首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquitination is important for a broad array of cellular functions. Although reversal of this process, de-ubiquitination, most probably represents an important regulatory step contributing to cellular homeostasis, the specificity and properties of de-ubiquitination enzymes remain poorly understood. Here, we show that the Saccharomyces cerevisiae ubiquitin protease Ubp3 requires an additional protein, Bre5, to form an active de-ubiquitination complex that cleaves ubiquitin from specific substrates. In particular, this complex rescues Sec23p, a COPII subunit essential for the transport between the endoplasmic reticulum and the Golgi apparatus, from degradation by the proteasome. This probably contributes to maintaining and adapting a Sec23 expression level that is compatible with an efficient secretion pathway, and consequently with cell growth and viability.  相似文献   

2.
Yeast Ubp3 and its co-factor Bre5 form a deubiquitylation complex to regulate protein transport between the endoplasmic reticulum and Golgi compartments of the cell. A novel N-terminal domain of the Ubp3 catalytic subunit forms a complex with the NTF2-like domain of the Bre5 regulatory subunit. Here, we report the X-ray crystal structure of an Ubp3-Bre5 complex and show that it forms a symmetric hetero-tetrameric complex in which the Bre5 NTF2-like domain dimer interacts with two L-shaped beta-strand-turn-alpha-helix motifs of Ubp3. The Ubp3 N-terminal domain binds within a hydrophobic cavity on the surface of the Bre5 NTF2-like domain subunit with conserved residues within both proteins interacting predominantly through antiparallel beta-sheet hydrogen bonds and van der Waals contacts. Structure-based mutagenesis and functional studies confirm the significance of the observed interactions for Ubp3-Bre5 association in vitro and Ubp3 function in vivo. Comparison of the structure to other protein complexes with NTF2-like domains shows that the Ubp3-Bre5 interface is novel. Together, these studies provide new insights into Ubp3 recognition by Bre5 and into protein recognition by NTF2-like domains.  相似文献   

3.
Ubiquitin‐dependent processes can be antagonized by substrate‐specific deubiquitination enzymes involved in many cellular functions. In this study, we show that the yeast Ubp3–Bre5 deubiquitination complex interacts with both the chaperone‐like Cdc48, a major actor of the ubiquitin and proteasome system, and Ufd3, a ubiquitin‐binding cofactor of Cdc48. We observed that these partners are required for the Ubp3–Bre5‐dependent and starvation‐induced selective degradation of yeast mature ribosomes, also called ribophagy. By contrast, proteasome‐dependent degradation does not participate in this process. Our data favour the idea that these factors cooperate to recognize and deubiquitinate specific substrates of ribophagy before their vacuolar degradation.  相似文献   

4.
Ubp3/Bre5 complex is a substrate-specific deubiquitylating enzyme which mediates deubiquitylation of Sec23, a component of the COPII complex involved in the transport between endoplasmic reticulum and Golgi apparatus [1]. Here we show that ubiquitylation of Sec23 is controlled by the Rsp5 ubiquitin ligase both in vivo and in vitro. We have recently identified Cdc48, a chaperone-like that plays a key role in the proteasomal escort pathway, as a partner of the Ubp3/Bre5 complex [2]. We now found that cdc48 thermosensitive mutant cells not only accumulate ubiquitylated form of Sec23 but also display a stabilization of this protein at the restrictive temperature. This indicates that Cdc48 controls the proteasome-mediated degradation of Sec23. Our data favor the idea that Cdc48 plays a key role in deciphering fates of ubiquitylated Sec23 to degradation or deubiquitylation/stabilization via its cofactors.  相似文献   

5.
6.
Neo1p from Saccharomyces cerevisiae is an essential P-type ATPase and potential aminophospholipid translocase (flippase) in the Drs2p family. We have previously implicated Drs2p in protein transport steps in the late secretory pathway requiring ADP-ribosylation factor (ARF) and clathrin. Here, we present evidence that epitope-tagged Neo1p localizes to the endoplasmic reticulum (ER) and Golgi complex and is required for a retrograde transport pathway between these organelles. Using conditional alleles of NEO1, we find that loss of Neo1p function causes cargo-specific defects in anterograde protein transport early in the secretory pathway and perturbs glycosylation in the Golgi complex. Rer1-GFP, a protein that cycles between the ER and Golgi complex in COPI and COPII vesicles, is mislocalized to the vacuole in neo1-ts at the nonpermissive temperature. These phenotypes suggest that the anterograde protein transport defect is a secondary consequence of a defect in a COPI-dependent retrograde pathway. We propose that loss of lipid asymmetry in the cis Golgi perturbs retrograde protein transport to the ER.  相似文献   

