首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial blight (BB) of rice (Oryza sativa L.) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a destructive disease in rice worldwide. Xa3, a gene conferring resistance to BB at the booting stage of the rice plant, has been characterized previously using map-based cloning. We cloned and sequenced the Xa3/xa3 gene in the Korean cultivars Hwayeong, Ilmi, and Goun and conferred resistance or susceptibility to BB. We detected polymorphisms, and polymerase chain reaction-based functional markers were developed based on the single nucleotide polymorphism from the Xa3 and xa3 nucleotide sequence. Susceptible or resistant individuals from an F2 population developed from a cross between Milyang 244 and Ilmi, near-isogenic lines carrying BB resistance genes, were screened with functional markers. The BB3-RF and BB3-RR primers consistently amplified a resistance-specific fragment of 255 bp only in resistant plants, whereas the BB3-SF and BB3-SR primers were specific to susceptible plants. Genotyping results were co-segregated with phenotype by conducting the BB resistance test with the K3 race. These markers could be effective for marker-assisted selection of the Xa3 gene in rice breeding programs.  相似文献   

2.
3.
4.
Plant innate immunity is mediated by pattern recognition receptors (PRRs) and intracellular NB-LRR (nucleotide-binding domain and leucine-rich repeat) proteins. Overexpression of the endoplasmic reticulum (ER) chaperone, luminal-binding protein 3 (BiP3) compromises resistance to Xanthomonas oryzae pv. oryzae (Xoo) mediated by the rice PRR XA21 [12]. Here we show that BiP3 overexpression also compromises resistance mediated by rice XA3, a PRR that provides broad-spectrum resistance to Xoo. In contrast, BiP3 overexpression has no effect on resistance mediated by rice Pi5, an NB-LRR protein that confers resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae). Our results suggest that rice BiP3 regulates membrane-resident PRR-mediated immunity.  相似文献   

5.
6.
Bacterial leaf blight (BB) of rice is a major disease limiting rice production in several rice growing regions of the world. The pathogen, Xanthomonas oryzae pv oryzae, causing the disease is highly virulent to rice crops and is capable of evolving new races. Breeding efforts to incorporate single BB resistant gene often leads to resistance breakdown within a short period. To overcome such breakdown of resistance and develop germplasm with durable disease resistance, we have introgressed three bacterial blight resistance genes, xa5, xa13, and Xa21 into a fine grain rice variety, Samba Mahsuri, using sequence tagged site (STS) markers linked to these genes. Since the efficiency of the STS markers linked to recessive genes to detect homozygotes is less than 100%, we adopted four different pyramiding schemes to minimize loss of recessive resistance genes in advanced backcross generations. Pyramiding scheme A in which a two-gene Samba Mahsuri pyramid line containing Xa21 and xa5 genes was crossed with the Samba Mahsuri line having xa13 gene alone was found to be most effective in preventing the loss of an important recessive gene xa13. We further demonstrated that there was no yield penalty due to pyramiding of multiple genes into the elite indica rice variety.  相似文献   

7.
8.
The required for Mla12 resistance (RAR1) protein is essential for the plant immune response. In rice, a model monocot species, the function of Oryza sativa RAR1 (OsRAR1) has been little explored. In our current study, we characterized the response of a rice osrar1 T-DNA insertion mutant to infection by Magnaporthe oryzae, the causal agent of rice blast disease. osrar1 mutants displayed reduced resistance compared with wild type rice when inoculated with the normally virulent M. oryzae isolate PO6-6, indicating that OsRAR1 is required for an immune response to this pathogen. We also investigated the function of OsRAR1 in the resistance mechanism mediated by the immune receptor genes Pib and Pi5 that encode nucleotide binding-leucine rich repeat (NB-LRR) proteins. We inoculated progeny from Pib/osrar1 and Pi5/osrar1 heterozygous plants with the avirulent M. oryzae isolates, race 007 and PO6-6, respectively. We found that only Pib-mediated resistance was compromised by the osrar1 mutation and that the introduction of the OsRAR1 cDNA into Pib/osrar1 rescued Pib-mediated resistance. These results indicate that OsRAR1 is required for Pib-mediated resistance but not Pi5-mediated resistance to M. oryzae.  相似文献   

