首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteolytic activities of α-chymotrypsin, trypsin, pepsin, bromelain, and an extract from germinating pumpkin seeds (Cucurbita moschata) were determined by their ability to effect the release of 1-anilino-8-naphthalenesulfonate bound to internal hydrophobic sites in intact protein substrates. Casein, glyceraldehyde-3-P dehydrogenase, urease, catalase, pumpkin seed globulin, and bovine serum albumin enhanced the fluorescence of 1-anilino-8-naphthalenesulfonate sufficiently to be used as proteolytic substrates. Chymotrypsin, trypsin, pepsin, and bromelain exhibited activity against all or almost all of the protein substrates. The activity of 1 μg of α-chymotrypsin or trypsin and 100 ng of pepsin could be easily detected by this method of assay within 4 to 5 minutes depending upon the substrate. The enzyme extracted from 3-day germinated pumpkin seeds exhibited strong activity only against pumpkin seed globulin, weak activity against the globulins of squash and cucumber and casein, and no activity against the other protein substrates. Activity against pumpkin globulin was maximal at pH 7.4. When assayed by an increase in ninhydrin-positive products, the enzyme extract from pumpkin seeds also showed strong activity against pumpkin globulin and weak activity against casein. The 1-anilino-8-naphthalenesulfonate-fluorescence method was at least 20 times more sensitive than the ninhydrin method and was 10 to 20 times more rapid.  相似文献   

2.
Protein bodies of pumpkin cotyledon cells were oval (about 10?7µm), and each was composed of a crystalloid, a globoidand proteinaceous matrix. They started to swell and fuse with1 day of imbibition. The proteinaceous matrix region expandedat the expense of crystalloids, and its electron density decreased.Finally, the protein bodies became central vacuoles includingmany small protein particles in about 8 days of germination. Fluorescent microscopy using antibodies raised against pumpkinseed globulin showed that fluorescence could not be observedin either protein bodies of ungerminated seeds or crystalloidsof germinating cotyledons, and only the proteinaceous matrixof germinating cotyledons became fluorescent. Probable causesof no fluorescence on crystalloids of seed globulin depositionwere considered. (Received November 9, 1979; )  相似文献   

3.
Plant protease inhibitors have been implicated in defense against insect pests. Podborer and pod fly are major pests of developing seeds of pigeonpea ( Cajanus cajan L. Millsp.). Therefore, we studied the presence of protease inhibitors in seeds of pigeonpea and its wild relatives. Seed extracts were analyzed for protease inhibitor activities by caseinolytic assay, and the number of protease inhibitors determined by polyacrylamide gel electrophoresis. Besides trypsin and chymotrypsin inhibitors, seed extracts contained weak papain inhibitor(s) but no bromelain inhibitor. Treatment of seed extract with bromelain generated new active forms of trypsin inhibitors. The relative amounts of different trypsin inhibitors and the total trypsin inhibitor activity varied with different extraction media. Trypsin inhibitors were not detectable in pigeonpea leaves. The profiles of trypsin and chymotrypsin inhibitors in almost all the cultivars of pigeonpea analyzed were similar; however, those in wild relatives were quite variable.  相似文献   

4.
Protein bodies were prepared from the cotyledons of pumpkin (Cucurbita sp.) seeds by employing a nonaqueous isolation method. Both light micrographic examination and the marker enzyme assays have shown that the isolated protein bodies were intact and contamination with other cell organelles or cytoplasmic components was negligible. A proteolytic enzyme catalyzing the limited hydrolysis of carboxymethylated γ′ chain of globulin was found to be present in the protein bodies. The specific activity in the protein body (18 units per milligram protein) was higher than that in the whole cell extract (13 units per milligram protein), indicating that the limited proteolytic enzyme was localized in the protein body.

After lysis of the protein bodies using hypotonic buffer solution, the suborganellar components (matrix, membranes, and crystalloids) were separated by sucrose density gradient centrifugation. The crystalloid was composed of only globulin, a major seed protein. The major proteins of matrix and membrane fractions were shown to have mol wt of approximately 10,000. About 90% of the limited proteolytic activity was found in the matrix region.