7.
Transport carriers operating between early compartments in the mammalian secretory pathway have to travel long distances in the cell by mostly relying on the microtubule network and its associated motor proteins. Although anterograde transport from the endoplasmic reticulum (ER) to the Golgi complex is mediated by cytoplasmic dynein, the identity of the motor(s) mediating transport in the retrograde direction is presently unclear. Some studies have suggested that the heterotrimeric kinesin-2 complex plays a role in transport between the ER and the Golgi. Here, we have examined kinesin-2 function by using an RNA-interference approach to downregulate the expression of KAP3, the nonmotor subunit of kinesin-2, in HeLa cells. KAP3 silencing results in the fragmentation of the Golgi apparatus and a change in the steady-state localization of the KDEL-receptor (KDEL-R). Using specific transport assays, we show that the rate of anterograde secretory traffic is unaffected in these cells but that KDEL-R-dependent retrograde transport is strongly abrogated. Our data strongly support a role for kinesin-2 in the KDEL-R-/COPI-dependent retrograde transport pathway from the Golgi complex to the ER.  相似文献   

8.
The cytoplasm to vacuole (Cvt) trafficking pathway in S. cerevisiae is a constitutive biosynthetic pathway required for the transport of two vacuolar enzymes, aminopeptidase I (Ape1p) and alpha-mannosidase (Ams1p), to the vacuole. Ape1p and Ams1p bind to their receptor, Atg19p, in the cytosol to form a Cvt complex, which then associates with a membrane structure that envelops the complex before fusing with the vacuolar membrane. Ubiquitin-like modifications are required for both Cvt and macroautophagy, but no role for ubiquitin itself has been described. Here, we show that the deubiquitinating enzyme Ubp3p interacts with Atg19p. Moreover, Atg19p is ubiquitinated in vivo, and Atg19p-ubiquitin conjugates accumulate in cells lacking either Ubp3p or its cofactor, Bre5p. Deletion of UBP3 also leads to decreased targeting of Ape1p to the vacuole. Atg19p is ubiquitinated on two lysine residues, Lys(213) and Lys(216), which, when mutated, reduce the interaction of Atg19p with Ape1p. These results suggest that both ubiquitination and deubiquitination of Atg19p are required for its full function.  相似文献   

9.
Retrograde transport of pertussis toxin in the mammalian cell   总被引:1,自引:0,他引:1  
Pertussis toxin (PT), an AB5 exotoxin and important virulence factor of Bordetella pertussis , is hypothesized to traffic along a retrograde transport pathway in mammalian cells. This pathway includes endosomal uptake, transport to the Golgi complex and endoplasmic reticulum (ER), dissociation of the holotoxin in the ER and translocation of the A subunit (S1) to the cytosol, where it ADP-ribosylates its G protein targets. In this study, PT was visualized in the Golgi complex by immunofluorescence microscopy, but transport beyond the Golgi could not be detected by this method. To gain evidence for the retrograde pathway, peptide tags with target sites for tyrosine sulfation (a trans -Golgi network-specific activity) and N-glycosylation (an ER-specific activity) were added to either S1 or a B subunit (S4) of PT. Modified PT retained in vitro enzymatic and cellular activity as assessed by ADP-ribosylation assays. Peptide-tagged PT subunits were found to be modified by tyrosine sulfation, and, at later time points, by N-glycosylation. Appearance of sulfated PT subunits was inhibited by pretreatment of cells with brefeldin A. In some cell types, much of the S4 glycosylation, but not that of S1, was resistant to endoglycosidase H, suggesting that, subsequent to core N-glycosylation in the ER, S4 was transported anterograde to the Golgi, where further glycosylation occurred. When cells were pretreated with methyl-β-cyclodextrin, sulfation of PT subunits and PT cytotoxicity were reduced, suggesting that PT transport is dependent on cellular cholesterol content. These data support a retrograde pathway for PT intracellular transport.  相似文献   

10.
Sec1p/Munc18 (SM) proteins are essential for membrane fusion events in eukaryotic cells. Here we describe a systematic, structure-based mutational analysis of the yeast SM protein Sly1p, which was previously shown to function in anterograde endoplasmic reticulum (ER)-to-Golgi and intra-Golgi protein transport. Five new temperature-sensitive (ts) mutants, each carrying a single amino acid substitution in Sly1p, were identified. Unexpectedly, not all of the ts mutants exhibited striking anterograde ER-to-Golgi transport defects. For example, in cells of the novel sly1-5 mutant, transport of newly synthesized lysosomal and secreted proteins was still efficient, but the ER-resident Kar2p/BiP was missorted to the outside of the cell, and two proteins, Sed5p and Rer1p, which normally shuttle between the Golgi and the ER, failed to relocate to the ER. We also discovered that in vivo, Sly1p was associated with a SNARE complex formed on the ER, and that in vitro, the SM protein directly interacted with the ER-localized nonsyntaxin SNAREs Use1p/Slt1p and Sec20p. Furthermore, several conditional mutants defective in Golgi-to-ER transport were synthetically lethal with sly1-5. Together, these results indicate a previously unrecognized function of Sly1p in retrograde transport to the endoplasmic reticulum.  相似文献   

