首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Mapping the microtubule binding regions of calponin   总被引:3,自引:0,他引:3  
The smooth muscle basic calponin interacts with F-actin and inhibits the actomyosin ATPase in a calmodulin or phosphorylation modulated manner. It also binds in vitro to microtubules and its acidic isoform, present in nonmuscle cells, and co-localizes with microfilaments and microtubules in cultured neurons. To assess the physiological significance and the molecular basis of the calponin-microtubule interaction, we have first studied the solution binding of recombinant acidic calponin to microtubules using quantitative cosedimentation analyses. We have also characterized, for the first time, the ability of both calponin isoforms to induce the inhibition of the microtubule-stimulated ATPase activity of the cytoskeletal, kinesin-related nonclaret dysjunctional motor protein (ncd) and the abolition of this effect by calcium calmodulin. This property makes calponin a potent inhibitor of all filament-activated motor ATPases and, therefore, a potential regulatory factor of many motor-based biological events. By combining the enzymatic measurements of the ncd-microtubules system with various in vitro binding assays employing proteolytic, recombinant and synthetic fragments of basic calponin, we further unambiguously identified the interaction of microtubules at two distinct calponin sites. One is inhibitory and resides in the segment 145-182, which also binds F-actin and calmodulin. The other one is noninhibitory, specific for microtubules, and is located on the COOH-terminal repeat-containing region 183-292. Finally, quantitative fluorescence studies of the binding of basic calponin to the skeletal pyrenyl F-actin in the presence of microtubules did not reveal a noticeable competition between the two sets of filaments for calponin. This result implies that calponin undergoes a concomitant binding to both F-actin and microtubules by interaction at the former site with actin and at the second site with microtubules. Thus, in the living cells, calponin could potentially behave as a cross-linking protein between the two major cytoskeletal filaments.  相似文献   

2.
Calponin is an actin- and calmodulin-binding protein believed to regulate the function of actin. Low-resolution studies based on proteolysis established that the recombinant calponin fragment 131–228 contained actin and calmodulin recognition sites but failed to precisely identify the actin-binding determinants. In this study, we used NMR spectroscopy to investigate the structure of this functionally important region of calponin and map its interaction with actin and calmodulin at amino-acid resolution. Our data indicates that the free calponin peptide is largely unstructured in solution, although four short amino-acid stretches corresponding to residues 140–146, 159–165, 189–195, and 199–205 display the propensity to form α-helices. The presence of four sequential transient helices probably provides the conformational malleability needed for the promiscuous nature of this region of calponin. We identified all amino acids involved in actin binding and demonstrated for the first time, to our knowledge, that the N-terminal flanking region of Lys137-Tyr144 is an integral part of the actin-binding site. We have also delineated the second actin-binding site to amino acids Thr180-Asp190. Ca2+-calmodulin binding extends beyond the previously identified minimal sequence of 153–163 and includes most amino acids within the stretch 143–165. In addition, we found that calmodulin induces chemical shift perturbations of amino acids 188–190 demonstrating for the first time, to our knowledge, an effect of Ca2+-calmodulin on this region. The spatial relationship of the actin and calmodulin contacts as well as the transient α-helical structures within the regulatory region of calponin provides a structural framework for understanding the Ca2+-dependent regulation of the actin-calponin interaction by calmodulin.  相似文献   

3.
Calponin and tropomyosin interactions.   总被引:1,自引:0,他引:1  
The interaction between chicken gizzard calponin and tropomyosin was examined using viscosity, light scattering, electron microscopy and affinity chromatography. At neutral pH, 10 mM NaCl and in the absence of Mg2+, calponin induced tropomyosin filaments to form paracrystals thus decreasing the viscosity while increasing dramatically the light scattering of the tropomyosin solution. Electron micrographs of the uranyl acetate stained calponin-tropomyosin complex showed the presence of spindle shaped paracrystals with regular striation patterns and repeating units of about 400 A. Under similar conditions, smooth muscle caldesmon also induced tropomyosin to form paracrystals. To localize the calponin-binding site on tropomyosin, binding of fragments of tropomyosin, generated by chemical and mutational means, to a calponin-affinity column was studied. The COOH-terminal tropomyosin fragment Cn1B(142-281) and the NH2-terminal fragment CSM-beta(1/8/12-227) bound to a calponin-affinity column with an affinity similar to that of intact tropomyosin; while the NH2-terminal fragment, Cn1A(11-127), did not bind, indicating that the calponin-binding site(s) resides within residues 142-227 of tropomyosin. To determine the involvement in calponin binding of the area around Cys-190 of tropomyosin, fragments with cleavage sites near or at Cys-190 were used. Thus, while fragments Cy2(190-284) and CSM-beta(1/8/12-200) bound weakly to the calponin-affinity column, fragment Cy1(1-189) did not. These results demonstrate that calponin binds to tropomyosin between residues 142 and 227, and that the integrity of the region around Cys-190 of tropomyosin is important for strong interaction between the two proteins.  相似文献   

