首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A scale-up strategy into 200 l pilot-scale for the production of the antibiotic gallidermin by Staphylococcus gallinarum Tü 3928 was developed. Large-scale fermentations were simulated by consecutive liquid cultures of smaller scale. Afterwards, optimised cultivation conditions were transferred to pilot-scale. Best results were achieved by addition of Maltose during the late production phase leading to a final concentration of 330 mg gallidermin per litre. Compared to the concentrations found in a non-pulsed pilot-scale fermentations this is an increase of 20–30%.  相似文献   

2.
An extracellular bacteriolytic endo-β-N-acetylglucosaminidase has been purified and its specificity of action has been investigated (Wadström & Hisatsune, 1970a,b). Some enzymic properties, such as optimum pH for enzyme activity on whole cells and cell walls of Micrococcus lysodeikticus and Staphylococcus aureus and optimum pH for stability, have been studied. The activity was maximum in 0.05m-tris–hydrochloric acid buffer, pH7.0. A higher ionic strength inhibited cell-wall hydrolysis. Since the crude and purified enzymes were found to be unstable on storage, the stabilizing and inhibiting effects of several compounds were investigated. Several heavy metal ions inactivated the enzyme at very low concentrations. Thiol compounds stabilized and thiol-reacting compounds partly inhibited the activity. Crude and purified glucosaminidase was found to be heat-stable at acidic pH and unstable at alkaline pH as previously found for several lysozymes (endo-β-N-acetylmuramidases). Other properties of the staphylococcal enzyme and hen''s-egg-white lysozyme have been compared, since the modes of action of the two are quite similar (Wadström & Hisatsune, 1970b).  相似文献   

3.
Staphylococcus aureus bacteraemia remains very difficult to treat, and a large proportion of cases result in potentially lethal metastatic infection. Unpredictable and persistent bacteraemia in the face of highly active, usually bactericidal antibiotics is the strongest predictor of death or disseminated disease. Although S. aureus has conventionally been considered an extracellular pathogen, much evidence demonstrates that it can survive intracellularly. In this Opinion article, we propose that phagocytes, and specifically neutrophils, represent a privileged site for S. aureus in the bloodstream, offering protection from most antibiotics and providing a mechanism by which the bacterium can travel to and infect distant sites. Furthermore, we suggest how this can be experimentally confirmed and how it may prompt a change in the current paradigm of S. aureus bacteraemia and identify better treatment options for improved clinical outcomes.  相似文献   

4.
The genome sequence is the “blue-print of life,” but proteomics provides the link to the actual physiology of living cells. Because of their low complexity bacteria are excellent model systems to identify the entire protein assembly of a living organism. Here we show that the majority of proteins expressed in growing and non-growing cells of the human pathogen Staphylococcus aureus can be identified and even quantified by a metabolic labeling proteomic approach. S. aureus has been selected as model for this proteomic study, because it poses a major risk to our health care system by combining high pathogenicity with an increasing frequency of multiple antibiotic resistance, thus requiring the development of new anti-staphylococcal therapy strategies. Since such strategies will likely have to target extracellular and surface-exposed virulence factors as well as staphylococcal survival and adaptation capabilities, we decided to combine four subproteomic fractions: cytosolic proteins, membrane-bound proteins, cell surface-associated and extracellular proteins, to comprehensively cover the entire proteome of S. aureus. This quantitative proteomics approach integrating data ranging from gene expression to subcellular localization in growing and non-growing cells is a proof of principle for whole-cell physiological proteomics that can now be extended to address physiological questions in infection-relevant settings. Importantly, with more than 1700 identified proteins (and 1450 quantified proteins) corresponding to a coverage of about three-quarters of the expressed proteins, our model study represents the most comprehensive quantification of a bacterial proteome reported to date. It thus paves the way towards a new level in understanding of cell physiology and pathophysiology of S. aureus and related pathogenic bacteria, opening new avenues for infection-related research on this crucial pathogen.  相似文献   

5.
To evaluate the role of the polysaccharide intercellular adhesin as an energy-storage molecule, we investigated the effect of nutrient limitation on S. epidermidis biofilms. The stability of established biofilms depends on σB activity; however, the slow decay of biofilms under conditions of nutrient limitation reveal its use as an energy-storage molecule to be unlikely.  相似文献   