11.
SNAREs on transport vesicles and target membranes are required for vesicle targeting and fusion. Here we describe a novel yeast protein with a typical SNARE motif but with low overall amino acid homologies to other SNAREs. The protein localized to the endoplasmic reticulum (ER) and was therefore named Use1p (unconventional SNARE in the ER). A temperature-sensitive use1 mutant was generated. use1 mutant cells accumulated the ER forms of carboxypeptidase Y and invertase. More specific assays revealed that use1 mutant cells were defective in retrograde traffic to the ER. This was supported by strong genetic interactions between USE1 and the genes encoding SNAREs in retrograde traffic to the ER. Antibodies directed against Use1p co-immunoprecipitated the SNAREs Ufe1p, myc-Sec20p and Sec22p, which form a SNARE complex required for retrograde traffic from the Golgi to the ER, but neither Bos1p nor Bet1p (members of the SNARE complex in anterograde traffic to the Golgi). Therefore, we conclude that Use1p is a novel SNARE protein that functions in retrograde traffic from the Golgi to the ER.  相似文献   

12.
Membrane traffic between the endoplasmic reticulum (ER) and the Golgi complex is regulated by two vesicular coat complexes, COPII and COPI. COPII has been implicated in the selective packaging of anterograde cargo into coated transport vesicles budding from the ER [1]. In mammalian cells, these vesicles coalesce to form tubulo-vesicular transport complexes (TCs), which shuttle anterograde cargo from the ER to the Golgi complex [2] [3] [4]. In contrast, COPI-coated vesicles are proposed to mediate recycling of proteins from the Golgi complex to the ER [1] [5] [6] [7]. The binding of COPI to COPII-coated TCs [3] [8] [9], however, has led to the proposal that COPI binds to TCs and specifically packages recycling proteins into retrograde vesicles for return to the ER [3] [9]. To test this hypothesis, we tracked fluorescently tagged COPI and anterograde-transport markers simultaneously in living cells. COPI predominated on TCs shuttling anterograde cargo to the Golgi complex and was rarely observed on structures moving in directions consistent with retrograde transport. Furthermore, a progressive segregation of COPI-rich domains and anterograde-cargo-rich domains was observed in the TCs. This segregation and the directed motility of COPI-containing TCs were inhibited by antibodies that blocked COPI function. These observations, which are consistent with previous biochemical data [2] [9], suggest a role for COPI within TCs en route to the Golgi complex. By sequestering retrograde cargo in the anterograde-directed TCs, COPI couples the sorting of ER recycling proteins [10] to the transport of anterograde cargo.  相似文献   

13.
Exportable proteins that have significant defects in nascent polypeptide folding or subunit assembly are frequently retained in the endoplasmic reticulum and subject to endoplasmic reticulum-associated degradation by the ubiquitin-proteasome system. In addition to this, however, there is growing evidence for post-endoplasmic reticulum quality control mechanisms in which mutant or non-native exportable proteins may undergo anterograde transport to the Golgi complex and post-Golgi compartments before intracellular disposal. In some instances, these proteins may undergo retrograde transport back to the endoplasmic reticulum with re-targeting to the endoplasmic reticulum-associated degradation pathway; in other typical cases, they are targeted into the endosomal system for degradation by vacuolar/lysosomal proteases. Such quality control targeting is likely to involve recognition of features more commonly expressed in mutant proteins, but may also be expressed by wild-type proteins, especially in cells with perturbation of local environments that are essential for normal protein trafficking and stability in the secretory pathway and at the cell surface .  相似文献   