  相似文献   

5.
Reactions of rabbit alpha-2-macroglobulin with methylamine and trypsin were studied and the results were compared with those obtained for previously described 2-macroglobulins from other species. Rabbit alpha-2-macroglobulin was cleaved by trypsin at a number of sites, whereas the human homologue was split essentially only in the "bait" region into two fragments of similar sizes. Reaction of native or methylamine-treated rabbit alpha-2-macroglobulin with trypsin resulted in a substantial decrease in the intensity of fluorescence induced by binding of 6-(p-toluidino)-2-naphthalenesulfonate or bis(8-anilino-1-naphthalenesulfonate). Under the same conditions, the fluorescence of the human protein increased. The time course of the reaction of rabbit alpha-2-macroglobulin with methylamine was studied by measuring (i) the generation of thiol groups, (ii) the decrease in trypsin-inhibiting activity with remazol brilliant blue hide powder as the substrate, and (iii) the decrease in trypsin-protein amidase activity. The thiol appearance reaction exhibited a multiphasic time course. The initial phase was found to follow second-order kinetics with an apparent rate constant of 1.2 M-1.s-1. Under the same conditions, the human protein showed monophasic kinetics with a rate constant of 12 M-1.s-1. Both the trypsin-inhibiting activity and the trypsin-protein amidase activity concurrently decreased at a slower rate than the thiol appearance. These results indicate that rabbit alpha-2-macroglobulin is more stable to nucleophilic attack by methylamine but less resistant to proteolysis by trypsin than the human homologue, and that the final conformation induced by methylamine differs considerably from that induced by trypsin.  相似文献   

6.
A. Pusztai 《Planta》1972,107(2):121-129
Summary A number of proteins with trypsin-inhibitory activity was separated by isoelectric focusing and their amounts measured in the extracts of the seeds of kidney bean at various stages of germination up to 16 days.The total trypsin inhibitor content of the dormant seed, 2.2 mg per g bean rose to about 3.6 mg by the seventh day and declined slowly after the tenth day of germination. The individual trypsin inhibitors however, appeared to change independently of each other and some components disappeared almost completely with the progress of germination. The emergence of an inhibitor not found in the dormant seed was also observed. Some of the inhibitor proteins attained a maximum concentration by the 7–8th day of germination. This coincided with a similar maximum in the general protein and proteolytic enzyme content of the germinating bean seeds. The results obtained suggested that the main function during germination of these protein components might not be related to their trypsin-inhibitory activity.  相似文献   

7.
Pepper seeds are slow to germinate and emergence is often non-uniform and incomplete, reducing gains from this cash crop. This study investigated the effects of pineapple stem- derived protease (stem bromelain) based priming on pepper seed germination in relation to reserve mobilization (specifically, proteins and amino acids), germination, emergence and plant growth. These parameters were compared across two controls, (1) unsoaked seeds and (2) seeds soaked in deionized water, and seeds soaked in pineapple stem bromelain crude extract (treatment). Seeds were soaked in bromelain crude extract possessing a proteolytic activity of 6.25 tU or deionized water (first control) for 3 h at 35 °C. Light microscopy revealed an abundance of protein bodies in the endosperm of the seeds prior to imbibition. When observed for a period of 96 h, these bodies were progressively degraded, with the rate of this degradation being fastest in bromelain-treated seeds. Quantitative analysis of protein levels confirmed this observation: 17.2 mg proteins/g FW at 120 h after priming in bromelain-treated seeds compared with 22.1 mg/g FW in controls (average). The bromelain treatment also increased levels of free amino acids from 3.9 mg/g FW in the controls to 4.6 mg/g FW after 120 h of imbibition. Germination and emergence percentages were initially higher in bromelain-treated seeds: 92.0% germination in bromelain-treated seeds vs. ~ 52.2% in the controls at 18 d; 100% emergence in protease-treated seeds vs. ~ 72.2% in the controls at 18 d. However, these parameters were comparable across the treatment and the controls at 28 d. Importantly, plant fresh and dry weights were significantly higher when seeds were primed with bromelain. The results suggest the use of bromelain extracts for priming pepper seeds based on their proteolytic activity, since germination is dependent on the availability of crude protein and essential amino acids. The benefits of bromelain seed priming appear to translate into improved seedling growth as well.  相似文献   

