首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tyrosine kinase Src is present on the Golgi membranes. Its role, however, in the overall function and organization of the Golgi apparatus is unclear. We have found that in a cell line called SYF, which lacks the three ubiquitous Src-like kinases (Src, Yes, and Fyn), the organization of the Golgi apparatus is perturbed. The Golgi apparatus is composed of collapsed stacks and bloated cisternae in these cells. Expression of an activated form of Src relocated the KDEL receptor (KDEL-R) from the Golgi apparatus to the endoplasmic reticulum. Other Golgi-specific marker proteins were not affected under these conditions. Because of the specific effect of Src on the location of KDEL-R, we tested whether protein transport between ER and the Golgi apparatus involves Src. Transport of Pseudomonas exotoxin, which is transported to the ER by binding to the KDEL-R is accelerated by inhibition or genetic ablation of Src. Protein transport from ER to the Golgi apparatus however, is unaffected by Src deletion or inhibition. We propose that Src has an appreciable role in the organization of the Golgi apparatus, which may be linked to its involvement in protein transport from the Golgi apparatus to the endoplasmic reticulum.  相似文献   

2.
Neo1p from Saccharomyces cerevisiae is an essential P-type ATPase and potential aminophospholipid translocase (flippase) in the Drs2p family. We have previously implicated Drs2p in protein transport steps in the late secretory pathway requiring ADP-ribosylation factor (ARF) and clathrin. Here, we present evidence that epitope-tagged Neo1p localizes to the endoplasmic reticulum (ER) and Golgi complex and is required for a retrograde transport pathway between these organelles. Using conditional alleles of NEO1, we find that loss of Neo1p function causes cargo-specific defects in anterograde protein transport early in the secretory pathway and perturbs glycosylation in the Golgi complex. Rer1-GFP, a protein that cycles between the ER and Golgi complex in COPI and COPII vesicles, is mislocalized to the vacuole in neo1-ts at the nonpermissive temperature. These phenotypes suggest that the anterograde protein transport defect is a secondary consequence of a defect in a COPI-dependent retrograde pathway. We propose that loss of lipid asymmetry in the cis Golgi perturbs retrograde protein transport to the ER.  相似文献   

3.
The morphology and subcellular positioning of the Golgi complex depend on both microtubule and actin cytoskeletons. In contrast to microtubules, the role of actin cytoskeleton in the secretory pathway in mammalian cells has not been clearly established. Using cytochalasin D, we have previously shown that microfilaments are not involved in the endoplasmic reticulum–Golgi membrane dynamics. However, it has been reported that, unlike botulinum C2 toxin and latrunculins, cytochalasin D does not produce net depolymerization of actin filaments. Therefore, we have reassessed the functional role of actin microfilaments in the early steps of the biosynthetic pathway using C2 toxin and latrunculin B. The anterograde endoplasmic reticulum-to-Golgi transport monitored with the vesicular stomatitis virus-G protein remained unaltered in cells treated with cytochalasin D, latrunculin B or C2 toxin. Conversely, the brefeldin A-induced Golgi membrane fusion into the endoplasmic reticulum, the Golgi-to-endoplasmic reticulum transport of a Shiga toxin mutant form, and the subcellular distribution of the KDEL receptor were all impaired when actin microfilaments were depolymerized by latrunculin B or C2 toxin. These findings, together with the fact that COPI-coated and uncoated vesicles contain β/γ-actin isoforms, indicate that actin microfilaments are involved in the endoplasmic reticulum/Golgi interface, facilitating the retrograde Golgi-to-endoplasmic reticulum membrane transport, which could be mediated by the orchestrated movement of transport intermediates along microtubule and microfilament tracks.  相似文献   