6.
Staphylococcus aureus causes a broad range of life-threatening diseases in humans. This bacterium produces a large number of extracellular virulence factors that are closely associated with specific diseases which are controlled by quorum sensing. In this study, we show that azithromycin was active against methicillin-resistant Staphylococcus aureus (MRSA) strains with MICs ranged from 32 to 64 μg/mL. Azithromycin at subinhibitory concentration, markedly reduced the production of α-hemolysin at (1/16MIC, 1/8MIC) and biofilm formation at (1/16MIC, 1/8MIC), respectively. The results indicated that sub-inhibitory concentrations of azithromycin decreased the production of α-hemolysin and biofilm formation in MRSA in a dose-dependent manner. Therefore, azithromycin may be useful in the treatment of α-hemolysin producing and biofilm formation MRSA infections.  相似文献   

7.
This study presents results of research on the influence of rotating magnetic field (RMF) of the induction of 30?mT and the frequency of 50?Hz on the growth dynamics and cell metabolic activity of E. coli and S. aureus, depending on the exposure time. The studies showed that the RMF caused an increase in the growth and cell metabolic activity of all the analyzed bacterial strains, especially in the time interval t?=?30 to 150?min. However, it was also found that the optical density and cell metabolic activity after exposition to RMF were significantly higher in S. aureus cultures. In turn, the study of growth dynamics, revealed a rapid and a significant decrease in these values from t?=?90?min) in the case of E. coli samples. The obtained results prove that RMF (B?=?30?mT, f?=?50?Hz) has a stimulatory effect on the growth and metabolic activity of E. coli and S. aureus. Furthermore, taking into account the time of exposure, stronger influence of RMF on the viability was observed in S. aureus cultures, which may indicate that this effect depends on the shape of the exposed cells.  相似文献   

8.
The fibrinogen (Fg) binding MSCRAMM Clumping factor A (ClfA) from Staphylococcus aureus interacts with the C-terminal region of the fibrinogen (Fg) γ-chain. ClfA is the major virulence factor responsible for the observed clumping of S. aureus in blood plasma and has been implicated as a virulence factor in a mouse model of septic arthritis and in rabbit and rat models of infective endocarditis. We report here a high-resolution crystal structure of the ClfA ligand binding segment in complex with a synthetic peptide mimicking the binding site in Fg. The residues in Fg required for binding to ClfA are identified from this structure and from complementing biochemical studies. Furthermore, the platelet integrin αIIbβ3 and ClfA bind to the same segment in the Fg γ-chain but the two cellular binding proteins recognize different residues in the common targeted Fg segment. Based on these differences, we have identified peptides that selectively antagonize the ClfA-Fg interaction. The ClfA-Fg binding mechanism is a variant of the “Dock, Lock and Latch” mechanism previously described for the Staphylococcus epidermidis SdrG–Fg interaction. The structural insights gained from analyzing the ClfANFg peptide complex and identifications of peptides that selectively recognize ClfA but not αIIbβ3 may allow the design of novel anti-staphylococcal agents. Our results also suggest that different MSCRAMMs with similar structural organization may have originated from a common ancestor but have evolved to accommodate specific ligand structures.  相似文献   

9.
Abstract

Isocitrate dehydrogenase (IDH) gene from Staphylococcus aureus ATCC12600 was cloned, sequenced and characterized (HM067707). PknB site was observed in the active site of IDH; thus, it was predicted as IDH may be regulated by phosphorylation. Therefore, in this study, PknB, alkaline phosphatase III (SAOV 2675) and IDH genes (JN695616, JN645811 and HM067707) of S. aureus ATCC12600 were over expressed from clones PV 1, UVPALP-3 and UVIDH 1. On passing the cytosloic fractions through nickel metal chelate column, pure enzymes were obtained. Phosphorylation of pure IDH by PknB resulted in the complete loss of activity and was restored upon dephosphorylation with SAOV 2675 which indicated that phosphorylation and dephosphorylation regulate IDH activity in S. aureus. Further, when S. aureus ATCC12600 was grown in BHI broth, decreased IDH activity and increased biofilm units were observed; therefore, this regulation of IDH alters redox status in this pathogen favouring biofilm formation.  相似文献   