8.
The channel-forming protein aerolysin is secreted as a protoxin which can be activated by proteolytic removal of a C-terminal peptide. The activation and subsequent oligomerization of aerolysin were studied using a variety of spectroscopic techniques. Mass spectrometric determination of the molecular weights of proaerolysin and aerolysin permitted identification of the sites at which the protoxin is processed by trypsin and chymotrypsin. The results of far- and near-UV circular dichroism measurements indicated that processing with trypsin does not lead to major changes in secondary or tertiary structure of the protein. An increase in tryptophan fluorescence intensity and a small red shift in the maximum emission wavelength of tryptophans could be observed, suggesting that there is a change in the environment of some of the tryptophans. There was also a dramatic increase in the binding of the hydrophobic fluorescent probe 1-anilino-8-naphthalenesulfonate during activation, leading us to conclude that a hydrophobic region in the protein is exposed by trypsin treatment. Using measurements of light scattering, various parameters influencing oligomerisation of trypsin-activated aerolysin were determined. Oligomerization rates were found to increase with the concentration of aerolysin, whereas they decreased with increasing ionic strength.  相似文献   

9.
Plant proteinase inhibitors are natural plant defense agents against pest and predators. Many plant serine proteinase inhibitors have been purified and characterized particularly from the seeds of Leguminosae family. In this study, some common fruit plant seeds were evaluated for proteinase inhibitory activity. The seed extract of six fruit plants (Prunus domestics, Prunus persica, Prunus amygdalus, Prunus armeniaca, Citrus aurentium and Aegle marmilos) showed significant inhibitory activity against trypsin. The seed extract of P. domestica showed highest trypsin inhibitory activity (133.81 TIU mg?1 protein).The highest protein content was found in P. persica and P. armeniaca (106.90 and 105.52 mg g?1 flour respectively). Zymogram analysis showed variable number of trypsin inhibitor isoforms ranging from single band for A. marmilos to four isoforms for P. domestica and P. armeniaca. The seed extract of all plants, except C. aurentium, exhibited trypsin inhibitory activity over a broad range of pH and temperature.The inhibitory activity in seed extract of A. marmilos was found to be the most stable at higher temperature retaining almost 60% of inhibitory activity at 90 °C.  相似文献   

10.
The enzymic conversion of proglobulin to globulin catalyzed by the extracts of vacuoles isolated from developing pumpkin (Cucurbita sp. cv Kurokawa Amakuri Nankin) cotyledons was investigated. The endoplasmic reticulum fraction isolated from the developing cotyledons pulselabeled with [35S]methionine was shown to contain mainly the radiolabeled proglobulin, which was used as a substrate for assaying the proteolytic processing in vitro. The vacuolar extracts catalyzed the proteolytic processing of the proglobulin molecule to produce globulin containing two kinds of polypeptide chains, γ and δ. The pH optimum for the vacuole-mediated conversion was at pH 5.0. The proteolytic processing of proglobulin by the vacuolar extracts was inhibited in the presence of various thiol reagents, e.g. p-chloromercuribenzoate, N-ethylmaleimide, iodoacetic acid, Hg2+, and Cu2+, but not phenylmethylsulfonyl fluoride, EDTA, o-phenanthroline, leupeptin, antipain, pepstatin, chymostatin, or pumpkin trypsin inhibitor, and was activated in the presence of dithiothreitol and cysteine, indicating that the processing enzyme is a thiol protease. The suborganellar fractionation of the vacuoles showed that the processing activity was localized in the matrix fraction, but not in the membrane or crystalloid fractions. During the seed development, the enzyme was shown to increase, exhibiting the maximal activity at the late developmental stage. The matrix fraction of the protein bodies isolated from the dry castor bean (Ricinus communis) exhibited the processing activity toward the pumpkin proglobulin molecules in the same manner as that by the matrix fraction of pumpkin vacuoles.  相似文献   