4.
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.  相似文献   

5.
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.  相似文献   

6.
Clofibrate-induced retrograde Golgi membrane movement was blocked or retarded when NRK cells were treated with sodium azide/2-deoxyglucose, nocodazole, taxol, and destruxin B, indicating that it depends on energy, and the dynamic state of microtubules, and being acidic or vacuolar-type ATPase function. PDMP and phospholipase A2 inhibitors also blocked it. These characteristics are similar to those of brefeldin A (BFA) and nordihydroguaiaretic acid (NDGA), inducers of retrograde Golgi membrane movement. However, clofibrate was distinguished from BFA in that BFA action was insensitive to phospholipase A2 inhibitors and from NDGA in that NDGA stabilized microtubules against nocodazole and its action was almost insensitive to taxol. The trans Golgi network (TGN) was resistant to clofibrate, while BFA and NDGA dispersed it. To our knowledge, clofibrate is the first drug to show such different effects on the Golgi and TGN and, therefore, is expected to be a useful tool to distinguish their architecture and/or membrane dynamics.  相似文献   

7.
Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.  相似文献   

8.
Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.  相似文献   

9.
COPI and COPII are vesicle coat complexes whose assembly is regulated by the ARF1 and Sar1 GTPases, respectively. We show that COPI and COPII coat complexes are recruited separately and independently to ER (COPII), pre-Golgi (COPI, COPII), and Golgi (COPI) membranes of mammalian cells. To address their individual roles in ER to Golgi transport, we used stage specific in vitro transport assays to synchronize movement of cargo to and from pre-Golgi intermediates, and GDP- and GTP-restricted forms of Sar1 and ARF1 proteins to control coat recruitment. We find that COPII is solely responsible for export from the ER, is lost rapidly following vesicle budding and mediates a vesicular step required for the build-up of pre-Golgi intermediates composed of clusters of vesicles and small tubular elements. COPI is recruited onto pre-Golgi intermediates where it initiates segregation of the anterograde transported protein vesicular stomatitis virus glycoprotein (VSV-G) from the retrograde transported protein p58, a protein which actively recycles between the ER and pre-Golgi intermediates. We propose that sequential coupling between COPII and COPI coats is essential to coordinate and direct bi-directional vesicular traffic between the ER and pre-Golgi intermediates involved in transport of protein to the Golgi complex.  相似文献   

10.
《The Journal of cell biology》1995,131(6):1387-1401
The transfer of newly synthesized membrane proteins moving from the rough endoplasmic reticulum (RER) to the Golgi complex has been studied by electron microscopy in HEp-2 cells transfected with cDNAs for chimeric proteins. These proteins consist of a reporter enzyme, horseradish peroxidase (HRP), anchored to the transmembrane domains of two integral membrane proteins, the transferrin receptor and sialyl- transferase. The chimeras are distributed throughout the nuclear envelope, RER, vesicular tubular clusters (VTCs) and a network of tubules in the cis-Golgi area. At 20 degrees C tubules containing chimera connect the RER to the VTCs and to the cis-Golgi network. On transfer to 37 degrees C in the presence of dithiothreitol (DTT), the chimeras are seen to move from the RER and through the Golgi stack. With this temperature shift the direct connections with the RER are lost and free vesicles form; some of these vesicles contain HRP reaction product which is much more concentrated than in the adjacent RER while others lack reaction product entirely. In cells expressing SSHRPKDEL, DAB reaction product remains distributed throughout the RER, the VTCs, and the cis-Golgi network for prolonged periods in the presence of DTT and almost all of the vesicles which form at 37 degrees C are DAB-positive. Together these observations demonstrate that all three chimeras are transported from the RER to the cis-Golgi in free, 40-60-nm vesicles at 37 degrees C. They also suggest that the retrograde traffic which carries SSHRPKDEL back to the RER is probably mediated by vesicles with a similar morphology but which, in cells expressing membrane-anchored chimeras, lack detectable reaction product.  相似文献   

