首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purified human placenta alpha 2 beta 2 heterotetrameric insulin receptor was reduced and dissociated into a functional alpha beta heterodimeric complex by a combination of alkaline pH and dithiothreitol treatment. In the presence of Mn/MgATP, insulin binding to the isolated alpha beta heterodimeric insulin receptor was found to induce the formation of a covalent disulfide-linked alpha 2 beta 2 heterotetrameric complex. In the absence of insulin, a noncovalent association of the alpha beta heterodimeric insulin receptor complex into an alpha 2 beta 2 heterotetrameric state required the continuous presence of both a divalent metal ion (Mn or Mg) and an adenine nucleotide (ATP, ADP, or AMPPCP). Thus, Mn/MgATP binding and not insulin receptor autophosphorylation was responsible for the noncovalent association into the alpha 2 beta 2 heterotetrameric state. However, the divalent metal ions or NaATP separately was ineffective in inducing the noncovalent association between the alpha beta heterodimers. The specific sulfhydryl agent iodoacetamide (IAN) was observed to inhibit the insulin-dependent covalent association of the alpha beta heterodimers without affecting the Mn/MgATP-induced noncovalent association into the alpha 2 beta 2 heterotetrameric state. Insulin treatment of the isolated alpha beta heterodimeric complex in the presence of IAN demonstrated that the Mn/MgATP-induce noncovalent association into the alpha 2 beta 2 heterotetrameric state was sufficient for insulin stimulation of beta-subunit autophosphorylation and exogenous substrate protein kinase activity. These data indicate that although interaction between the individual insulin receptor alpha beta heterodimers is necessary for insulin stimulation of protein kinase activity it does not require covalent disulfide bond formation.  相似文献   

2.
It has previously been demonstrated that calmodulin can be phosphorylated in vitro and in vivo by both tyrosine-specific and serine/threonine protein kinase. We demonstrate here that the insulin receptor tyrosine kinase purified from human placenta phosphorylates calmodulin. The highly purified receptors (prepared by insulin-Sepharose chromatography) were 5-10 times more effective in catalysing the phosphorylation of calmodulin than an equal number of partially purified receptors (prepared by wheat-germ agglutinin-Sepharose chromatography). Phosphorylation occurred exclusively on tyrosine residues, up to a maximum of 1 mol [0.90 +/- 0.14 (n = 5)] of phosphate incorporated/mol of calmodulin. Phosphorylation of calmodulin was dependent on the presence of certain basic proteins and divalent cations. Some of these basic proteins, i.e. polylysine, polyarginine, polyornithine, protamine sulphate and histones H1 and H2B, were also able to stimulate the phosphorylation of calmodulin via an insulin-independent activation of the receptor tyrosine kinase. Addition of insulin further increased incorporation of 32P into calmodulin. The magnitude of the effect of insulin was dependent on the concentration and type of basic protein used, ranging from 0.5- to 9.0-fold stimulation. Maximal phosphorylation of calmodulin was obtained at an insulin concentration of 10(-10) M, with half-maximal effect at 10(-11) M. Either Mg2+ or Mn2+ was necessary to obtain phosphorylation, but Mg2+ was far more effective than Mn2+. In contrast, maximal phosphorylation of calmodulin was observed in the absence of Ca2+. Inhibition of phosphorylation was observed as free Ca2+ concentration exceeded 0.1 microM, with almost complete inhibition at 30 microM free Ca2+. The Km for calmodulin was approx. 0.1 microM. To gain further insight into the effects of basic proteins in this system, we examined the binding of calmodulin to the insulin receptor and the polylysine. Calmodulin binds to the insulin receptor in a Ca2+-dependent manner, whereas it binds to polylysine seemingly by electrostatic interactions. These studies identify calmodulin as a substrate for the highly purified insulin receptor tyrosine kinase of human placenta. They also demonstrate that the basic proteins, which are required for insulin to stimulate the phosphorylation of calmodulin, do so by a direct interaction with calmodulin.  相似文献   

3.
Channel-kinase TRPM7/ChaK1 is a member of a recently discovered family of protein kinases called alpha-kinases that display no sequence homology to conventional protein kinases. It is an unusual bifunctional protein that contains an alpha-kinase domain fused to an ion channel. The TRPM7/ChaK1 channel has been characterized using electrophysiological techniques, and recent evidence suggests that it may play a key role in the regulation of magnesium homeostasis. However, little is known about its protein kinase activity. To characterize the kinase activity of TRPM7/ChaK1, we expressed the kinase catalytic domain in bacteria. ChaK1-cat is able to undergo autophosphorylation and to phosphorylate myelin basic protein and histone H3 on serine and threonine residues. The kinase is specific for ATP and cannot use GTP as a substrate. ChaK1-cat is insensitive to staurosporine (up to 0.1 mM) but can be inhibited by rottlerin. Because the kinase domain is physically linked to an ion channel, we investigated the effect of ions on ChaK1-cat activity. The kinase requires Mg(2+) (optimum at 4-10 mM) or Mn(2+) (optimum at 3-5 mM), with activity in the presence of Mn(2+) being 2 orders of magnitude higher than in the presence of Mg(2+). Zn(2+) and Co(2+) inhibited ChaK1-cat kinase activity. Ca(2+) at concentrations up to 1 mM did not affect kinase activity. Considering intracellular ion concentrations, our results suggest that, among divalent metal ions, only Mg(2+) can directly modulate TRPM7/ChaK1 kinase activity in vivo.  相似文献   