11.
An assay using fluorogenic peptides based on the monomer/excimer fluorescence features of pyrene was developed to measure the proteolytic activity of trypsin, a serine protease. Two pyrene moieties were incorporated into the respective N- and C-terminus of the peptides as (pyrene)-C-Xaa-C-(pyrene), where Xaa represents amino acid residues of 5-, 6-, 7-, or 8-mer containing the cleavage site of trypsin. The proteolytic cleavage of the substrates led to an increase in monomer fluorescence and a decrease in excimer fluorescence of pyrene. Kinetic parameters (k(cat) and K(m)) for the enzymatic hydrolysis of the substrates were successfully determined. The parameters are dependent on the chain length of the substrate and optimal catalytic activity was obtained with substrates that consisted of 9 or 10 amino acid residues. The present assay system is sensitive and the preparation of the substrate is very simple. We suggest that this method may be suitable for high-throughput screening and also applicable to the characterization of other proteases.  相似文献   

12.
H. V. Davies  J. M. Chapman 《Planta》1980,149(3):288-291
An analysis of the in vitro activities of proteolytic enzymes from cotyledons of germinating cucumber seeds has been carried out and the effects of protein degradation products on such activities monitored. Aminopeptidase activity is substantially inhibited with either L-leucine or L-phenylalanine and trypsin activity with L-arginine. Aminopeptidase activity was also markedly reduced in the presence of individual di- and tripeptides. Of the peptides tested, however, only L-tryptophyl-L-phenylalanine inhibited the degradation of native cucumber seed protein by the endogenous cucumber seed protease(s) (autodigestive activity).Abbreviations TCA trichloroacetic acid - L-leuglygly L-leucylglycylglycine - L-pheglygly L-phenylalanylglycylglycine - L-phe-L-leu L-phenylalanyl-L-leucine - L-leu-L-phe L-leucyl-L-phenylalanine - L-tryp-L-phe L-tryptophyl-L-phenylalanine - LPA L-leucine-p nitroanilide - BAPNA -N-benzoyl-DL-arginine-p nitroanilide - ADA autodigestive activity  相似文献   

13.
Calmodulin was removed from brain cytosol by DEAE-52 chromatography or by affinity chromatography employing fluphenazine-Sepharose. The substrates phosphorylated by endogenous protein kinase after chromatography differed depending on the method used, and both chromatographic methods altered the phosphorylation pattern as compared to untreated cytosol. Cytosol, chromatographed on fluphenazine-Sepharose, retained most of the characteristics of untreated cytosol. Both calmodulin and phospholipids increased the phosphorylation of specific but separate brain cytosol proteins in a Ca2+-dependent manner. The effects of phospholipids could be mimicked by the detergent, sodium dodecyl sulfate, and the hydrophobic probe, 8-anilino-1-naphthalenesulfonate. Furthermore, the calmodulin-induced increase in phosphorylation, but not that produced by phospholipids, was blocked by 8-anilino-1-naphthalenesulfonate. These results suggest that the effects of phospholipids may not be due to the presence of a specific phospholipid-sensitive protein kinase in cytosol, but rather to a general interaction of hydrophobic probes with either specific substrate proteins or with the Ca2+-calmodulin-dependent protein kinase itself.  相似文献   