14.
15.
The morphology and subcellular positioning of the Golgi complex depend on both microtubule and actin cytoskeletons. In contrast to microtubules, the role of actin cytoskeleton in the secretory pathway in mammalian cells has not been clearly established. Using cytochalasin D, we have previously shown that microfilaments are not involved in the endoplasmic reticulum–Golgi membrane dynamics. However, it has been reported that, unlike botulinum C2 toxin and latrunculins, cytochalasin D does not produce net depolymerization of actin filaments. Therefore, we have reassessed the functional role of actin microfilaments in the early steps of the biosynthetic pathway using C2 toxin and latrunculin B. The anterograde endoplasmic reticulum-to-Golgi transport monitored with the vesicular stomatitis virus-G protein remained unaltered in cells treated with cytochalasin D, latrunculin B or C2 toxin. Conversely, the brefeldin A-induced Golgi membrane fusion into the endoplasmic reticulum, the Golgi-to-endoplasmic reticulum transport of a Shiga toxin mutant form, and the subcellular distribution of the KDEL receptor were all impaired when actin microfilaments were depolymerized by latrunculin B or C2 toxin. These findings, together with the fact that COPI-coated and uncoated vesicles contain β/γ-actin isoforms, indicate that actin microfilaments are involved in the endoplasmic reticulum/Golgi interface, facilitating the retrograde Golgi-to-endoplasmic reticulum membrane transport, which could be mediated by the orchestrated movement of transport intermediates along microtubule and microfilament tracks.  相似文献   

16.
In the last eighteen months, it has become clear that some classes of proteins are actively recruited into endoplasmic reticulum export carriers, whereas others are exported as bulk-flow cargo. Subsequent transport to the Golgi is mediated by tubulovesicular membranes. The anterograde membrane flow is compensated for by a retrograde pathway, which, in addition to the recycling of membrane and proteins to the endoplasmic reticulum, may play a role in anterograde cargo concentration.  相似文献   

17.
Fragmentation of the Golgi ribbon is a common feature of many neurodegenerative diseases but little is known about the causes of this alteration. In Parkinson’s disease, it is believed to be the consequence of an ER–Golgi transport imbalance and/or of cytoskeleton alterations. In the present study, we analyze the mechanisms involved in Golgi fragmentation in differentiated PC12 cells treated with 6-hydroxydopamine or methamphetamine as cellular models of Parkinson’s disease. Our data demonstrate that Golgi fragmentation precedes and might trigger the aggregation of α-synuclein and the formation of inclusions, alterations in anterograde and retrograde transport between the endoplasmic reticulum and Golgi complex, and cytoskeleton damage. In contrast, fragmentation is directly related with alterations in the levels of Rab1, 2 and 8 and the SNARE protein syntaxin 5. Thus, overexpression of Rab1 and 8 and depletion of Rab2 and syntaxin 5 rescue the Golgi morphology. In conclusion, the homeostasis of a limited number of Rab and SNARE proteins is important for understanding the cytopathology of Parkinson’s disease.  相似文献   

18.
Bet3p, a component of a large novel complex called TRAPP, acts upstream of endoplasmic reticulum (ER)-Golgi SNAREs. Unlike the SNAREs, which reside on multiple compartments, Bet3p is localized exclusively to Golgi membranes. While other proteins recycle from the Golgi to the ER, Bet3p and other TRAPP subunits remain associated with this membrane under conditions that block anterograde traffic. We propose that the persistent localization of TRAPP to the Golgi may be important for its role in docking vesicles to this membrane. Consistent with this proposal, we find that transport vesicles fail to bind to Golgi membranes in vitro in the absence of Bet3p. Binding is restored by the addition of cytosol containing Bet3p. These findings indicate that TRAPP stably associates with the Golgi and is required for vesicle docking.  相似文献   

19.
20.
The Dynamics of Golgi Protein Traffic Visualized in Living Yeast Cells   总被引:16,自引:13,他引:3       下载免费PDF全文
We describe for the first time the visualization of Golgi membranes in living yeast cells, using green fluorescent protein (GFP) chimeras. Late and early Golgi markers are present in distinct sets of scattered, moving cisternae. The immediate effects of temperature-sensitive mutations on the distribution of these markers give clues to the transport processes occurring. We show that the late Golgi marker GFP-Sft2p and the glycosyltransferases, Anp1p and Mnn1p, disperse into vesicle-like structures within minutes of a temperature shift in sec18, sft1, and sed5 cells, but not in sec14 cells. This is consistent with retrograde vesicular traffic, mediated by the vesicle SNARE Sft1p, to early cisternae containing the target SNARE Sed5p. Strikingly, Sed5p itself moves rapidly to the endoplasmic reticulum (ER) in sec12 cells, implying that it cycles through the ER. Electron microscopy shows that Golgi membranes vesiculate in sec18 cells within 10 min of a temperature shift. These results emphasize the dynamic nature of Golgi cisternae and satisfy the kinetic requirements of a cisternal maturation model in which all resident proteins must undergo retrograde vesicular transport, either within the Golgi complex or from there to the ER, as anterograde cargo advances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号