4.
Multiple equilibrium equations were solved to separate the individual effects of ionic divalent metals, free nucleotides and their chelated species on insulin receptor tyrosine kinase (IRTK). Basal IRTK is activated by divalent metal cations when present in excess of that required for substrate formation, indicating the presence of a divalent cation-dependent regulatory site on the kinase. The activatory order for basal activity was Mn2+ greater than Co2+ greater than Mg2+ and Ca2+ = 0. The insulin-dependent activation of IRTK was minimal in the absence of excess free divalent metal, even when the concentration of MnATP or MgATP substrate present exceeded the apparent Km of the kinase. The activatory order for insulin-dependent activation of IRTK changed to Mg2+ greater than Mn2+ and Co2+ = 0. The titration of the MnCl2 saturation response at several concentrations of MgCl2 revealed that the insulin-dependent response of IRTK increases as a function of increasing MgCl2, while basal activity was unaffected. This enhancement of the responsiveness to insulin in the presence of both cations was not due to differing affinities of the kinase for substrate, as evidenced by nearly identical apparent Km values for MnATP and MgATP. The Mg2+-dependent increase in the response of the kinase to insulin may be due to Mg2+ inducing a stronger coupling between receptor and kinase than that observed with Mn2+ alone. The plotting of the effect of several concentrations of free divalent metals on substrate saturation curves revealed that an increase in either of the reactants increased the affinity of the insulin-activated kinase for the other respective reactant. Accordingly, free divalent metal and metal-ATP substrate interact with IRTK in a mutually inclusive manner. CaCl2 saturation curves in the presence of constant MnCl2 and increasing MgCl2 showed that the affinity of IRTK for Ca2+ decreases and the affinity for CaATP increased with increasing Mg2+. Our data suggests that IRTK contains three sites for interaction with divalent metal cations: a MeATP (active) site, a regulatory site, and a metal-dependent site acting to couple the receptor with the kinase.  相似文献   

5.
Utilizing histone phosphorylation as the basis for a quantitative assay, the insulin-stimulated protein kinase in human placenta has been characterized. The kinase copurifies through wheat germ agglutinin-Sepharose and DEAE-cellulose in constant ratio to the insulin binding function. Both activities are bound to the same extent on insulin-Sepharose, and the immobilized kinase, after extensive washing, exhibits activity versus histone, which closely approaches that of the insulin-stimulated, solubilized kinase. In addition, the bound kinase retains the ability to phosphorylate the Mr = 95,000 subunit of the bead-bound receptor. Elution of the beads with sodium dodecyl sulfate yields on electrophoresis two major peptides of Mr = 130,000 and 95,000. Thus, insulin binding and insulin-stimulated histone kinase copurify in a constant stoichiometric ratio in close physical relation and are likely functional expressions of the same molecule. After the DEAE step, the insulin-stimulated kinase phosphorylates histone subfraction 2b exclusively on tyrosine residues. Insulin increases the Vmax for H2b by 3-5-fold and increases the rate of the histone phosphorylation in direct correspondence to the steady state level of specifically bound insulin. ATP is the preferred phosphate donor. The reaction is supported by either Mn2+ or Mg2+. At [ATP] less than 0.5 mM, insulin-stimulated kinase is substantially higher with Mn2+ as the sole divalent cation, as compared to Mg2+. At [ATP] greater than or equal to 0.5 mM, the rates observed with Mn2+ have plateaued, whereas the rates in the presence of Mg2+ show a continued increase such that maximal activity is seen with Mg2+ and 2-3 mM ATP. Under these conditions, the estimated turnover number of the kinase ranges between 30 and 100 pmol of 32P transferred per min/pmol of insulin bound. Thus, the tyrosine kinase activity of the insulin receptor is quantitatively comparable to that estimated for several serine protein kinases and is unlikely to reflect the side reaction of another enzymatic function.  相似文献   