4.
The quantitative binding of a phenothiazine drug to calmodulin, calmodulin fragments, and structurally related calcium binding proteins was measured under conditions of thermodynamic equilibrium by using a gel filtration method. Plant and animal calmodulins, troponin C, S100 alpha, and S100 beta bind chlorpromazine in a calcium-dependent manner with different stoichiometries and affinities for the drug. The interaction between calmodulin and chlorpromazine appears to be a complex, calcium-dependent phenomenon. Bovine brain calmodulin bound approximately 5 mol of drug per mol of protein with apparent half-maximal binding at 17 microM drug. Large fragments of calmodulin had limited ability to bind chlorpromazine. The largest fragment, containing residues 1-90, retained only 5% of the drug binding activity of the intact protein. A reinvestigation of the chlorpromazine inhibition of calmodulin stimulation of cyclic nucleotide phosphodiesterase further indicated a complex, multiple equilibrium among the reaction components and demonstrated that the order of addition of components to the reaction altered the drug concentration required for half-maximal inhibition of the activity over a 10-fold range. These results confirm previous observations using immobilized phenothiazines [Marshak, D.R., Watterson, D.M., & Van Eldik, L.J. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6793-6797] that indicated a subclass of calcium-modulated proteins bound phenothiazines in a calcium-dependent manner, demonstrate that the interaction between phenothiazines and calmodulin is more complex than previously assumed, and suggest that extended regions of the calmodulin molecule capable of forming the appropriate conformation are required for specific, high-affinity, calcium-dependent drug binding activity.  相似文献   

5.
We have expressed in mammalian cells a fragment (residues 1-302) of the alpha chain of platelet glycoprotein (GP) Ib containing the von Willebrand factor- (vWF) binding site. The secreted soluble protein had an apparent molecular mass of 45 kDa and reacted with conformation-dependent monoclonal antibodies that bind only to native GP Ib, thus demonstrating its proper folding. After insolubilization on nitrocellulose membrane, the recombinant GP Ib alpha fragment bound soluble vWF in the presence of ristocetin or botrocetin with a dissociation constant similar to that exhibited by GP Ib.IX complex on platelets. Moreover, the interaction was blocked by anti-GP Ib monoclonal antibodies known to inhibit vWF binding to platelets. The sequence of GP Ib alpha between residues 269-287 has a strong net negative charge due to the presence of 10 glutamic or aspartic acid residues; 5 of these are contained in the sequence of a synthetic peptide (residues 251-279) previously shown to inhibit vWF-platelet interaction. In order to evaluate the possible functional role of these acidic residues, we employed site-directed mutagenesis to express two mutant GP Ib alpha fragments containing asparagine or glutamine instead of aspartic or glutamic acid, respectively. Mutant 1, with substitutions between residues 251-279, failed to bind vWF whether in the presence of ristocetin or botrocetin; in contrast, vWF binding to Mutant 2, with substitutions between residues 280-302, was nearly normal in the presence of ristocetin, but markedly decreased in the presence of botrocetin. Thus, mammalian cells transfected with a truncated cDNA sequence encoding the amino-terminal domain of GP Ib alpha synthesize a fully functional vWF-binding site; acidic residues in the sequence 252-287 are essential for normal function.  相似文献   

