首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A high-density linkage map was constructed for an F2 population derived from an Interspecific cross of cultivated allotetraploid species between Gossypium hirsutum L. and G. barbadense L. A total of 186 F2 individuals from the Interspecific cross of "CRI 36 × Hal 7124" were genotyped at I 252 polymorphic loci Including a novel marker system, target region amplification polymorphism (TRAP). The map consists of 1 097 markers, including 697 simple se- quence repeats (SSRs), 171 TRAPs, 129 sequence-related amplified polymorphisms, 98 amplified fragment length polymorphisms, and two morphological markers, and spanned 4 536.7 cM with an average genetic distance of 4.1 cM per marker. Using 45 duplicated SSR loci among chromosomes, 11 of the 13 pairs of homologous chromosomes were Identified In tetraploid cotton. This map will provide an essential resource for high resolution mapping of quantitative trait loci and molecular breeding in cotton.  相似文献   

2.
Seed weight and seed size both are quantitative traits and have been considered as important components of grain yield, thus identification of quantitative trait loci (QTL) for seed traits in lentil (Lens culinaris) would be beneficial for the improvement of grain yield. Hence the main objective of this study was to identify QTLs for seed traits using an intraspecific mapping population derived from a cross between L. culinaris cv. Precoz (seed weight-5.1g, seed size-5.7mm) and L. culinaris cv. L830 (seed weight-2.2g, seed size-4mm) comprising 126 F8-RILs. For this, two microsatellite genomic libraries enriched for (GA/CT) and (GAA/CTT) motif were constructed which resulted in the development of 501 new genomic SSR markers. Six hundred forty seven SSR markers (including 146 previously published) were screened for parental polymorphism and 219 (33.8%) were found to be polymorphic among the parents. Of these 216 were mapped on seven linkage groups at LOD4.0 spanning 1183.7cM with an average marker density of 5.48cM. Phenotypic data from the RILs was used to identify QTLs for the seed weight and seed size traits by single marker analysis (SMA) followed by composite interval mapping (CIM) which resulted in one QTL each for the 2 traits (qSW and qSS) that were co-localized on LG4 and explained 48.4% and 27.5% of phenotypic variance respectively. The current study would serve as a strong foundation for further validation and fine mapping for utilization in lentil breeding programs.  相似文献   

3.
梨分子遗传图谱构建及生长性状的QTL分析   总被引:11,自引:1,他引:10  
利用鸭梨和京白梨杂交得到的F1(145株)实生苗为作图群体,通过对AFLP和SSR两种分子标记的遗传连锁分析,应用Joinmap 3.0作图软件,368个AFLP标记、34个SSR标记构建了分属18个连锁群的梨分子遗传连锁图谱,各连锁群的LOD值在4.0~7.0范围之间,图谱总长度覆盖梨基因组1395.9cM,平均图距为3.8cM.采用区间作图法,对该群体与生长性状相关的调查数据进行QTL分析,检测到与新梢生长量、新梢茎粗、节间长度、节间数量、树干径、树高及皮孔密度7个农艺性状连锁的QTL位点35个,其中主效QTL位点11个(LOD≥3.5).与生长性状相关的农艺性状QTL位点多集中在LG16连锁群上.  相似文献   

4.
Purification of d'Anjou Pear (Pyrus communis L.) Polyphenol Oxidase   总被引:1,自引:1,他引:1       下载免费PDF全文
Polyphenol oxidase (PPO) was extensively purified to homogeneity from d'Anjou pear (Pyrus communis L.) by extraction in the presence of the phenolic binder AG 2-X8 andTriton X-100. Chlorophyll pigment was removed by chromatography resulting in a clear, colorless enzyme extract. Purification of pear PPO was achieved after chromatography on Phenyl Sepharose CL-4B, DEAE-cellulose, and hydroxylapatite columns. Only after the columns were run at room temperature rather than at 4°C were sharp peaks and good resolution obtained. Reproducibility of the entire scheme was excellent with chromatography on the hydrophobic resin as a key to successful purification. Three separate fractions of pear PPO were homogeneous when stained for protein with the silver stain after polyacrylamide slab gel electrophoresis and corresponded to relative mobilities of 0.41, 0.43, and 0.73. The effect of dimethylsulfoxide on enzyme activity was investigated and found to increase significantly the activity of purified pear PPO over the control.  相似文献   