11.
12.
Insights into the function of the Golgi complex have been provided by experiments performed with various inhibitors of membrane trafficking, such as the macrocyclic lactone brefeldin A (BFA), a compound that inhibits constitutive secretion, prevents the formation of coatomer-coated transport vesicles, and stimulates the retrograde movement of Golgi resident enzymes back to the ER. We show here that the structurally unrelated compound clofibrate, a peroxisome proliferator (PP) and hypolipidemic agent, also reversibly disrupts the morphological and functional integrity of the Golgi complex in a manner similar to BFA. In the presence of clofibrate, the forward transport of newly synthesized secretory proteins from the ER to the Golgi is dramatically inhibited. Moreover, clofibrate causes Golgi membranes to travel rapidly in a microtubule-dependent manner back to the ER, forming a hybrid ER–Golgi tubulovesicular membrane network. These affects appear to be independent of clofibrate's ability to stimulate the PP-activated receptor (PPAR) alpha pathway because other PPAR stimulators (DEHP, WY-14643) did not alter the Golgi complex or induce retrograde trafficking. These data suggest that PPAR alpha-independent, clofibrate-sensitive proteins participate in regulating Golgi-to-ER retrograde membrane transport, and, equally importantly, that clofibrate may be used as a pharmacological tool for investigating Golgi membrane dynamics.  相似文献   

13.
The cellular machinery responsible for conveying proteins between the endoplasmic reticulum and the Golgi is being investigated using genetics and biochemistry. A role for vesicles in mediating protein traffic between the ER and the Golgi has been established by characterizing yeast mutants defective in this process, and by using recently developed cell-free assays that measure ER to Golgi transport. These tools have also allowed the identification of several proteins crucial to intracellular protein trafficking. The characterization and possible functions of several GTP-binding proteins, peripheral membrane proteins, and an integral membrane protein during ER to Golgi transport are discussed here.  相似文献   

14.
Rough endoplasmic reticulum (RER) transport vesicles were generated from gastric mucous cell RER microsomes in the presence of labeled precursors of phospholipids. The vesicles contained 7-10% of their proteins in the form of apomucin (cargo), and 80% of de novo synthesized phosphatidylcholine (PC) was incorporated into the vesicular membrane. In the absence of choline and ethanolamine precursors or in the presence of 3 mM N-ethylmaleimide (NEM), an inhibitor of CTP:phosphocholine cytidylyltransferase, formation of the transport vesicles, their enrichment in the newly synthesized PC, and the total synthesis of PC decreased by 86%, whereas in the presence of 3 mM Zn2+, complete blockage of vesicle formation and PC synthesis was observed. Analysis of the mucin-transporting vesicles indicated that the CTP:phosphocholine cytidylyltransferase and 1,2-diacyl-sn-glycerol:CDP-choline phosphotransferase remained associated with transport vesicles released from ER. The enzymes and other proteins separated from the vesicle surface prior to vesicle fusion with Golgi and the process was induced by phosphorylation. Based on the results of this study, it is proposed that the formation of the ER transport vesicles of gastric mucosal cells is in concert with synthesis of phospholipids and thus in part is regulated by phospholipid-synthesizing enzymes that reside on the membrane during its biogenesis and dissociate from its surface once the task is completed.  相似文献   

15.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-studied glycolytic protein with energy production as its implied occupation. It has established itself lately as a multifunctional protein. Recent studies have found GAPDH to be involved in a variety of nuclear and cytosolic pathways ranging from its role in apoptosis and regulation of gene expression to its involvement in regulation of Ca2+ influx from endoplasmic reticulum. Numerous studies also indicate that GAPDH interacts with microtubules and participates in cell membrane fusion. This review is focused on the cytosolic functions of the protein related to vesicular transport. Suggestions for future directions as well as the model of protein polymer structure and possible post-translational modifications as a basis for its multifunctional activities in the early secretory pathway are given.  相似文献   

16.
We have studied the role of a previously described tubulovesicular compartment near the cis-Golgi apparatus in endoplasmic reticulum (ER)-to-Golgi protein transport by light and immunoelectron microscopy in Vero cells. The compartment is defined by a 53-kDa transmembrane protein designated p53. When transport of the vesicular stomatitis virus strain ts045 G protein was arrested at 39.5 degrees C, the G protein accumulated in the ER but had access to the p53 compartment. At 15 degrees C, the G protein was exported from the ER into the p53 compartment which formed a compact structure composed of vesicular and tubular profiles in close proximity to the Golgi. Upon raising the temperature to 32 degrees C, the G protein migrated through the Golgi apparatus while the p53 compartment resumed its normal structure again. These results establish the p53 compartment as the 15 degrees C intermediate of the ER-to-Golgi protein transport pathway.  相似文献   