6.
Three chymotryptic fragments accounting for almost the entire amino acid sequence of gizzard calponin (Takahashi, K., and Nadal-Ginard, B. (1991) J. Biol. Chem. 266, 13284-13288) were isolated and characterized. They encompass the segments of residues 7-144 (NH2-terminal 13-kDa peptide), 7-182 (NH2-terminal 22-kDa peptide), and 183-292 (COOH-terminal 13-kDa peptide). They arise from the sequential hydrolysis of the peptide bonds at Tyr182-Gly183 and Tyr144-Ala145 which were protected by the binding of F-actin to calponin. Only the NH2-terminal 13- and 22-kDa fragments were retained by immobilized Ca(2+)-calmodulin, but only the larger 22 kDa entity cosedimented with F-actin and inhibited, in the absence of Ca(2+)-calmodulin, the skeletal actomyosin subfragment-1 ATPase activity as the intact calponin. Since the latter peptide differs from the NH2-terminal 13-kDa fragment by a COOH-terminal 38-residue extension, this difference segment appears to contain the actin-binding domain of calponin. Zero-length cross-linked complexes of F-actin and either calponin or its 22-kDa peptide were produced. The total CNBr digest of the F-actin-calponin conjugate was fractionated over immobilized calmodulin. The EGTA-eluted pair of cross-linked actin-calponin peptides was composed of the COOH-terminal actin segment of residues 326-355 joined to the NH2-terminal calponin region of residues 52-168 which seems to contain the major determinants for F-actin and Ca(2+)-calmodulin binding.  相似文献   

7.
Sulfatide-binding domain of the laminin A chain   总被引:2,自引:0,他引:2  
A sulfatide-binding site on the globular end region of the long arm of laminin has been identified. Following proteolytic digestion with thermolysin, an intact fragment of the laminin A chain carboxyl-terminal domain exhibiting sulfatide-binding activity was isolated using gel filtration and heparin affinity chromatography. This fragment is composed of two peptides that are covalently linked by at least one disulfide bond and encompass the carboxyl-terminal 394 amino acids of the A chain. The clusters of charged residues in the primary structure of these fragments are sufficient for heparin-binding activity but not sulfatide binding since reduction and alkylation of the fragments abolished sulfatide binding under conditions in which heparin binding was retained. Thus, sulfatide binding requires an intact three-dimensional structure. The iodinated fragment bound to A2058 melanoma and T47D breast carcinoma cells and could be displaced by the unlabeled fragment. Based on incorporation of [35S] sulfate, both cell lines synthesize sulfated glycolipids that bind to laminin. In agreement with previous data that indicate a synergistic interaction of the sulfatide-binding domain with other laminin-binding sites on melanoma cells during attachment, the isolated sulfatide-binding fragment significantly inhibited interaction of labeled intact laminin with melanoma and breast carcinoma cells in direct binding assays.  相似文献   

8.
A panel of 18 murine monoclonal antibodies was raised in BALB/c mice to the full-length, 146 amino acid residue recombinant human gamma interferon (rHuIFN gamma-A). Two monoclonal antibodies, designated 47N3-6 and 30N47-1, were purified from ascites tumors and further characterized. Antibody 47N3-6 neutralized both the antiviral and antiproliferative activities of rHuIFN gamma-A. Both Western blotting and enzyme-linked immunosorbent assays indicated that antibody 47N3-6 could bind to rHuIFN gamma-A as well as to a genetically engineered truncated form lacking the first three amino-terminal residues (rHuIFN gamma-D) but did not recognize a genetically engineered variant terminating at residue 131 (rHuIFN gamma-B). This antibody also demonstrated binding to a 15 amino acid residue oligopeptide, designated F-1, corresponding to residues 132-146 at the carboxyl terminus of rHuIFN gamma-A. Chemical cleavage of peptide F-1 with cyanogen bromide produced two fragments that were separated by reversed-phase high-pressure liquid chromatography. Dot-blot analysis indicated that antibody 47N3-6 could bind to a fragment, KRKRSQHse, derived from residues 132-137 of rHuIFN gamma-A, but could bind only weakly to the cyanogen bromide fragment corresponding to residues 138-146. It was consistent with these results that antibody 47N3-6 demonstrated binding to a form lacking the five carboxyl-terminal amino acids (rHuIFN gamma-D') but did not bind to a synthetic polypeptide corresponding to residues 138-146. Peptide F-1 exhibited neither antiviral nor antiproliferative activity, and it did not antagonize the antiviral activity of rHuIFN gamma-A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Hirudin, a thrombin-specific inhibitor, comprises a compact amino-terminal core domain (residues 1-52) and a disordered acidic carboxyl-terminal tail (residues 53-65). An array of core fragments were prepared from intact recombinant hirudin by deletion of various lengths of its carboxyl-terminal tail on selective enzymatic cleavage. Hir1-56 and Hir1-53 were produced by pepsin digestion at Phe56-Glu57 and Asp53-Gly54. Hir1-52 was generated by Asp-N cleavage at Asn52-Asp53. Hir1-49 was prepared by cleavage of Gln49-Ser50 by chymotrypsin, elastase, and thermolysin. In addition, Hir1-62 (containing part of the carboxyl-terminal tail) was derived from Hir1-65 by selective removal of the three carboxyl-terminal amino acids using carboxypeptidase A. Hirudin amino-terminal core fragments were stable at extreme pH (1.47 and 12.6), high temperature (95 degrees C), and resistant to attack by various proteinases. For instance, following 24-h incubation with an equal weight of pepsin, the covalent structure of Hir1-52 remained intact and its anticoagulant activity unaffected. Unlike intact hirudin (Hir1-65) the inhibitory potency of which is a consequence of concerted binding of its amino-terminal and carboxyl-terminal domains to the active site and the fibrinogen recognition site of thrombin, the core fragments block only the active site of thrombin with binding constants of 19 nM (Hir1-56), 35 nM (Hir1-52), and 72 nM (Hir1-49). As an anticoagulant Hir1-56 is about 2-, 4-, and 30-fold more potent (on a molar basis) than Hir1-52, Hir1-49, and Hir1-43, respectively. Hir1-56 was also about 15-fold more effective than the most potent carboxyl-terminal fragment of hirudin, sulfated-Hir54-65, although they bind to independent sites on thrombin. The potential advantages of hirudin core fragments as antithrombotic agents are discussed in this report.  相似文献   