5.
A genetic linkage map of common carp (Cyprinus carpio L.) was constructed using Type I and Type II microsatellite markers and a pseudo-testcross mapping strategy. The microsatellite markers were isolated from microsatellite-enriched genomic libraries and tested for their segregation in a full-sib mapping panel containing 92 individuals. A total of 161 microsatellite loci were mapped into 54 linkage groups. The total lengths of the female, male and consensus maps were 2,000, 946, and 1,852?cM, with an average marker spacing of approximately 13, 7, and 11?cM, respectively. Muscle fiber-related traits, including muscle fiber cross-section area and muscle fiber density, were mapped to the genetic map. Three QTLs for muscle fiber cross-section area and two QTLs for muscle fiber density were identified when considering both significant and suggestive QTL effects. The QTLs with largest effects for muscle fiber cross-section area and muscle fiber density were 21.9% and 18.9%, and they were located in LG3, respectively.  相似文献   

6.
A segregating mapping population of “Co-op 17” × “Co-op 16” was used to identify quantitative trait loci (QTLs) associated with various fruit quality traits in apple. Phenotypic data were collected over 2 years for fruit circumference (in centimeter), diameter at midpoint (in centimeter), length (in centimeter), weight (in gram), total soluble solids (in degree Brix), and total titratable acids (in percent) for the segregating population. The phenotypic data along with a previously constructed genetic map, based on simple sequence repeat markers derived from expressed sequence tag and bacterial artificial chromosome end sequence databases, were used in marker–trait association analysis. Interval mapping identified two QTLs linked to fruit size components on linkage groups 03 and 05 with limit of detection scores of 3.27–4.06 and 3.29–4.02 along with phenotypic variation accounting for 15.4–46.4 and 18.3–21.9 %, respectively.  相似文献   

7.
A collection of 94 F6 individuals derived from crosses between Lotus japonicus, Gifu B-129 (G) and Miyakojima MG-20 (M) were used for mapping. By using the HEGS running system, 427 EcoRI/MseI primer pairs were selected to generate a total of 2053 markers, consisting of 739 G-associated dominant markers, 674 M-associated dominant markers, 640 co-dominant markers, 95 SSR markers and 2 dCAPS markers. Excluding heavily distorted markers, 1588 were mapped to six chromosomes of the L. japonicus genome based on the 97 reference markers. This linkage map consisted of 1023 unique markers (excluding duplicated markers) and covered a total of 508.5 cM of the genome with an average chromosome length of 84.7 cM and interval distance of 0.50 cM. Fifteen quantitative traits loci for eight morphological traits were also mapped. This linkage map will provide a useful framework for physical map construction in L. japonicus in the near future.Key words: Lotus japonicus, AFLP, SSR, linkage map, HEGS (high efficiency genome scanning)  相似文献   

8.
梨遗传连锁图谱的构建及其与苹果图谱的比较   总被引:1,自引:0,他引:1  
以‘丰水’为母本、‘砀山酥梨’为父本杂交所得的F1代104株单体为作图群体,利用SSR分子标记进行遗传连锁分析,应用Jionmap 3.0作图软件,构建了一张包含104个SSR分子标记,分属于18个连锁群的梨遗传连锁图谱,覆盖梨基因组总长831.8cM,平均图距为8.0cM。根据定位到该图谱上的SSR标记与苹果‘Fiesta’图谱进行比较,25个共有的SSR标记将该图谱和苹果图谱各连锁群连接起来,这些标记不仅呈现良好的共线性而且它们之间的相对遗传距离也很相近。研究认为,SSR标记作为锚定引物,可以与不同物种的遗传图谱相比较整合,为不同物种之间遗传信息的转移提供参考依据;同时该研究为梨树相关性状的基因定位、分离以及克隆奠定了基础。  相似文献   

9.
Xie W  Zhang X  Cai H  Huang L  Peng Y  Ma X 《Génome》2011,54(3):212-221
Orchardgrass (Dactylis glomerata L.) is one of the most important cool-season forage grasses commonly grown throughout the temperate regions of the world. The objective of this work was to construct a diploid (2n = 2x = 14) orchardgrass genetic linkage map useful as a framework for basic genetic studies and plant breeding. A combination of simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) molecular markers were used for map construction. The linkage relationships among 164 SSRs and 108 SRAPs, assayed in a pseudo-testcross F1 segregating population generated from a cross between two diploid parents, were used to construct male (01996) and female (YA02-103) parental genetic maps. The paternal genetic map contains 90 markers (57 SSRs and 33 SRAPs) over 9 linkage groups (LGs), and the maternal genetic map is composed of 87 markers (54 SSRs and 33 SRAPs) assembled over 10 LGs. The total map distance of the male map is 866.7 centimorgans (cM), representing 81% genome coverage, whereas the female map spans 772.0 cM, representing 75% coverage. The mean map distance between markers is 9.6 cM in the male map and 8.9 cM in the female map. About 14% of the markers remained unassigned. The level of segregation distortion observed in this cross was 15%. Homology between the two maps was established between five LGs of the male map and five LGs of the female map using 10 bridging markers. The information presented in this study establishes a foundation for extending genetic mapping in this species, serves as a framework for mapping quantitative trait loci (QTLs), and provides basic information for future molecular breeding studies.  相似文献   