6.
O M Rosen  D E Lebwohl 《FEBS letters》1988,231(2):397-401
Protamine and poly(Lys) activate the protein tyrosine kinase of both the human placental insulin receptor and its purified recombinant cytoplasmic domain. Spermidine, poly(Arg) (average molecular mass 15 kDa), poly(Glu), Arg or Lys are not effective. Activation is stable, reversible, and optimal when the enzyme is preincubated with activator, divalent cation and ATP prior to the addition of exogenous protein substrates. The most striking feature of the activation is that it results in 20-30-fold stimulation of the kinase in the presence of 0.2-0.4 mM Mn2+ and induces equivalent activity in the presence of Mg2+ alone (0.4-4.0 mM). The activated protein tyrosine kinase has a specific activity (0.25-0.5 mumol/mg protein) that approaches that of well characterized protein serine kinases.  相似文献   

7.
Assembly of insulin/insulin-like growth factor-1 hybrid receptors in vitro   总被引:8,自引:0,他引:8  
Insulin and Mn/MgATP treatment of immunoaffinity-purified alpha beta heterodimeric insulin receptors induced the formation of an alpha 2 beta 2 heterotetrameric insulin receptor complex. In contrast, insulin-like growth factor-1 (IGF-1) treatment was completely ineffective in inducing the association of alpha beta heterodimeric insulin receptors. Similarly, IGF-1 or Mn/MgATP, but not insulin, treatment of immunoaffinity-purified alpha beta heterodimeric IGF-1 receptors induced the formation of an alpha 2 beta 2 heterotetrameric IGF-1 receptor complex. A monoclonal antibody specific for the insulin receptor (MA5) completely immunoprecipitated all the insulin binding activity from both the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric insulin receptor complexes but did not immunoprecipitate IGF-1 receptors. Conversely, the IGF-1 receptor-specific monoclonal antibody (alpha IR-3) immunoprecipitated all the IGF-1 binding activity, but not insulin receptors. The simultaneous treatment of pooled equal amounts of alpha beta heterodimeric insulin and IGF-1 receptors with a combination of insulin and IGF-1 resulted in the formation of alpha 2 beta 2 heterotetrameric insulin and IGF-1 receptor complexes. However, in the mixed alpha 2 beta 2 heterotetrameric receptor fraction MA5 immunoprecipitated 94% of the insulin binding in addition to 27% of the IGF-1 binding activity whereas alpha IR-3 immunoprecipitated 97% of the IGF-1 binding in addition to 38% of the insulin binding activity. Treatment of the mixed alpha beta heterodimeric insulin and IGF-1 receptors with Mn/MgATP also resulted in the formation of cross-immunoreactive (42-46%) alpha 2 beta 2 heterotetrameric receptors. These data directly demonstrate the formation of insulin/IGF-1 hybrid receptors by both a combination of insulin plus IGF-1 or Mn/MgATP treatment of purified human placenta alpha beta heterodimeric insulin and IGF-1 half-receptors in vitro.  相似文献   

8.
The metal ion requirement for both enzymatic activitiesof the bifunctional UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosaminekinase (E.C. 5.1.3.14/ 2.7.1.60), the key enzyme of N-acetylneuraminic acidbiosynthesis in ratliver, was investigated. UDP-N-acetylglucosamine 2-epimerase was active inimida-zole/HCl buffer in the complete absence of any metal ion. 200 mM Na + , K + , Rb + and Cs +activated enzymeactivity up to five-fold, whereas lower concentrations of thesemonovalent metal ions showed only a small effect on UDP-N-acetylglucosamine 2-epimeraseactivity. In sodium phosphate buffer the enzyme activitywas increased by 0.5 mM Mg , Sr , Ba and Mn , while in the presence of 200 mM NaCl UDP-N-acetyl-glucosamine2-epimerase activity showed astronger activation by these divalent metal ions. In imidazole/HClbuffer, UDP-N-acetylglucosamine2-epimerase activity was partially inhibited by 0.5 mM Be , Mg , Ba ,Mn , Sn and Fe , and completely inhibited by 0.5 mM Zn and Cd . Divalent metal ions were essen-tialforN-acetylmannosamine kinase activity, the most effective being Mg , followed byMn and Co .The optimal concentration of these metal ions was 3 mM. Less effective were Ni and Cd , whereas Ca ,Ba , Cu , Fe and Zn showed no effect on enzyme activity.  相似文献   

