首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We characterized and evaluated the functional attributes of three yeast high-confidence protein-protein interaction data sets derived from affinity purification/mass spectrometry, protein-fragment complementation assay, and yeast two-hybrid experiments. The interacting proteins retrieved from these data sets formed distinct, partially overlapping sets with different protein-protein interaction characteristics. These differences were primarily a function of the deployed experimental technologies used to recover these interactions. This affected the total coverage of interactions and was especially evident in the recovery of interactions among different functional classes of proteins. We found that the interaction data obtained by the yeast two-hybrid method was the least biased toward any particular functional characterization. In contrast, interacting proteins in the affinity purification/mass spectrometry and protein-fragment complementation assay data sets were over- and under-represented among distinct and different functional categories. We delineated how these differences affected protein complex organization in the network of interactions, in particular for strongly interacting complexes (e.g. RNA and protein synthesis) versus weak and transient interacting complexes (e.g. protein transport). We quantified methodological differences in detecting protein interactions from larger protein complexes, in the correlation of protein abundance among interacting proteins, and in their connectivity of essential proteins. In the latter case, we showed that minimizing inherent methodology biases removed many of the ambiguous conclusions about protein essentiality and protein connectivity. We used these findings to rationalize how biological insights obtained by analyzing data sets originating from different sources sometimes do not agree or may even contradict each other. An important corollary of this work was that discrepancies in biological insights did not necessarily imply that one detection methodology was better or worse, but rather that, to a large extent, the insights reflected the methodological biases themselves. Consequently, interpreting the protein interaction data within their experimental or cellular context provided the best avenue for overcoming biases and inferring biological knowledge.  相似文献   

2.
Large-scale protein-protein interaction data sets have been generated for several species including yeast and human and have enabled the identification, quantification, and prediction of cellular molecular networks. Affinity purification-mass spectrometry (AP-MS) is the preeminent methodology for large-scale analysis of protein complexes, performed by immunopurifying a specific "bait" protein and its associated "prey" proteins. The analysis and interpretation of AP-MS data sets is, however, not straightforward. In addition, although yeast AP-MS data sets are relatively comprehensive, current human AP-MS data sets only sparsely cover the human interactome. Here we develop a framework for analysis of AP-MS data sets that addresses the issues of noise, missing data, and sparsity of coverage in the context of a current, real world human AP-MS data set. Our goal is to extend and increase the density of the known human interactome by integrating bait-prey and cocomplexed preys (prey-prey associations) into networks. Our framework incorporates a score for each identified protein, as well as elements of signal processing to improve the confidence of identified protein-protein interactions. We identify many protein networks enriched in known biological processes and functions. In addition, we show that integrated bait-prey and prey-prey interactions can be used to refine network topology and extend known protein networks.  相似文献   

3.
Choi H 《Proteomics》2012,12(10):1663-1668
Protein complex identification is an important goal of protein-protein interaction analysis. To date, development of computational methods for detecting protein complexes has been largely motivated by genome-scale interaction data sets from high-throughput assays such as yeast two-hybrid or tandem affinity purification coupled with mass spectrometry (TAP-MS). However, due to the popularity of small to intermediate-scale affinity purification-mass spectrometry (AP-MS) experiments, protein complex detection is increasingly discussed in local network analysis. In such data sets, protein complexes cannot be detected using binary interaction data alone because the data contain interactions with tagged proteins only and, as a result, interactions between all other proteins remain unobserved, limiting the scope of existing algorithms. In this article, we provide a pragmatic review of network graph-based computational algorithms for protein complex analysis in global interactome data, without requiring any computational background. We discuss the practical gap in applying these algorithms to recently surging small to intermediate-scale AP-MS data sets, and review alternative clustering algorithms using quantitative proteomics data and their limitations.  相似文献   