9.
The vascular pathogen Xanthomonas oryzae pv. oryzae ( Xoo ) and nonvascular pathogen Xanthomonas oryzae pv. oryzicola ( Xoc ) cause bacterial blight (BB) and bacterial leaf streak (BLS) diseases of rice, respectively. We have previously identified the avirulence gene avrXa27 from Xoo PXO99A, which specifically induces the expression of the rice resistance gene Xa27 , ultimately leading to resistance against BB disease in rice. In this study, we have generated a transgenic rice line (L24) that expresses avrXa27 constitutively under the control of the PR1 promoter, and have examined its role in the host–pathogen interaction. L24 is not more susceptible to BB, indicating that avrXa27 does not contribute to virulence. AvrXa27 retains avirulence activity in L24 and, after crossing with a line containing Xa27 , progeny display phenotypic changes including inhibition of tillering, delay in flowering, stiff leaves, early leaf senescence and activation of pathogenesis-related ( PR ) genes. On challenge with a variety of compatible strains of Xoo and Xoc strain L8, lines with both avrXa27 and Xa27 also show enhanced resistance to bacterial infection. The induction of Xa27 and subsequent inhibition of Xoc growth in Xa27 plants are observed on inoculation with Xoc L8 harbouring avrXa27 . Our results indicate that the heterologous expression of avrXa27 in rice containing Xa27 triggers R gene-specific resistance and, at the same time, confers enhanced resistance to compatible strains of Xoo and Xoc . The expression of AvrXa27 and related proteins in plants has the potential to generate broad resistance in plants.  相似文献   

10.
Use of BTH to evaluate the disease severity and induction of systemic resistance in rice to bacterial blight caused by Xanthomonas oryzae pv. oryzae is investigated. A new batch of 25 isolates of Xanthomonas oryzae pv. oryzae was obtained from infected rice lead tissues collected from Pattambi, Kerala, south India. Their identification was confirmed by the plant inoculation test on to IR24 rice plants which produced characteristic bacterial blight lesions. Among the 25 of X.o. pv. oryzae, four of the isolates were also virulent to IRBB21 rice plants (a near isogenic line of IR24) which carry the Xa-21 gene for BB resistance. The results confirm that there are pathogen strains in India which can overcome Xa-21. Development of BB lesions developed in IR24 (BB susceptible) plants after they were treated with BTH applications either as seed treatment or as foliar spray at 0.1, 0.5, 0.1 and 2.0 mM concentrations showed that even at 2.0 mM concentrations, IR24 plants were still susceptible to the pathogen. There was very little or marginal effect of BTH on the induction of resistance to BB in IR24 rice plants. When the same concentrations of BTH were applied to IRBB21 (Xa-21) rice plants, they showed pronounced triggering of systemic resistance to BB pathogen even at 0.1 mM concentration of BTH applied either as seed treatment or as foliar spry. Disease severity index was reduced to 5 (against a score of 9 in untreated) and there was 85–86% reduction in BB incidence in plants that received 0.1 mM BTH. These results provide evidence that BTH-induced systemic resistance complements the R-gene resistance in IRBB21 plants but not in IR24 rice plants.  相似文献   