10.
R S Mani  W D McCubbin  C M Kay 《Biochemistry》1992,31(47):11896-11901
Caldesmon from chicken gizzard muscle has been examined for its ability to interact with caltropin using affinity chromatography and the fluorescent probe acrylodan. The action of caltropin on the inhibitory effect of caldesmon on actomyosin ATPase was also studied. Like calmodulin, caltropin could release the inhibitory effect of caldesmon in the presence of Ca2+. Complete reversal was obtained when 1 mol of caltropin was added per mol of caldesmon. When caldesmon was applied to caltropin-Sepharose in the presence of Ca2+, most of the caldesmon was bound to the column and could be eluted with EGTA, indicating that there is a direct interaction between caldesmon and caltropin. Acrylodan-labeled caldesmon, when excited at 375 nm, had an emission maximum at 504 nm. Addition of caltropin in the presence of Ca2+ resulted in a nearly 50% increase in fluorescence intensity, and this was accompanied by a blue shift in the emission maximum (i.e., lambda em,max 492 nm), suggesting that the probe now occupies a more nonpolar environment. Titration of caltropin with labeled caldesmon indicated a strong affinity for this protein (Kd was in the order of 8 x 10(-8)-2 x 10(-7) M). However, when caltropin was added to labeled caldesmon in the presence of EGTA, there was no indication of any interaction. Caltropin was at least as potent as calmodulin, if not better, in reversing the inhibitory effect of caldesmon in the presence of calcium, making it a potential Ca2+ factor in regulating caldesmon in smooth muscle.  相似文献   

11.
Limited proteolysis has been utilized to study the structural organization of rabbit skeletal muscle myosin light chain kinase. The enzyme (Mr approximately 89,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) consists of an amino-terminal, protease-susceptible region of unidentified function and a carboxyl-terminal, protease-resistant region of Mr approximately 40,000 containing the catalytic and calmodulin-binding domains. Partial digestion with trypsin produced an intermediate 56,000-dalton fragment and a stable 38,000-dalton fragment, both of which were catalytically active and calmodulin-dependent. Chymotryptic digestion yielded three catalytically active fragments of about 37,000, 36,000, and 35,000 daltons. The Mr = 37,000 fragment was calmodulin-dependent with an apparent affinity equivalent to that of the native enzyme (approximately 1 nM). The 36,000-dalton fragment was also calmodulin-dependent but had a approximately 200-fold lower apparent affinity. The Mr = 35,000 fragment was calmodulin-independent. These three chymotryptic fragments, had identical amino termini. Nineteen residues were missing from the carboxyl terminus of the calmodulin-independent chymotryptic fragment whereas only 8 or 9 carboxyl-terminal residues were missing from the calmodulin-dependent tryptic fragments. These results suggest that the 11-residue sequence (IAVSAANRFKK) in the carboxyl-terminal region of myosin light chain kinase contributes directly to the binding of calmodulin. This conclusion is in accord with data (Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, K., Walsh, K. A., and Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3187-3191) that the carboxyl-terminal, 27-residue CNBr peptide of the native enzyme shows Ca2+-dependent, high affinity binding to calmodulin and that similar calmodulin-binding activity, although detectable in unfractionated CNBr digests of calmodulin-dependent enzyme forms, is much reduced in a CNBr digest of the calmodulin-independent, Mr = 35,000 chymotryptic fragment.  相似文献   