4.
Large-scale protein interaction networks (PINs) have typically been discerned using affinity purification followed by mass spectrometry (AP/MS) and yeast two-hybrid (Y2H) techniques. It is generally recognized that Y2H screens detect direct binary interactions while the AP/MS method captures co-complex associations; however, the latter technique is known to yield prevalent false positives arising from a number of effects, including abundance. We describe a novel approach to compute the propensity for two proteins to co-purify in an AP/MS data set, thereby allowing us to assess the detected level of interaction specificity by analyzing the corresponding distribution of interaction scores. We find that two recent AP/MS data sets of yeast contain enrichments of specific, or high-scoring, associations as compared to commensurate random profiles, and that curated, direct physical interactions in two prominent data bases have consistently high scores. Our scored interaction data sets are generally more comprehensive than those of previous studies when compared against four diverse, high-quality reference sets. Furthermore, we find that our scored data sets are more enriched with curated, direct physical associations than Y2H sets. A high-confidence protein interaction network (PIN) derived from the AP/MS data is revealed to be highly modular, and we show that this topology is not the result of misrepresenting indirect associations as direct interactions. In fact, we propose that the modularity in Y2H data sets may be underrepresented, as they contain indirect associations that are significantly enriched with false negatives. The AP/MS PIN is also found to contain significant assortative mixing; however, in line with a previous study we confirm that Y2H interaction data show weak disassortativeness, thus revealing more clearly the distinctive natures of the interaction detection methods. We expect that our scored yeast data sets are ideal for further biological discovery and that our scoring system will prove useful for other AP/MS data sets.  相似文献   

5.
Protein-protein interaction networks: from interactions to networks   总被引:1,自引:0,他引:1  
The goal of interaction proteomics that studies the protein-protein interactions of all expressed proteins is to understand biological processes that are strictly regulated by these interactions. The availability of entire genome sequences of many organisms and high-throughput analysis tools has led scientists to study the entire proteome (Pandey and Mann, 2000). There are various high-throughput methods for detecting protein interactions such as yeast two-hybrid approach and mass spectrometry to produce vast amounts of data that can be utilized to decipher protein functions in complicated biological networks. In this review, we discuss recent developments in analytical methods for large-scale protein interactions and the future direction of interaction proteomics.  相似文献   

6.
Defining protein complexes is critical to virtually all aspects of cell biology. Two recent affinity purification/mass spectrometry studies in Saccharomyces cerevisiae have vastly increased the available protein interaction data. The practical utility of such high throughput interaction sets, however, is substantially decreased by the presence of false positives. Here we created a novel probabilistic metric that takes advantage of the high density of these data, including both the presence and absence of individual associations, to provide a measure of the relative confidence of each potential protein-protein interaction. This analysis largely overcomes the noise inherent in high throughput immunoprecipitation experiments. For example, of the 12,122 binary interactions in the general repository of interaction data (BioGRID) derived from these two studies, we marked 7504 as being of substantially lower confidence. Additionally, applying our metric and a stringent cutoff we identified a set of 9074 interactions (including 4456 that were not among the 12,122 interactions) with accuracy comparable to that of conventional small scale methodologies. Finally we organized proteins into coherent multisubunit complexes using hierarchical clustering. This work thus provides a highly accurate physical interaction map of yeast in a format that is readily accessible to the biological community.  相似文献   

7.
《TARGETS》2003,2(3):85-92
The availability of complete genome sequences of numerous model organisms has initiated the development of new approaches in biological research to complement conventional biochemistry and genetics. In this context, high-throughput methods for detecting protein interactions, such as mass spectrometry and yeast two-hybrid assays, have produced vast amounts of data that can be exploited to infer protein function and regulation. In this review, we explore different genome-wide protein interaction studies and comment on their extrapolation towards understanding protein functions. It is likely that improvements of these approaches, together with more sophisticated databases and the invention of novel technologies, will help to decipher the complex interactions among proteins and to integrate interacting proteins into existing and novel cellular pathways.  相似文献   