14.
Changes in the levels of thiamin-binding globulin and thiamin in wheat seeds during maturation and germination were studied. The thiamin-binding activity of the seed proteins increased with seed development after flowering. The thiamin content of the seeds also increased with development. Thiamin-binding activity decreased during seed germination. On the other hand, immunological analysis using an antibody directed against the thiamin-binding protein isolated from wheat seeds showed that the thiamin-binding globulin accumulated in the aleurone layer of the seeds during maturation, and then the protein was degraded and disappeared during seed germination. These results suggested that the thiamin-binding globulin of wheat seeds was synthesized and accumulated in the aleurone layer of the seeds with seed development, similar to the thiamin-binding albumin in sesame seeds, and that thiamin bound to the thiamin-binding globulin in the dormant wheat seeds for germ growth during germination.  相似文献   

15.
Proteolytic enzymes were characterized in the midgut and the excreta of the stable fly Stomoxys calcitrans (L) with proteins, synthetic substrates, and inhibitors. Inhibition studies suggested trypsinlike activity in sugar-fed fly midguts, whereas excreta and blood-fed fly guts exhibited other proteases. Trypsinlike activity in midguts removed 20 and 30 h after a blood meal increased from 20% to 50% of the total proteolytic enzymes present. Trypsinlike activity was inhibited with human sera, trypsin-specific inhibitors, and a protein isolated from the stable fly thorax. When human albumin and globulin fractions were incubated with trypsinlike enzymes isolated from the midgut and excreta, the albumin fraction was less inhibitory than the globulin fractions and was readily hydrolyzed by the proteolytic enzymes. These results may indicate that the proteolytic enzymes produce an abortive complex with the globulin fractions of the sera. Such a complex may explain the temporary inhibition of proteolysis by the blood meal. Soybean trypsin inhibitor fed to stable flies caused 50% inhibition in proteolytic activity in the midguts of sugar-fed stable flies and 25% inhibition in the midguts of blood-fed stable flies. Complete inhibition of proteolytic enzyme activity was achieved only in vitro. pH profiles of proteolytic enzyme activity isolated from the excreta of blood-fed stable flies indicated that several proteolytic enzymes were excreted.  相似文献   

16.
A mutant of the Escherichia coli lactose repressor (BG124) in which serine at position 77 is replaced by leucine has been examined by physical methods. Consistent with the phenotypic character of this i-d mutant, BG124 protein did not bind lactose operator specifically, but did bind to DNA nonspecifically. Titration with inducer monitoring tryptophan fluorescence changes yielded a biphasic saturation curve, and Scatchard and Hill plots of the fluorescence and equilibrium dialysis data demonstrated heterogeneity of inducer binding sites. Although ultraviolet difference spectra and potassium iodide quenching of fluorescence indicated that BG124 repressor has structural distinctions from wild-type protein, circular dichroism spectra and acrylamide quenching of fluorescence for the two proteins were quite similar. A significantly greater increase of 1-anilino-8-naphthalenesulfonate fluorescence was observed in the presence of mutant versus wild-type repressor. Unlike wild-type behavior, changes in both 1-anilino-8-naphthalenesulfonate fluorescence intensity and maximum emission wavelength in response to inducer were found for the BG124 protein. These results are consistent with conformational alterations in the interface between NH2-terminal and core domains of this mutant repressor. The single amino acid alteration in the hinge between the core and NH2 terminus yields conformational effects which influence physical and functional properties associated with both domains.  相似文献   

17.
M A Webb  J S Lindell 《Plant physiology》1993,103(4):1235-1241
Allantoinase catalyzes the hydrolysis of allantoin to allantoic acid, a reaction important in both biogenesis and degradation of ureides. Ureide production in cotyledons of germinating soybean (Glycine max L.) seeds has not been studied extensively but may be important in mobilizing nitrogen reserves. Allantoinase was purified approximately 2500-fold from a crude extract of soybean seeds by differential centrifugation, heat treatment, ammonium sulfate fractionation, ethanol fractionation, and fast protein liquid chromatography (Pharmacia) with Mono-Q and Superose columns. The purified enzyme had a subunit size of 30 kD. Polyclonal antibodies produced against the purified protein titrated allantoinase activity in a crude extract of seed proteins. Antibodies recognized the 30-kD band in western blot analysis of crude seed extracts, indicating that they were specific for allantoinase.  相似文献   

