, four new alleles of this homeotic gene were induced with gamma rays. Genetic and cytogenetic analyses have shown that the pb locus resides in polytene chromosome bands 84A1–6, immediately adjacent to the Antp gene complex in 84B1–2. An analysis of the morphology of the proboscis and the dose relationships of the four new alleles have shown that this homeosis is unusual in at least two respects. First, the two different developmental fates realized in the proboscis at 18° (labial palps → arista) and 29° (labial palps → leg) under the influence of pb1 grown at 18°, while the remaining three are like pb1 at 29°. Dosage studies reveal that this difference reflects a hypomorphic vs. amorphic condition. Second, like the original, these new alleles produce a prothoracic rather than a mesothoracic leg in the proboscis. Both of these results indicate that pb is unique among the homeotics, and as such it may offer some new insights into developmental processes.  相似文献   

19.
20.
Gary Struhl 《Genetics》1982,102(4):737-749
A two-step screen for isolating null mutations of the spineless-aristapedia locus has been performed, and several amorphic mutations, as well as a small deficiency, have been obtained. With the exception of the deficiency, which deletes genes required for viability on either side of the spineless-aristapedia locus, these mutations result in a transformation of only the distal antenna into distal leg, thereby indicating that the spineless-aristapedia gene is required for specifying antennal as opposed to leg development in only the distal portion of the antenna. Because this distal region does not appear to be a developmental compartment, it is probable that the spineless-aristapedia gene, unlike several other homeotic genes, is required for maintaining the correct determined state in a population of cells defined by their relative position, not by their ancestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号