17.
Dietary long chain fatty acids are absorbed in the intestine, esterified to triacylglycerol, and packaged in the unique lipoprotein of the intestine, the chylomicron. The rate-limiting step in the transit of chylomicrons through the enterocyte is the exit of chylomicrons from the endoplasmic reticulum in prechylomicron transport vesicles (PCTV) that transport chylomicrons to the cis-Golgi. Because chylomicrons are 250 nm in average diameter and lipid absorption is intermittent, we postulated that a unique SNARE pairing would be utilized to fuse PCTV with their target membrane, cis-Golgi. PCTV loaded with [(3)H]triacylglycerol were incubated with cis-Golgi and were separated from the Golgi by a sucrose step gradient. PCTV-chylomicrons acquire apolipoprotein-AI (apoAI) only after fusion with the Golgi. PCTV became isodense with Golgi upon incubation and were considered fused when their cargo chylomicrons acquired apoAI but docked when they did not. PCTV, docked with cis-Golgi, were solubilized in 2% Triton X-100, and proteins were immunoprecipitated using VAMP7 or rBet1 antibodies. In both cases, a 112-kDa complex was identified in nonboiled samples that dissociated upon boiling. The constituents of the complex were VAMP7, syntaxin 5, vti1a, and rBet1. Antibodies to each SNARE component significantly inhibited fusion of PCTV with cis-Golgi. Membrin, Sec22b, and Ykt6 were not found in the 112-kDa complex. We conclude that the PCTV-cis-Golgi SNARE complex is composed of VAMP7, syntaxin 5, Bet1, and vti1a.  相似文献   

18.
The involvement of GTP-binding proteins in the intracellular transport of the secretory glycoprotein alpha 1-antitrypsin was investigated in streptolysin O-permeabilized HepG2 cells. This permeabilization procedure allows ready access to the intracellular milieu of the membrane-impermeant, nonhydrolyzable GTP analog GTP gamma S. In streptolysin O-permeabilized HepG2 cells, the constitutive secretory pathway remains functional and is sensitive to GTP gamma S. Exposure of HepG2 cells to brefeldin A resulted in redistribution of Golgi-resident glycosyltransferases (including both alpha 2----3 and alpha 2----6 sialyltransferases) to the ER. This redistribution was sensitive to GTP gamma S. Our results suggest that GTP-binding proteins are involved in the regulation not only of the anterograde, but also of the retrograde, pathway.  相似文献   

19.
《Gene》1996,169(2):293-294
We characterized rat cDNAs that predict a protein, r-Slyl, which is similar to SLY1, a yeast protein that plays a critical role in endoplasmic reticulum to Golgi apparatus vesicle trafficking. The r-Slyl gene is expressed in all tissues examined  相似文献   

20.
《The Journal of cell biology》1993,122(6):1155-1167
Using a novel in vitro assay which allows us to distinguish vesicle budding from subsequent targeting and fusion steps, we provide the first biological evidence that beta-COP, a component of non-clathrin- coated vesicles believed to mediate intraGolgi transport, is essential for transport of protein from the ER to the cis-Golgi compartment. Incubation in the presence of beta-COP specific antibodies and F(ab) fragments prevents the exit of vesicular stomatitis virus glycoprotein (VSV-G) from the ER. These results demonstrate that beta-COP is required for the assembly of coat complexes mediating vesicle budding. Fractionation of rat liver cytosol revealed that a major biologically active form of beta-COP was found in a high molecular pool (> 1,000 kD) distinct from coatomer and which promoted efficient vesicle budding from the ER. Surprisingly, rab1B could be quantitatively coprecipitated with this beta-COP containing complex and was also essential for function. We suggest that beta-COP functions in an early step during vesicle formation and that rab1B may be recruited as a component of a precoat complex which participates in the export of protein from the ER via vesicular carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号