18.
The papaya Kunitz-type trypsin inhibitor, a 24-kDa glycoprotein, was purified to homogeneity. The purified inhibitor stoichiometrically inhibits bovine trypsin in a 1:1 molar ratio. Circular dichroism and infrared spectroscopy analyses demonstrated that the inhibitor contains extensive beta-sheet structures. The inhibitor was found to retain its full inhibitory activity over a broad pH range (1.5-11.0) and temperature (up to 80 degrees C), besides being stable at very high concentrations of strong chemical denaturants (e.g., 5.5 M guanidine hydrochloride). The inhibitor retained its compact structure over the pH range analyzed as shown by 8-anilino-1-naphtalenesulfonic acid binding characteristics, excluding the formation of some relaxed or molten state. Exposure to 2.5 mM dithiothreitol for 120 min caused a 33% loss of the inhibitory activity, while a loss of 75% was obtained in the presence of 20 mM of dithiothreitol during the same time period. A complete loss of the inhibitory activity was observed after incubation with 50 mM dithiothreitol for 5 min. Incubation of the inhibitor with general proteases belonging to different families revealed its extraordinary resistance to proteolysis in comparison with the soybean trypsin inhibitor, the archetypal member of the Kunitz-type inhibitors family. The inhibitor also exhibited a remarkable resistance to proteolytic degradation against pepsin for at least a 24-h incubation period. Instead, the soybean inhibitor was completely degraded after 2 h incubation with this aspartic protease. All these data demonstrated the high stability of the papaya trypsin inhibitor.  相似文献   

19.
We report the accumulation of an acid unfolded (UA) state and a molten globule (MG) state in the acid induced unfolding pathway of unmodified preparation of stem bromelain (SB) [EC 3.4.22.32], a cystein protease from Ananas cosmosus. The conformation of SB was examined over the pH 0.8-3 regions by circular dichroism, tryptophanyl fluorescence, 1-anilino-8-naphthalenesulfonate (ANS) binding, and tryptophanyl fluorescence quenching study. The pH 0.8-3.0 regions were selected to study the acid induced unfolding of SB because no autolysis of the enzyme was observed in these pH regions. The results show that SB at pH 2.0 is maximally unfolded and characterizes by significant loss of secondary structure ( approximately 80%) and almost complete loss of tertiary contacts. However, on further decreasing the pH to 0.8 a MG state was observed, with secondary structure content similar to that of native protein but no tertiary structure. We also made a comparative study of these acid induced states of SB with acid induced states of modified stem bromelain (mSB), reported by our group earlier [Eur. J. Biochem. (2002) 269, 47-52]. We have shown that modification of SB for inactivation significantly affects the N-UA transition but neither affects the UA-MG transition nor the stability of the MG state.  相似文献   

20.
The effect of oxidized dithiothreitol (DTT) on the conformation and function of arginine kinase from shrimp Feneropenaeus chinensis was investigated with the methods of intrinsic fluorescence, ANS fluorescence, size exclusion chromatography (SEC), sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE), and activity assay. The excess molecular oxidized dithiothreitol could result in a loss of activity and conformational change of arginine kinase. The oxidized arginine kinase was characterized by monitoring the changes of fluorescence emission wavelength (excitation wavelength: 295 nm) and the intensity of 1-anilino-8-naphthalenesulfonate (ANS) binding (excitation wavelength: 380 nm) to the protein. The results of fluorescence spectra showed that the presence of oxidized DTT could result in a marked change in the enzyme tertiary structure. The conformational changes of native and oxidized arginine kinase are induced by the presence of the full set of transition state analog (TSA) components. The results of size exclusion chromatography and SDS-PAGE indicated that no disulfide bond was formed among the protein molecules in the oxidized-DTT solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号