8.
Chromatin modification is a key mechanism of gene expression in eukaryotes, and involve interactions among several proteins. Recently, we reported that HOS15, a cullin-based E3 ligase receptor, is involved in chromatin remodeling, and regulates gene expression and cold tolerance in Arabidopsis thaliana. To identify the protein complexes that function in conjunction with HOS15, we performed FLAGtag affinity purification using transgenic Arabidopsis plants expressing HOS15-FLAG, and isolated HOS15-interacting proteins. To identify these proteins, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) analysis was conducted, and 16 proteins were identified. Database searches revealed that these proteins were histone variants, histone deacetylases, mRNA splicing regulators, a protein kinase, and proteins of unknown function. The ability of these proteins binding to HOS15 was confirmed using yeast two-hybrid, co-immunoprecipitation (Co-IP), and luciferase complementation imaging (LCI) assays. Our data suggest that specific interactions between HOS15 and those proteins involve in chromatin remodeling and RNA processing regulates plant development and abiotic stress in Arabidopsis.  相似文献   

9.
10.
基因的功能是由蛋白质来执行的,而蛋白质要通过与其他生物分子相互作用来完成其各种生物功能。因此,如果能够快速做出蛋白质在不同时间、空间和不同环境中的相互作用图谱,就会帮助我们了解这些蛋白质的功能,进而了解许多生命活动的机制。目前,用于大规模研究蛋白质间相互作用的方法主要有酵母双杂交系统及其衍生系统、亲和纯化与质谱分析联用技术,前者用于研究蛋白分子间的两两相互作用,后者用于研究蛋白质复合物间的相互作用。本文主要阐述了酵母双杂交、细菌双杂交、哺乳动物细胞双杂交、亲和纯化与质谱联用技术在大规模蛋白质相互作用研究中的应用。  相似文献   

11.
With recent progress in the analysis of the salivary proteome, the number of salivary proteins identified has increased dramatically. However, the physiological functions of many of the newly discovered proteins remain unclear. Closely related to the study of a protein's function is the identification of its interaction partners. We investigated interactions among and functions of histatin 1 and the other proteins that are present in saliva by using high‐throughput mass spectrometric techniques. This led to the identification of 43 proteins able to interact with histatin 1. In addition, we found that these protein–protein interactions protect complex partners from proteolysis and modulate their antifungal activity. Our data contribute significantly to characterization of the salivary interactome and to understanding the biology of salivary protein complexes.  相似文献   

12.
MOTIVATION: Protein-protein interactions have proved to be a valuable starting point for understanding the inner workings of the cell. Computational methodologies have been built which both predict interactions and use interaction datasets in order to predict other protein features. Such methods require gold standard positive (GSP) and negative (GSN) interaction sets. Here we examine and demonstrate the usefulness of homologous interactions in predicting good quality positive and negative interaction datasets. RESULTS: We generate GSP interaction sets as subsets from experimental data using only interaction and sequence information. We can therefore produce sets for several species (many of which at present have no identified GSPs). Comprehensive error rate testing demonstrates the power of the method. We also show how the use of our datasets significantly improves the predictive power of algorithms for interaction prediction and function prediction. Furthermore, we generate GSN interaction sets for yeast and examine the use of homology along with other protein properties such as localization, expression and function. Using a novel method to assess the accuracy of a negative interaction set, we find that the best single selector for negative interactions is a lack of co-function. However, an integrated method using all the characteristics shows significant improvement over any current method for identifying GSN interactions. The nature of homologous interactions is also examined and we demonstrate that interologs are found more commonly within species than across species. CONCLUSION: GSP sets built using our homologous verification method are demonstrably better than standard sets in terms of predictive ability. We can build such GSP sets for several species. When generating GSNs we show a combination of protein features and lack of homologous interactions gives the highest quality interaction sets. AVAILABILITY: GSP and GSN datasets for all the studied species can be downloaded from http://www.stats.ox.ac.uk/~deane/HPIV.  相似文献   