11.
Field performance of Xa21 transgenic indica rice (Oryza sativa L.), IR72   总被引:6,自引:0,他引:6  
Based on the characterization of the resistance phenotype and molecular analysis, several homozygous lines carrying Xa21 against the bacterial blight (BB) pathogen were obtained from previously transformed indica rice, IR72. The homozygous line, T103-10, with the best phenotype and seed-setting, was repeatedly tested under normal field conditions to evaluate its levels of resistance to the BB pathogen in Wuhan, China, in 1998 and 1999. The isolates of Xanthomonas oryzae pv oryzae (Xoo) used in this experiments were PXO61, PXO79, PXO99 and PXO112 isolated from the Philippines, T2 isolated from Japan, and Zhe173 isolated from China. The results demonstrated that the transgenic homozygous line expressed the same resistance spectrum, but with a shorter lesion length to each inoculated isolates as the lesion length of the Xa21 donor line IRBB21. The non-transformed control IR72 carrying Xa4 was resistant to PXO61, PXO112, Zhe173 and T2, but susceptible to PXO99 and PXO79. The negative control variety IR24 was susceptible to all isolates under field conditions. The results demonstrated clearly that the Xa21 transgene led to an excellent field performance of the introduced bacterial blight resistance trait on the recipient plants. The yield performance of this transgenic homozygous line, T103-10, is comparable with that of the control under field conditions. Received: 2 August 1999 / Accepted: 3 November 1999  相似文献   

12.
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae, is a major disease of rice managed largely through the deployment of resistance genes. Xa38, a BB resistance gene identified from Oryza nivara acc. IRGC 81825, was mapped on chromosome 4L in a 38.4-kb region. The closely linked markers for this gene, identified earlier, were simple sequence repeat marker RM17499 and sequence-tagged site markers developed from loci Os04g53060 and Os04g53120. Marker Os04g53060 is dominant while the other two markers show smaller size differences difficult to resolve accurately on agarose gel. Based on gene annotation, three nucleotide binding site?Cleucine-rich repeat genes present in the target region were cloned from O. nivara and sequenced. One of the loci, LOC_Os04g53050, had a 48-base-pair deletion in O. nivara acc. IRGC 81825 compared to the cultivated rice. Primers were designed around the deletion and the resulting marker is codominant and easy to score in agarose gel. The newly designed marker co-segregated with Xa38, amplifying products of 269?bp in O. nivara and 317?bp in cultivated rice. This marker could be more useful for marker-assisted selection than ones reported earlier.  相似文献   

13.
  • Bacterial blight (BB) is currently considered one of the most serious rice diseases and is caused by Xanthomonas oryzae pv. oryzae (Xoo). Numerous studies have shown that breeding resistant rice varieties is one of the most effective methods to prevent BB, and it is important to identify and isolate more BB resistance (R) genes from different rice resources.
  • Using a map-based approach, we identified a new QTL/gene, Xa43(t), from ZhangPu wild rice, which was highly resistant to the BB isolate PX099. We performed bulked segregant analysis combined with candidate gene prediction to identify the candidate gene.
  • The Xa43(t) gene was narrowed down to a 29-kb region containing four putative genes. More importantly, the candidate gene Xa43(t) did not affect the main agronomic traits of rice. We also identified a widely applicable molecular marker, namely Inde1-18, which co-segregates with the Xa43(t) gene.
  • The Xa43(t) gene is a new broad-spectrum BB resistance gene without identified alleles and has good application prospects for rice disease resistance breeding.
  相似文献   

14.
Chen L  Hu B  Qian G  Wang C  Yang W  Han Z  Liu F 《Archives of microbiology》2009,191(2):163-170
Xanthomonas oryzae pv. oryzae causes bacterial leaf blight, one of the most widespread and destructive bacterial diseases in rice. This study identified and characterized the contribution of the twin-arginine translocation (Tat) pathway to motility, chemotaxis, extracellular polysaccharide (EPS) production and virulence in X. oryzae pv. oryzae strain PXO99. The tatC disruption mutant (strain TCM) of strain PXO99 were generated, and confirmed both by PCR and Southern blotting. Strain PXO99 cells were highly motile in NYGB 0.3% soft agar plate. In contrast, the tatC mutation impaired motility. Furthermore, strain TCM cells lacked detectable flagella and exhibited almost no chemotaxis toward glucose under aerobic conditions, indicating that the Tat secretion pathway contributed to flagellar biogenesis and chemotactic responses. It was also observed that strain TCM exhibited a reductive production of extracellular polysaccharide (EPS) and a significant reduction of virulence on rice plants when compared with the wild type PXO99. However, the tatC mutation in strain PXO99 did not affect growth rate and the ability to induce hypersensitive response (HR) in nonhost tobacco (Nicotiana tabacum L. cv. Samsun). Our findings indicated that the Tat system of X. oryzae pv. oryzae played an important role in the pathogen’s virulence. L. Chen, B. Hu, and G. Qian contributed equally to this research.  相似文献   