12.
In skeletal muscle the L-type Ca2+ channel directly controls the opening of the sarcoplasmic reticulum Ca2+ release channel (RYR1), and RYR1, in turn, prevents L-type Ca2+ channel inactivation. We demonstrate that the two proteins interact using calmodulin binding regions of both proteins. A recombinant protein representing amino acids 1393-1527 (D1393-1527) of the carboxyl-terminal tail of the skeletal muscle L-type voltage-dependent calcium channel binds Ca2+, Ca2+ calmodulin, and apocalmodulin. In the absence of calmodulin, D1393-1527 binds to both RYR1 and a peptide representing the calmodulin binding site of RYR1 (amino acids 3609-3643). In addition, biotinylated R3609-3643 peptide can be used with streptavidin beads to pull down [3H]PN200-110-labeled L-type channels from detergent-solubilized transverse tubule membranes. The binding of the L-type channel carboxyl-terminal tail to the calmodulin binding site on RYR1 may stabilize the contact between the two proteins, provide a mechanism for Ca2+ and/or calmodulin regulation of their interaction, or participate directly in functional signaling between these two proteins. A unique aspect of this study is the finding that calmodulin binding sequences can serve as specific binding motifs for proteins other than calmodulin.  相似文献   

13.
Localization of a felodipine (dihydropyridine) binding site on calmodulin   总被引:1,自引:0,他引:1  
The fluorescent dihydropyridine calcium antagonist drug felodipine binds to calmodulin (CaM) in a Ca2+-dependent manner. Its binding can be regulated by the interaction of CaM antagonist drugs through allosteric mechanisms [Mills, J.S., & Johnson, J.D. (1985) Biochemistry 24, 4897]. Here, we have examined the binding of a nonspecific hydrophobic fluorescent probe molecule TNS (toluidinylnaphthalenesulfonate) and of felodipine to CAM and several of its proteolytic fragments. While TNS interacts with sites on both the amino-terminal half of the protein [proteolytic fragment TR1C (1-77)] and carboxy-terminal half [proteolytic fragment TR2C (78-148)], felodipine binding shows more selectivity. It binds in a Ca2+-dependent manner to the proteolytic fragments TM1 (1-106) and TR2E (1-90) but exhibits only weak affinity for TR1C (1-77) and TR2C (78-148). Furthermore, felodipine exhibits selectivity over TNS and trifluoperazine (TFP) in blocking the tryptic cleavage between residues 77 and 78. These studies indicate a selective binding of felodipine to a hydrophobic site existing in residues 1-90 and suggest that productive binding requires amino acids in the region 78-90. Although the felodipine binding site is preserved in fragment 1-106, the allosteric interactions between the prenylamine and the felodipine binding sites that are observed with intact CaM are not observed in this fragment. Rather, prenylamine simply displaces felodipine from its binding site on this fragment. Our results are consistent with calmodulin containing not less than two allosterically related hydrophobic drug binding sites. One of these sites (felodipine) appears to be localized in region 1-90 and the other one in region 78-148.  相似文献   

14.
Two fragments of the C-terminal tail of the alpha(1) subunit (CT1, amino acids 1538-1692 and CT2, amino acids 1596-1692) of human cardiac L-type calcium channel (Ca(V)1.2) have been expressed, refolded, and purified. A single Ca(2+)-calmodulin binds to each fragment, and this interaction with Ca(2+)-calmodulin is required for proper folding of the fragment. Ca(2+)-calmodulin, bound to these fragments, is in a more extended conformation than calmodulin bound to a synthetic peptide representing the IQ motif, suggesting that either the conformation of the IQ sequence is different in the context of the longer fragment, or other sequences within CT2 contribute to the binding of calmodulin. NMR amide chemical shift perturbation mapping shows the backbone conformation of calmodulin is nearly identical when bound to CT1 and CT2, suggesting that amino acids 1538-1595 do not contribute to or alter calmodulin binding to amino acids 1596-1692 of Ca(V)1.2. The interaction with CT2 produces the greatest changes in the backbone amides of hydrophobic residues in the N-lobe and hydrophilic residues in the C-lobe of calmodulin and has a greater effect on residues located in Ca(2+) binding loops I and II in the N-lobe relative to loops III and IV in the C-lobe. In conclusion, Ca(2+)-calmodulin assumes a novel conformation when part of a complex with the C-terminal tail of the Ca(V)1.2 alpha(1) subunit that is not duplicated by synthetic peptides corresponding to the putative binding motifs.  相似文献   