13.
Following recent advances in high-throughput mass spectrometry (MS)-based proteomics, the numbers of identified phosphoproteins and their phosphosites have greatly increased in a wide variety of organisms. Although a critical role of phosphorylation is control of protein signaling, our understanding of the phosphoproteome remains limited. Here, we report unexpected, large-scale connections revealed between the phosphoproteome and protein interactome by integrative data-mining of yeast multi-omics data. First, new phosphoproteome data on yeast cells were obtained by MS-based proteomics and unified with publicly available yeast phosphoproteome data. This revealed that nearly 60% of ~6,000 yeast genes encode phosphoproteins. We mapped these unified phosphoproteome data on a yeast protein-protein interaction (PPI) network with other yeast multi-omics datasets containing information about proteome abundance, proteome disorders, literature-derived signaling reactomes, and in vitro substratomes of kinases. In the phospho-PPI, phosphoproteins had more interacting partners than nonphosphoproteins, implying that a large fraction of intracellular protein interaction patterns (including those of protein complex formation) is affected by reversible and alternative phosphorylation reactions. Although highly abundant or unstructured proteins have a high chance of both interacting with other proteins and being phosphorylated within cells, the difference between the number counts of interacting partners of phosphoproteins and nonphosphoproteins was significant independently of protein abundance and disorder level. Moreover, analysis of the phospho-PPI and yeast signaling reactome data suggested that co-phosphorylation of interacting proteins by single kinases is common within cells. These multi-omics analyses illuminate how wide-ranging intracellular phosphorylation events and the diversity of physical protein interactions are largely affected by each other.  相似文献   

14.
Homotypic and heterotypic protein interactions are crucial for all levels of cellular function, including architecture, regulation, metabolism, and signaling. Therefore, protein interaction maps represent essential components of post-genomic toolkits needed for understanding biological processes at a systems level. Over the past decade, a wide variety of methods have been developed to detect, analyze, and quantify protein interactions, including surface plasmon resonance spectroscopy, NMR, yeast two-hybrid screens, peptide tagging combined with mass spectrometry and fluorescence-based technologies. Fluorescence techniques range from co-localization of tags, which may be limited by the optical resolution of the microscope, to fluorescence resonance energy transfer-based methods that have molecular resolution and can also report on the dynamics and localization of the interactions within a cell. Proteins interact via highly evolved complementary surfaces with affinities that can vary over many orders of magnitude. Some of the techniques described in this review, such as surface plasmon resonance, provide detailed information on physical properties of these interactions, while others, such as two-hybrid techniques and mass spectrometry, are amenable to high-throughput analysis using robotics. In addition to providing an overview of these methods, this review emphasizes techniques that can be applied to determine interactions involving membrane proteins, including the split ubiquitin system and fluorescence-based technologies for characterizing hits obtained with high-throughput approaches. Mass spectrometry-based methods are covered by a review by Miernyk and Thelen (2008; this issue, pp. 597–609 ). In addition, we discuss the use of interaction data to construct interaction networks and as the basis for the exciting possibility of using to predict interaction surfaces.  相似文献   

15.
Protein–protein interactions play a key role in many biological systems. High‐throughput methods can directly detect the set of interacting proteins in yeast, but the results are often incomplete and exhibit high false‐positive and false‐negative rates. Recently, many different research groups independently suggested using supervised learning methods to integrate direct and indirect biological data sources for the protein interaction prediction task. However, the data sources, approaches, and implementations varied. Furthermore, the protein interaction prediction task itself can be subdivided into prediction of (1) physical interaction, (2) co‐complex relationship, and (3) pathway co‐membership. To investigate systematically the utility of different data sources and the way the data is encoded as features for predicting each of these types of protein interactions, we assembled a large set of biological features and varied their encoding for use in each of the three prediction tasks. Six different classifiers were used to assess the accuracy in predicting interactions, Random Forest (RF), RF similarity‐based k‐Nearest‐Neighbor, Naïve Bayes, Decision Tree, Logistic Regression, and Support Vector Machine. For all classifiers, the three prediction tasks had different success rates, and co‐complex prediction appears to be an easier task than the other two. Independently of prediction task, however, the RF classifier consistently ranked as one of the top two classifiers for all combinations of feature sets. Therefore, we used this classifier to study the importance of different biological datasets. First, we used the splitting function of the RF tree structure, the Gini index, to estimate feature importance. Second, we determined classification accuracy when only the top‐ranking features were used as an input in the classifier. We find that the importance of different features depends on the specific prediction task and the way they are encoded. Strikingly, gene expression is consistently the most important feature for all three prediction tasks, while the protein interactions identified using the yeast‐2‐hybrid system were not among the top‐ranking features under any condition. Proteins 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