10.
We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.  相似文献   

11.
Twelve important pomological traits related to fruit quality were studied during 3 years in an F1 apricot progeny of 160 seedlings derived from a cross between the Spanish selection ‘Z701-1’ and the South African cultivar ‘Palsteyn’. Results indicated quantitative transmission of most of the fruit quality traits studied. In addition, a clear influence of the genetic background of parents was observed. In some seedlings, values outside the range of the parent were observed due to the influence of this genetic background. No correlations were found among most agronomic traits in apricot during the 3 years of the study. However, high correlations between years were described for most of the evaluated traits, and the environment had limited influence on the expression of the trait. A genetic map was developed using 41 apricot and peach SSR markers. The map obtained showed eight linkage groups (corresponding to the eight chromosomes) covering a total distance of 369.3 cM and an average distance between markers of 9 cM. Fifty-four QTLs associated with different traits were identified, including: blooming date (linkage groups G1, G4 and G7); ripening time (G4 and G6); fruit development (G4 and G6); fruit weight (G1 and G4); stone weight (G1 and G7); flesh color (G1 and G6); pH (G1, G2 and G4); malic acid (G1, G2 and G4); and soluble solids content (G4 and G5). We have highlighted several QTLs in G4 that explain the variability in various traits related to fruit quality such as blooming date, ripening time, and soluble solids content. In addition, we have also highlighted an important QTL on G2 that explains much of the variation in levels of acidity.  相似文献   

12.
Vigna vexillata (L.) A. Rich. (tuber cowpea) is an underutilized crop for consuming its tuber and mature seeds. Wild form of V. vexillata is a pan-tropical perennial herbaceous plant which has been used by local people as a food. Wild V. vexillata has also been considered as useful gene(s) source for V. unguiculata (cowpea), since it was reported to have various resistance gene(s) for insects and diseases of cowpea. To exploit the potential of V. vexillata, an SSR-based linkage map of V. vexillata was developed. A total of 874 SSR markers successfully amplified single DNA fragment in V. vexillata among 1,336 SSR markers developed from Vigna angularis (azuki bean), V. unguiculata and Phaseolus vulgaris (common bean). An F2 population of 300 plants derived from a cross between salt resistant (V1) and susceptible (V5) accessions was used for mapping. A genetic linkage map was constructed using 82 polymorphic SSR markers loci, which could be assigned to 11 linkage groups spanning 511.5 cM in length with a mean distance of 7.2 cM between adjacent markers. To develop higher density molecular linkage map and to confirm SSR markers position in a linkage map, RAD markers were developed and a combined SSR and RAD markers linkage map of V. vexillata was constructed. A total of 559 (84 SSR and 475 RAD) markers loci could be assigned to 11 linkage groups spanning 973.9 cM in length with a mean distance of 1.8 cM between adjacent markers. Linkage and genetic position of all SSR markers in an SSR linkage map were confirmed. When an SSR genetic linkage map of V. vexillata was compared with those of V. radiata and V. unguiculata, it was suggested that the structure of V. vexillata chromosome was considerably differentiated. This map is the first SSR and RAD marker-based V. vexillata linkage map which can be used for the mapping of useful traits.  相似文献   

13.
Soybean [Glycine max (L.) Merrill] is the most important leguminouscrop in the world due to its high contents of high-quality proteinand oil for human and animal consumption as well as for industrialuses. An accurate and saturated genetic linkage map of soybeanis an essential tool for studies on modern soybean genomics.In order to update the linkage map of a F2 population derivedfrom a cross between Misuzudaizu and Moshidou Gong 503 and tomake it more informative and useful to the soybean genome researchcommunity, a total of 318 AFLP, 121 SSR, 108 RFLP, and 126 STSmarkers were newly developed and integrated into the frameworkof the previously described linkage map. The updated geneticmap is composed of 509 RFLP, 318 SSR, 318 AFLP, 97 AFLP-derivedSTS, 29 BAC-end or EST-derived STS, 1 RAPD, and five morphologicalmarkers, covering a map distance of 3080 cM (Kosambi function)in 20 linkage groups (LGs). To our knowledge, this is presentlythe densest linkage map developed from a single F2 populationin soybean. The average intermarker distance was reduced to2.41 from 5.78 cM in the earlier version of the linkage map.Most SSR and RFLP markers were relatively evenly distributedamong different LGs in contrast to the moderately clusteredAFLP markers. The number of gaps of more than 25 cM was reducedto 6 from 19 in the earlier version of the linkage map. Thecoverage of the linkage map was extended since 17 markers weremapped beyond the distal ends of the previous linkage map. Inparticular, 17 markers were tagged in a 5.7 cM interval betweenCE47M5a and Satt100 on LG C2, where several important QTLs wereclustered. This newly updated soybean linkage map will enableto streamline positional cloning of agronomically importanttrait locus genes, and promote the development of physical maps,genome sequencing, and other genomic research activities.  相似文献   