15.
Rice bacterial leaf blight (BB) caused by Xanthomonas oryzae pv. oryzae and bacterial leaf streak (BLS) caused by X. oryzae pv. oryzicola (Xoc) are two important diseases of rice that often outbreak simultaneously and constrain rice production in much of Asia and parts of Africa. Developing resistant cultivars has been the most effective approach to control BB, however, most single resistance genes have limited value in breeding programs because of their narrow-spectrum of resistance to the races of the pathogen. By contrast, there is little progress in breeding varieties resistant to Xoc since BLS resistance in rice was a quantitative trait and so far only a few quantitative resistance loci have been identified. We reported here the development of a high yield elite line, Lu-You-Zhan highly resistant to both BB and BLS by pyramiding Xa23 with a wide-spectrum resistance to BB derived from wild rice and a non-host maize resistance gene, Rxo1, using both marker assisted selection (MAS) and genetic engineering. Our study has provided strong evidence that non-host R genes could be a valuable source of resistance in combating those plant diseases where no single R gene controlling high level of resistance exists and demonstrated that MAS combined with transgenic technologies are an effective strategy to achieve high level of resistance against multiple plant diseases. Y-L Zhou and J-L Xu contributed equally to this work.  相似文献   

16.
17.

The hypersensitive response (HR) is a form of programmed cell death of plant cells occurring in the local region surrounding pathogen infection site to prevent the spread of infection by pathogens. Bax, a mammalian pro-apoptotic member of Bcl-2 family, triggers HR-like cell death when expressed in plants. However, constitutive expression of the Bax gene negatively affects plant growth and development. The Xa10 gene in rice (Oryza sativa) is an executor resistance (R) gene that confers race-specific disease resistance to Xanthomonas oryzae pv. oryzae strains harboring TAL effector gene AvrXa10. In this study, the Xa10 promoter was used to regulate heterologous expression of the Bax gene from mouse (Mus musculus) in Nicotiana benthamiana and rice. Cell death was induced in N. benthamiana after co-infiltration with the PXa10:Bax:TXa10 gene and the PPR1:AvrXa10:TNos gene. Transgenic rice plants carrying the PXa10:Bax:TXa10 gene conferred specific disease resistance to Xa10-incompatible X. oryzae pv. oryzae strain PXO99A(pHM1AvrXa10), but not to the Xa10-compatible strain PXO99A(pHM1). The resistance specificity was confirmed by the AvrXa10-dependent induction of the PXa10:Bax:TXa10 gene in transgenic rice. Our results demonstrated that the inducible expression of the Bax gene in transgenic rice was achieved through the control of the executor R gene promoter and the heterologous expression of the pro-apoptosis regulator gene in rice conferred disease resistance to X. oryzae pv. oryzae.