16.
In the cellular context, proteins participate in communities to perform their function. The detection and identification of these communities as well as in-community interactions has long been the subject of investigation, mainly through proteomics analysis with mass spectrometry. With the advent of cryogenic electron microscopy and the “resolution revolution,” their visualization has recently been made possible, even in complex, native samples. The advances in both fields have resulted in the generation of large amounts of data, whose analysis requires advanced computation, often employing machine learning approaches to reach the desired outcome. In this work, we first performed a robust proteomics analysis of mass spectrometry (MS) data derived from a yeast native cell extract and used this information to identify protein communities and inter-protein interactions. Cryo-EM analysis of the cell extract provided a reconstruction of a biomolecule at medium resolution (∼8 Å (FSC = 0.143)). Utilizing MS-derived proteomics data and systematic fitting of AlphaFold-predicted atomic models, this density was assigned to the 2.6 MDa complex of yeast fatty acid synthase. Our proposed workflow identifies protein complexes in native cell extracts from Saccharomyces cerevisiae by combining proteomics, cryo-EM, and AI-guided protein structure prediction.  相似文献   

17.
Experiments to probe for protein-protein interactions are the focus of functional proteomic studies, thus proteomic data repositories are increasingly likely to contain a large cross-section of such information. Here, we use the Global Proteome Machine database (GPMDB), which is the largest curated and publicly available proteomic data repository derived from tandem mass spectrometry, to develop an in silico protein interaction analysis tool. Using a human histone protein for method development, we positively identified an interaction partner from each histone protein family that forms the histone octameric complex. Moreover, this method, applied to the α subunits of the human proteasome, identified all of the subunits in the 20S core particle. Furthermore, we applied this approach to human integrin αIIb and integrin β3, a major receptor involved in the activation of platelets. We identified 28 proteins, including a protein network for integrin and platelet activation. In addition, proteins interacting with integrin β1 obtained using this method were validated by comparing them to those identified in a formaldehyde-supported coimmunoprecipitation experiment, protein-protein interaction databases and the literature. Our results demonstrate that in silico protein interaction analysis is a novel tool for identifying known/candidate protein-protein interactions and proteins with shared functions in a protein network.  相似文献   

18.
19.
Li X  Gianoulis TA  Yip KY  Gerstein M  Snyder M 《Cell》2010,143(4):639-650
Natural small compounds comprise most cellular molecules and bind proteins as substrates, products, cofactors, and ligands. However, a large-scale investigation of in?vivo protein-small metabolite interactions has not been performed. We developed a mass spectrometry assay for the large-scale identification of in?vivo protein-hydrophobic small metabolite interactions in yeast and analyzed compounds that bind ergosterol biosynthetic proteins and protein kinases. Many of these proteins bind small metabolites; a few interactions were previously known, but the vast majority are new. Importantly, many key regulatory proteins such as protein kinases bind metabolites. Ergosterol was found to bind many proteins and may function as a general regulator. It is required for the activity of Ypk1, a mammalian AKT/SGK kinase homolog. Our study defines potential key regulatory steps in lipid biosynthetic pathways and suggests that small metabolites may play a more general role as regulators of protein activity and function than previously appreciated.  相似文献   

20.
The availability of extensive genomic information and content has spawned an era of high-throughput screening that is generating large sets of functional genomic data. In particular, the need to understand the biochemical wiring within a cell has introduced novel approaches to map the intricate networks of biological interactions arising from the interactions of proteins. The current technologies for assaying protein interactions--yeast two-hybrid and immunoprecipitation with mass spectrometric detection--have met with considerable success. However, the parallel use of these approaches has identified only a small fraction of physiologically relevant interactions among proteins, neglecting all nonprotein interactions, such as with metabolites, lipids, DNA and small molecules. This highlights the need for further development of proteome scale technologies that enable the study of protein function. Here we discuss recent advances in high-throughput technologies for displaying proteins on functional protein microarrays and the real-time label-free detection of interactions using probes of the local index of refraction, carbon nanotubes and nanowires, or microelectromechanical systems cantilevers. The combination of these technologies will facilitate the large-scale study of protein interactions with proteins as well as with other biomolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号