14.
We exploited the AFLP®1(AFLP® is a registered trademark of Keygene, N.V.) technique to map and characterise quantitative trait loci (QTLs) for grain yield and two grain-related traits of a maize segregating population. Two maize elite inbred lines were crossed to produce 229 F2 individuals which were genotyped with 66 RFLP and 246 AFLP marker loci. By selfing the F2 plants 229 F3 lines were produced and subsequently crossed to two inbred testers (T1 and T2). Each series of testcrosses was evaluated in field trials for grain yield, dry matter concentration, and test weight. The efficiency of generating AFLP markers was substantially higher relative to RFLP markers in the same population, and the speed at which they were generated showed a great potential for application in marker-assisted selection. AFLP markers covered linkage group regions left uncovered by RFLPs; in particular at telomeric regions, previously almost devoided of markers. This increase of genome coverage afforded by the inclusion of the AFLPs revealed new QTL locations for all the traits investigated and allowed us to map telomeric QTLs with higher precision. The present study has also provided an opportunity to compare simple (SIM) and composite interval mapping (CIM) for QTL analysis. Our results indicated that the method of CIM employed in this study has greater power in the detection of QTLs, and provided more precise and accurate estimates of QTL positions and effects than SIM. For all traits and both testers we detected a total of 36 QTLs, of which only two were in common between testers. This suggested that the choice of a tester for identifying QTL alleles for use in improving an inbred is critical and that the expression of QTL alleles identified may be tester-specific.  相似文献   

15.
构建高密度遗传连锁图谱是冰草抗性、品质、产量等重要性状QTL精细定位及标记辅助育种研究的基础。该试验以四倍体杂交冰草F2群体的202个分离单株及其亲本为材料,利用SRAP分子标记技术和Join Map 4.0作图软件对冰草的遗传连锁图谱进行了构建。结果表明:(1)共筛选出22对多态性好、标记位点清晰稳定的SRAP适宜引物,对冰草杂种F2分离单株的基因组DNA进行PCR扩增,共获得510个SRAP多态性标记位点,其比率占88.2%。(2)偏分离分析表明,偏分离标记比率仅为14.12%,符合遗传作图的要求。(3)成功构建了冰草的SRAP分子标记遗传连锁图谱,该图谱有14个连锁群、510个标记,连锁群间长度范围86.4~179.0cM,覆盖基因组总长度1 912.9cM,标记间平均间距3.75cM,为高密度遗传图谱。  相似文献   

16.
甘蓝分子连锁图的构建与品质性状的QTL定位   总被引:1,自引:0,他引:1  
以两个不同生态型甘蓝(Brassica oleracea var.capitata)品种杂交得到的F2代为作图群体,用RAPD标记构建甘蓝分子连锁图。通过对520个随机引物进行筛选,236个引物在两亲本间表现多态性,多态性比例为47.7%。选取111个引物对群体进行分析,构建了一张含有135个标记位点,9个连锁群,覆盖长度为1023.7cM的分子连锁图。利用该图谱对甘蓝叶球紧实度和中心柱长两性状进行了QTL定位分析。检测到3个与叶球紧实度相关的QTL,总贡献率为62.5%;检测到4个与中心柱长相关的QTL,总贡献率为59.1%。  相似文献   

17.
RAPD和SSR两种标记构建的中国对虾遗传连锁图谱   总被引:10,自引:0,他引:10  
利用RAPD和SSR分子标记结合拟测交策略,对中国对虾(Fenneropenaeuschinensis)“黄海1号”雌虾与野生雄虾作为亲本进行单对杂交产生的F1代,采用RAPD和SSR两种分子标记技术初步构建了中国对虾雌、雄遗传连锁图谱。对460个RAPD引物和44对SSR引物进行筛选,共选出61个RAPD引物和20对SSR引物,用于对父母本和82个F1个体进行遗传分析。共得到母本分离标记146个(RAPD标记128个,微卫星标记18个)和父本分离标记127个(RAPD标记109个,微卫星标记18个)。雌性图谱包括8个连锁群、9个三联体和14个连锁对,标记间平均间隔为11·28cM,图谱共覆盖1173cM,覆盖率为59·36%;雄性图谱包括10个连锁群、12个三联体和7个连锁对,标记间平均间隔为12·05cM,图谱共覆盖1144·6cM,覆盖率为62·01%。中国对虾遗传图谱的构建为其分子标记辅助育种、比较基因组作图及数量性状位点的定位与克隆奠定了基础。  相似文献   