  相似文献   

18.
Hybrid rice based on heterosis can significantly increase rice yield compared to inbred rice. Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive bacterial diseases that affect hybrid rice production. To breed a broad-spectrum and high disease resistance to BB in hybrid rice, we introduced the Xa4, Xa21 and Xa27 genes into the restorer lines of Mianhui 725 or 9311 genetic backgrounds and pyramided the three R genes in the progeny derived from the cross between the two lines. A near-isogenic line of the Xa27 gene in the genetic background of 9311 [9311(Xa27)] and another line with the Xa4 and Xa21 genes in the genetic background of Mianhui 725 (WH421) were firstly developed through marker-assisted selection. A new restorer line carrying Xa4, Xa21 and Xa27, designated as XH2431, was selected from the F8 progeny of the cross between 9311(Xa27) and WH421 through marker-assisted breeding and pedigree selection. XH2431 and II You 2431, the hybrids derived from cytoplasmic male-sterile line II-32A and restorer line XH2431, conferred high resistance to all 23 Xoo strains collected from 10 countries. XH2431 restored the fertility of II-32A to the normal level in the F1 generation. In addition, II You 2431 showed good agronomic traits under greenhouse conditions. The development of XH2431, 9311(Xa27) and WH421 provides a set of restorer lines with broad-spectrum and enhanced resistance to BB for hybrid rice.  相似文献   

19.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial disease of rice (Oryza sativa L.), a staple food crop that feeds half of the world’s population. In management of this disease, the most economical and effective approach is cultivating resistant varieties. Due to rapid change of pathogenicity in the pathogen, it is necessary to identify and characterize more host resistance genes for breeding new resistant varieties. We have previously identified the BB resistance (R) gene Xa23 that confers the broadest resistance to Xoo strains isolated from different rice-growing regions and preliminarily mapped the gene within a 1.7 cm region on the long arm of rice chromosome 11. Here, we report fine genetic mapping and in silico analysis of putative candidate genes of Xa23. Based on F2 mapping populations derived from crosses between Xa23-containing rice line CBB23 and susceptible varieties JG30 or IR24, six new STS markers Lj36, Lj46, Lj138, Lj74, A83B4, and Lj13 were developed. Linkage analysis revealed that the new markers were co-segregated with or closely linked to the Xa23 locus. Consequently, the Xa23 gene was mapped within a 0.4 cm region between markers Lj138 and A83B4, in which the co-segregating marker Lj74 was identified. The corresponding physical distance between Lj138 and A83B4 on Nipponbare genome is 49.8 kb. Six Xa23 candidate genes have been annotated, including four candidate genes encoding hypothetical proteins and the other two encoding a putative ADP-ribosylation factor protein and a putative PPR protein. These results will facilitate marker-assisted selection of Xa23 in rice breeding and molecular cloning of this valuable R gene.  相似文献   

20.
Bacterial Blight (BB) caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in tropical Asia. Since all the Basmati varieties are highly susceptible and the disease is prevalent in the entire Basmati growing region of India, BB is a severe constraint in Basmati rice production. The present study was undertaken with the objective of combining the important Basmati quality traits with resistance to BB by a combination of phenotypic and molecular marker-assisted selection (MAS). Screening of 13 near-isogenic lines of rice against four isolates of the pathogen from Basmati growing regions identified the Xa4, xa8, xa13 and Xa21 effective against all the isolates tested. Two or more of these genes in combination imparted enhanced resistance as expressed by reduced average lesion length in comparison to individual genes. The two-gene pyramid line IRBB55 carrying xa13 and Xa21 was found equally effective as three/four gene pyramid lines. The two BB resistance genes present in IRBB55 were combined with the Basmati quality traits of Pusa Basmati-1 (PB-1), the most popular high yielding Basmati rice variety used as recurrent parent. Phenotypic selection for disease resistance, agronomic and Basmati quality characteristics and marker-assisted selection for the two resistance genes were carried out in BC1F1, BC1F2 and BC1F3 generations. Background analysis using 252 polymorphic amplified fragment length polymorphism (AFLP) markers detected 80.4 to 86.7% recurrent parent alleles in BC1F3 selections. Recombinants having enhanced resistance to BB, Basmati quality and desirable agronomic traits were identified, which can either be directly developed into commercial varieties or used as immediate donors of BB resistance in Basmati breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号