10.
Bacterial lipoproteins are known to be diacylated or triacylated and activate mammalian immune cells via Toll-like receptor 2/6 or 2/1 heterodimer. Because the genomes of low G+C content gram-positive bacteria, such as Staphylococcus aureus, do not contain Escherichia coli-type apolipoprotein N-acyltransferase, an enzyme converting diacylated lipoproteins into triacylated forms, it has been widely believed that native lipoproteins of S. aureus are diacylated. However, we recently demonstrated that one lipoprotein SitC purified from S. aureus RN4220 strain was triacylated. Almost simultaneously, another group reported that another lipoprotein SA2202 purified from S. aureus SA113 strain was diacylated. The determination of exact lipidated structures of S. aureus lipoproteins is thus crucial for elucidating the molecular basis of host-microorganism interactions. Toward this purpose, we intensively used MS-based analyses. Here, we demonstrate that SitC lipoprotein of S. aureus RN4220 strain has two lipoprotein lipase-labile O-esterified fatty acids and one lipoprotein lipase-resistant fatty acid. Further MS/MS analysis of the lipoprotein lipase digest revealed that the lipoprotein lipase-resistant fatty acid was acylated to α-amino group of the N-terminal cysteine residue of SitC. Triacylated forms of SitC with various length fatty acids were also confirmed in cell lysate of the RN4220 and Triton X-114 phase in three other S. aureus strains, including SA113 strain and one Staphylococcus epidermidis strain. Moreover, four other major lipoproteins including SA2202 in S. aureus strains were identified as N-acylated. These results strongly suggest that lipoproteins of S. aureus are mainly in the N-acylated triacyl form.  相似文献   

11.
PASTA (penicillin-binding protein and serine/threonine kinase associated) modules are found in penicillin-binding proteins and bacterial serine/threonine kinases mainly from Gram-positive Firmicutes and Actinobacteria. They may act as extracellular sensors by binding peptidoglycan fragments. We report here the first crystal structure of a multiple-PASTA domain from Ser/Thr kinase, that of the protein serine/threonine kinase 1 (Stk1) from the Firmicute Staphylococcus aureus. The extended conformation of the three PASTA subunits differs strongly from the compact conformation observed in the two-PASTA domain of penicillin-binding protein PBP2x, whereas linear conformations were also reported for two-subunit fragments of the four-PASTA domain of the Actinobacteria Mycobacterium tuberculosis studied by liquid NMR. Thus, a stretched organization appears to be the signature of modular PASTA domains in Ser/Thr kinases. Signal transduction to the kinase domain is supposed to occur via dimerization and ligand binding. A conserved X-shaped crystallographic dimer stabilized by intermolecular interactions between the second PASTA subunits of each monomer is observed in the two crystal forms of Stk1 that we managed to crystallize. Extracellular PASTA domains are composed of at least two subunits, and this molecular assembly is a plausible candidate for the biological dimer. We have also performed docking experiments, which predict that the hinge regions of the PASTA domain can accommodate peptidoglycan. Finally, a three-dimensional homology molecular model of full-length Stk1 was generated, suggesting an interaction between the kinase domain and the cytoplasmic face of the plasma membrane via a eukaryotic-like juxtamembrane domain. A comprehensive activation mechanism for bacterial Ser/Thr kinases is proposed with the support of these structural data.  相似文献   

12.
Staphylococcus aureus is a major cause of bacteraemia, which frequently leads to infective endocarditis, osteomyelitis, septic arthritis and metastatic abscess formation. The development of these secondary infections is due to bacterial dissemination from the blood into surrounding tissues and is associated with significantly increased morbidity and mortality. Despite the importance of S. aureus extravasation in disease progression, there is relatively little understanding of the molecular mechanisms by which this pathogen crosses the endothelial barrier and establishes new sites of infection. Recent work has identified a number of putative routes by which S. aureus can escape the bloodstream. In this article we review these new developments and set them in the context of strategies used by other established pathogens to traverse cellular barriers.  相似文献   

13.

Background

Extensive spread of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in the United States, and the concomitant increase in severe invasive staphylococcal infections, including osteomyelitis, in healthy children, has led to renewed interest in Panton-Valentine leukocidin (PVL). However, the pathogenetic role of PVL in staphylococcal infections remains controversial, possibly because it depends on the site of infection.

Methodology/Principal Findings

We compared the course of experimental rabbit osteomyelitis due to the PVL-positive CA-MRSA strain USA 300 (LAC) and its PVL-negative isogenic derivative (LACΔpvl), using a low and a high inoculum (8×105 and 4×108 CFU). With the low inoculum, bone infection was less frequent on day 7 (D7) and day 28 (D28) with LACΔpvl than with LAC (respectively 12/19 and 18/19 animals, p = 0.042). With the high inoculum of both strains, all the animals were infected on D7 and the infection persisted on D28 in almost every case. However, tibial bacterial counts and the serum CRP concentration fell significantly between D7 and D28 with LACΔpvl but not with LAC. Respectively 67% and 60% of LAC-infected rabbits had bone deformation and muscle/joint involvement on D7, compared to 0% and 7% of LACΔpvl-infected rabbits (p = 0.001 and p = 0.005 respectively). Between D0 and D28, the anti-PVL antibody titer increased significantly only with the high inoculum of LAC.