15.
Highly purified tryptic peptides of calmodulin have been obtained by high-performance liquid chromatography. Tryptic cleavage of calmodulin in the presence of Ca2+ results in two main fragments which have been identified by analysis of the amino acid composition as 1-77 and 78-148. In the absence of Ca2+, trypsin cleavage yields fragments 1-106, 1-90, and 107-148. Only fragments 78-148 and 1-106 are still able to stimulate the purified Ca2+-ATPase of erythrocytes, albeit much less efficiently on a molar basis, than intact calmodulin. On the other hand, the same fragments were unable to stimulate the calmodulin-dependent cyclic nucleotide phosphodiesterase, even at 1000-fold molar excess (shown also by Newton, D.L., Oldewurtel, M.D., Krinks, M.H., Shiloach, J., and Klee, C.B. (1984) J. Biol. Chem. 259, 4419-4426). This points to the importance of the carboxyl-terminal half of calmodulin and especially of Ca2+-binding region III in the interaction of calmodulin with the Ca2+-ATPase and provides clear evidence that calmodulin interacts differently with different targets. Oxidation of methionine(s) of fragment 78-148 with N-chlorosuccinimide removes the ability of this fragment to stimulate the ATPase.  相似文献   

16.
Apocalmodulin and Ca(2+) calmodulin bind to overlapping sites on the ryanodine receptor skeletal form, RYR1, but have opposite functional effects on channel activity. Suramin, a polysulfonated napthylurea, displaces both forms of calmodulin, leading to an inhibition of activity at low Ca(2+) and an enhancement of activity at high Ca(2+). Calmodulin binding motifs on RYR1 are also able to directly interact with the carboxy-terminal tail of the transverse tubule dihydropyridine receptor (DHPR) (Sencer, S., Papineni, R. V., Halling, D. B., Pate, P., Krol, J., Zhang, J. Z., and Hamilton, S. L. (2001) J. Biol. Chem. 276, 38237-38241). Suramin binds directly to a peptide that corresponds to the calmodulin binding site of RYR1 (amino acids 3609-3643) and blocks the interaction of this peptide with both calmodulin and the carboxyl-terminal tail of the DHPR alpha(1)-subunit. Suramin, added to the internal solution of voltage-clamped skeletal myotubes, produces a concentration-dependent increase in the maximal magnitude of voltage-gated Ca(2+) transients without significantly altering L-channel Ca(2+) channel conducting activity. Together, these results suggest that an interaction between the carboxyl-terminal tail of the DHPR alpha(1)-subunit with the calmodulin binding region of RYR1 serves to limit sarcoplasmic reticulum Ca(2+) release during excitation-contraction coupling and that suramin-induced potentiation of voltage-gated Ca(2+) release involves a relief of this inhibitory interaction.  相似文献   

17.
R F Steiner  S Albaugh 《Biopolymers》1990,29(6-7):1005-1014
The interaction of cyclosporin A and dansyl cyclosporin A with bovine and wheat germ calmodulin has been monitored by measurements of induced changes in dansyl and bound toluidinyl naphthalene sulfonate fluorescence. The interaction is Ca2(+)-dependent and 1:1. Measurements of the efficiency of radiationless energy transfer from bound dansyl cyclosporin A to an acceptor group located on Cys-27 of wheat germ calmodulin suggest that the primary binding site is not located on the N-terminal lobe (residues 1-65). However, studies with proteolytic fragments of calmodulin indicate that elements of the N-terminal half-molecule (residues 1-77) may be involved in the stabilization of the binding site. The binding of cyclosporin alters the physical properties of calmodulin and, in particular, reduces the localized rotational mobility of a fluorescent probe.  相似文献   