18.
Powdery mildew caused by Podosphaera xanthii is an important foliar disease in melon. To find molecular markers for marker-assisted selection, we constructed a genetic linkage map of melon based on a population of 93 recombinant inbred lines derived from crosses between highly resistant AR 5 and susceptible ‘Earl’s Favourite (Harukei 3)’. The map spans 877 cM and consists of 167 markers, comprising 157 simple sequence repeats (SSRs), 7 sequence characterized amplified region/cleavage amplified polymorphic sequence markers and 3 phenotypic markers segregating into 20 linkage groups. Among them, 37 SSRs and 6 other markers were common to previous maps. Quantitative trait locus (QTL) analysis identified two loci for resistance to powdery mildew. The effects of these QTLs varied depending on strain and plant stage. The percentage of phenotypic variance explained for resistance to the pxA strain was similar between QTLs (R 2 = 22–28%). For resistance to pxB strain, the QTL on linkage group (LG) XII was responsible for much more of the variance (41–46%) than that on LG IIA (12–13%). The QTL on LG IIA was located between two SSR markers. Using an independent population, we demonstrated the effectiveness of these markers. This is the first report of universal and effective markers linked to a gene for powdery mildew resistance in melon.  相似文献   

19.
从杂交油葵A15及其亲本的1/2粒干种子中提取基因组DNA,选用17对引物组合进 行AFLP分析,构建了它们的指纹图谱。17对引物在A系与R系当中共扩增出1125条扩增产物,其中144条带表现出多态性,平均每对引物扩增66条带,不同引物组合产生的DNA片段数目在50~70之间,大小分布于100bp~500bp,多态性比率为12.8%。从中筛选出的2对引物E_AAC/M_CTC和E_ACG/M_CTG可将亲本和子代区分开:引物对E_AAC/M_CTC在A系中扩增出440bp、190bp、160bp 3条特征谱带,在R系中扩增出380bp、350bp、225bp、180bp 4条特征谱带,E_ACG/M_CTG在A系中扩增出了2条特征带480bp和265bp,在R系中扩增出490bp、220bp、205bp、125bp 4条特征谱带,且上述谱带均在子代中出现。用引物组合E_ACG/M_CTG对A15、双亲以及与A15外型十分相似的10个常用油葵杂交种进行AFLP分析,不仅表现出良好的多态性,并能够清楚地将它们加以区分。以其对50粒A15杂交种子进行纯度鉴定,得到与大田纯度检测一致的结果,说明使用AFLP标记检测油用向日葵的品种和纯度是可行的。对现行种子纯度和品种鉴定的方法进行了讨论。  相似文献   

20.
向日葵品种鉴定和纯度分析的AFLP研究   总被引:5,自引:0,他引:5  
从杂交油葵A15及其亲本的1/2粒干种子中提取基因组DNA,选用17对引物组合进行AFLP分析,构建了它们的指纹图谱,17对引物在A系与R系当中共扩增出1125条扩增产物,其中144条带表现出多态性,平均每对引物扩增66条带。不同引物组合产生的DNA片段数目在50-70之间,大小分布于100bp-500bp,多态性比率为12.8%。从中筛选出的2对引物E-AAC/M-CTC和E-ACG/M-CTG可将亲本和子代区分开;引物对E-AAC/M-CTC在A系中扩增出440bp,190bp,160bp3条特征谱带,在R系中扩增出380bp,350bp,225bp,180bp4条特征谱带,E-ACG/M-CTG在A系中扩增出了2条特征带480bp和265bp,在R系中扩增出490bp,220bp,205bp,125bp4条特征谱带,且上述谱带均在子代中出现,用引物组合E-ACG/M-CTG对A15,双亲以及与A15外型十分相似的10个常用油葵杂交种进行AFLP分析,不仅表现出良好的多态性,并能够清楚地将它们加以区分,以其对50粒A15杂交种子进行纯度鉴定,得到与大田纯度检测一致的结果。说明使用AFLP标记检测油用向日葵的品种和纯度是可行的,对行种子纯度和品种鉴定的方法进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号