Conclusions/Significance

PVL appears to play a role in the persistence and rapid local extension of rabbit osteomyelitis, in keeping with the greater severity of human bone infections due to PVL-positive S. aureus. The possible therapeutic implications of these findings are discussed.  相似文献   

14.
Molecular Biology Reports - The antibiotic resistance has become a major threat to global health. The combinatorial use of two or more compounds to develop a new formulation may overcome the...  相似文献   

15.
Staphylococcus aureus spreads on the surface of soft agar, a phenomenon we termed "colony spreading." Here, we found that S. aureus culture supernatant inhibited colony spreading. We purified δ-hemolysin (Hld, δ-toxin), a major protein secreted from S. aureus, as a compound that inhibits colony spreading. The culture supernatants of hld-disrupted mutants had 30-fold lower colony-spreading inhibitory activity than those of the parent strain. Furthermore, hld-disrupted mutants had higher colony-spreading ability than the parent strain. These results suggest that S. aureus negatively regulates colony spreading by secreting δ-hemolysin.  相似文献   

16.
What determines nasal carriage of Staphylococcus aureus?   总被引:1,自引:0,他引:1  
Nasal carriage of Staphylococcus aureus is an important risk factor for infection by this organism in both community and hospital settings; this article reviews the role of host and bacterial factors in carriage. A host genetic influence appears likely but the phenotypic determinants are unknown. Possibilities include variability in host adhesins, immune response or secretion of antimicrobial molecules. Colonization resistance by S. aureus, together with the observation that persistent carriers often carry a single strain whereas intermittent carriers can be colonized with unrelated strains over time, suggests that bacterial factors could also be involved.  相似文献   

17.
A study has been conducted of the interaction of the lytic toxin δ-haemolysin with vesicles of phospholipid, using electron microscopy, fluorescence depolarisation and excimer fluorescence. The peptide is shown to be a fusogen towards phosphatidylcholine vesicles in fluid phases. In the presence of gel phase lipid, fusion between fluid and gel phases is not seen. Fluid phase lipid vesicles are fused together to form large multilamellar structures, and initial vesicle size does not appear to be important since small unilamellar vesicles and large unilamellar vesicles are similarly affected. Fusogenic activity of δ-haemolysin is compared to that of melittin. The former is a progressive fusogen for fluid phase lipid, while the latter causes vesicle fusion in a manner related to occurrence of a lipid phase transition.  相似文献   

18.
Llarrull LI  Mobashery S 《Biochemistry》2012,51(23):4642-4649
A heterologous expression system was used to evaluate activation of BlaR1, a sensor/signal transducer protein of Staphylococcus aureus with a central role in resistance to β-lactam antibiotics. In the absence of other S. aureus proteins that might respond to antibiotics and participate in signal transduction events, we documented that BlaR1 fragmentation is autolytic, that it occurs in the absence of antibiotics, and that BlaR1 directly degrades BlaI, the gene repressor of the system. Furthermore, we disclosed that this proteolytic activity is metal ion-dependent and that it is not modulated directly by acylation of the sensor domain by β-lactam antibiotics.  相似文献   

19.
Staphylococcus aureus can colonize and infect both humans and animals, but isolates from both hosts tend to belong to different lineages. Our recent finding of bovine-adapted S. aureus showing close genetic relationship to the human S. aureus clonal complex 8 (CC8) allowed us to examine the genetic basis of host adaptation in this particular CC. Using total chromosome microarrays, we compared the genetic makeup of 14 CC8 isolates obtained from cows suffering subclinical mastitis, with nine CC8 isolates from colonized or infected human patients, and nine S. aureus isolates belonging to typical bovine CCs. CC8 isolates were found to segregate in a unique group, different from the typical bovine CCs. Within this CC8 group, human and bovine isolates further segregated into three subgroups, among which two contained a mix of human and bovine isolates, and one contained only bovine isolates. This distribution into specific clusters and subclusters reflected major differences in the S. aureus content of mobile genetic elements (MGEs). Indeed, while the mixed human-bovine clusters carried commonly human-associated β-hemolysin converting prophages, the bovine-only isolates were devoid of such prophages but harbored an additional new non-mec staphylococcal cassette chromosome (SCC) unique to bovine CC8 isolates. This composite cassette carried a gene coding for a new LPXTG-surface protein sharing homologies with a protein found in the environmental bacterium Geobacillus thermoglucosidans. Thus, in contrast to human CC8 isolates, the bovine-only CC8 group was associated with the combined loss of β-hemolysin converting prophages and gain of a new SCC probably acquired in the animal environment. Remaining questions are whether the new LPXTG-protein plays a role in bovine colonization or infection, and whether the new SCC could further acquire antibiotic-resistance genes and carry them back to human.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号