18.
A site-directed mutagenesis study of yeast calmodulin   总被引:2,自引:0,他引:2  
A site-directed mutagenesis study was carried out in order to understand the regulatory mechanism of calmodulin. We started from the yeast (Saccharomyces cerevisiae) calmodulin gene since it has many differences in amino acid sequence and inferior functional properties compared with the vertebrate calmodulin. Recombinant yeast calmodulins were generated in Escherichia coli transformed by constructed expression plasmids. Three recombinant calmodulins were obtained. The first two were YCM61G, in which the Ca2(+)-binding site 2 (the four Ca2(+)-binding EF-hand structures in calmodulin were numbered from the N-terminus) was converted to the same as that in vertebrate calmodulin, and YCM delta 132-148, in which the C-terminal half sequence of site 4 was deleted. These two recombinant calmodulins had the same maximum Ca2+ binding (3 mol/mol) as yeast calmodulin, which indicates that site 4 of yeast calmodulin was the one losing Ca2+ binding capacity. YCM delta 132-148 could not activate target enzymes, whereas its Ca2+ binding profile was similar to those of yeast calmodulin and YCM61G. Therefore, the structure in site 4 which cannot bind Ca2+ is indispensable for the regulatory function of yeast calmodulin. The complete regulatory function of vertebrate calmodulin can be attained by the combination of 4 Ca2+ binding structures. The negative charge cluster in the central alpha-helix region is suggested to stabilize the active conformation of calmodulin, since the third yeast calmodulin mutant, YCM83E, which had the negative charge cluster, increased the maximum activation of myosin light chain kinase.  相似文献   

19.
The interaction of alpha-thrombin with Ala48-hirudin, Ala48-hirudin1-47, and Ala48-hirudin48-65 was analyzed. Mutations at Pro48 were found to cause only slight changes in the kon (human: 3.1 +/- 0.3 x 10(8) M-1 s-1; bovine: 1.03 +/- 0.3 x 10(8) M-1 s-1) and koff (human: 0.4 +/- 0.2 x 10(-3) s-1; bovine: 2.9 +/- 0.4 x 10(-3) s-1) rate constants for the formation of the thrombin-hirudin complex. The amino-terminal fragment Ala48-hirudin1-47 containing the three disulfide bridges and the carboxyl-terminal fragment Ala48-hirudin48-65 were derived from the Ala48 mutant by proteolysis with endoproteinase Lys-C. These fragments inhibit bovine alpha-thrombin clotting activity with IC50 values of 0.6 and 4.9 microM, respectively (2.4 nM for r-hirudin). By mapping the interaction of Ala48-hirudin-derived fragments with bovine alpha-thrombin by limited proteolysis with trypsin and pancreatic elastase distinct binding sites for each fragment were determined. The carboxyl-terminal fragment was found to bind to the proposed anion-binding exosite in the region B62-74, whereas the amino-terminal fragment binds to a region around the elastase cleavage site at residues 150-151 of the alpha-thrombin B-chain.  相似文献   

20.
A calmodulin and alpha-subunit binding domain in human erythrocyte spectrin   总被引:3,自引:0,他引:3  
Human erythrocyte spectrin binds calmodulin weakly under native conditions. This binding is enhanced in the presence of urea. The site responsible for this enhanced binding in urea has now been shown to reside in a specific region of the spectrin beta-subunit. Cleavage of spectrin with trypsin, cyanogen bromide or 2-nitro-5-thiocyanobenzoic acid generates fragments of the molecule which retain the ability to bind calmodulin under denaturing conditions. The origin of these fragments, identified by two-dimensional peptide mapping, is the terminal region of the spectrin beta-IV domain. The smallest peptide active in calmodulin binding is a 10 000 Mr fragment generated by cyanogen bromide cleavage. Only the intact 74 000 Mr fragment generated by trypsin (the complete beta-IV domain) retains the capacity to reassociate with the isolated alpha-subunit of spectrin. The position of a putative calmodulin binding site near a site for subunit-subunit association and protein 4.1 and actin binding suggests a possible role in vivo for calmodulin regulation of the spectrin-actin membrane skeleton or for regulation of subunit-subunit associations. This beta-subunit binding site in erythrocyte spectrin is found in a region near the NH2-terminus at a position analogous to the alpha-subunit calmodulin binding site previously identified in a non-erythroid spectrin by ultrastructural studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号