9.
Examination of 125I-IGF-1 affinity cross-linking and beta-subunit autophosphorylation has indicated that IGF-1 induces a covalent association of isolated alpha beta heterodimeric IGF-1 receptors into an alpha 2 beta 2 heterotetrameric state, in a similar manner to that observed for the insulin receptor [Morrison, B.D., Swanson, M.L., Sweet, L.J., & Pessin, J.E. (1988) J. Biol. Chem. 263, 7806-7813]. The formation of the alpha 2 beta 2 heterotetrameric IGF-1 receptor complex from the partially purified alpha beta heterodimers was time dependent with half-maximal formation in approximately 30 min at saturating IGF-1 concentrations. The IGF-1-dependent association of the partially purified alpha beta heterodimers into an alpha 2 beta 2 heterotetrameric state was specific for the IGF-1 receptors since IGF-1 was unable to stimulate the protein kinase activity of the purified alpha beta heterodimeric insulin receptor complex. Incubation of the alpha 2 beta 2 heterotetrameric IGF-1 holoreceptor with the specific sulfhydryl agent iodoacetamide (IAN) did not alter 125I-IGF-1 binding of IGF-1 stimulation of protein kinase activity. In addition, IAN did not affect the Mn/MgATP-dependent noncovalent association of IGF-1 receptor alpha beta heterodimers into an alpha 2 beta 2 heterotetrameric state. However, IAN treatment of the alpha beta heterodimeric IGF-1 receptors inhibited the IGF-1-dependent covalent formation of the disulfide-linked alpha 2 beta 2 heterotetrameric complex. These data indicate that IGF-1 induces the covalent association of isolated alpha beta heterodimeric IGF-1 receptor complexes into a disulfide-linked alpha 2 beta 2 heterotetrameric state whereas Mn/MgATP induces a noncovalent association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
Treatment of human placenta membranes at pH 8.5 in the presence of 2.0 mM dithiothreitol (DTT) for 5 min, followed by the simultaneous removal of the DTT and pH adjustment to pH 7.6, resulted in the formation of a functional alpha beta heterodimeric insulin-like growth factor 1 (IGF-1) receptor complex from the native alpha 2 beta 2 heterotetrameric disulfide-linked state. The membrane-bound alpha beta heterodimeric complex displayed similar curvilinear 125I-IGF-1 equilibrium binding compared to the alpha 2 beta 2 heterotetrameric complex. Triton X-100 solubilization of the alkaline pH and DTT-pretreated placenta membranes, followed by Bio-Gel A-1.5m gel filtration chromatography, was found to effectively separate the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric IGF-1 receptor species, 125I-IGF-1 binding to both the isolated alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric complexes demonstrated a marked straightening of the Scatchard plots, compared to the placenta membrane-bound IGF-1 receptors, with a 2-fold increase in the high-affinity binding component. Similar to the membrane-bound IGF-1 receptor species, the 125I-IGF-1 binding properties between the alpha 2 beta 2 heterotetrameric and alpha beta heterodimeric complexes were not significantly different. IGF-1 stimulation of IGF-1 receptor autophosphorylation indicated that the ligand-dependent activation of alpha beta heterodimeric protein kinase activity occurred concomitant with the reassociation into a covalent alpha 2 beta 2 heterotetrameric state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Magnesium (Mg2+) increases binding of follicle-stimulating hormone (FSH) to membrane-bound receptors and increases adenylyl cyclase activity. We examined the effects of divalent and monovalent cations on FSH binding to receptors in granulosa cells from immature porcine follicles. Divalent and monovalent cations increased binding of [125I]iodo-porcine FSH (125I-pFSH). The divalent cations Mg2+, calcium (Ca2+) and manganese, (Mn2+) increased specific binding a maximum of 4- to 5-fold at added concentrations of 10 mM. Mg2+ caused a half-maximal enhancement of binding at 0.6 mM, whereas Ca2+ and Mn2+ had half-maximal effects at 0.7 mM and 0.8 mM, respectively. The monovalent cation potassium (K+) increased binding a maximum of 1.5-fold at an added concentration of 50 mM, whereas the monovalent cation (Na+) did not increase binding at any concentration tested. The difference between K+ and Na+ suggested that either enhancement of binding was not a simple ionic effect or Na+ has a negative effect that suppresses its positive effect. Ethylenediamine tetraacetic acid, a chelator of Mg2+, prevented binding of 125I-pFSH only in the presence of Mg2+, whereas pregnant mare's serum gonadotropin, a competitor with FSH for the receptor, prevented binding in both the absence and the presence of Mg2+. Guanyl-5-ylimidodiphosphate (Gpp[NH]p) inhibited binding of 125I-pFSH in the absence or presence of Mg2+, but only at Gpp(NH)p concentrations greater than 1 mM. We used Mg2+ to determine if divalent cations enhanced FSH binding by increasing receptor affinity or by increasing the apparent number of binding sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

14.
Receptor fractions were prepared from follicle-rich ovaries (for FSH), luteal cell-rich ovaries (for LH and PRL), and adrenals (for PRL) of rats. Divalent metal ions, Mg++, Ca++, and Mn++ showed inhibitory effects on the binding of LH and FSH to their receptors. The binding of the former was more sensitive to these ions than the latter. On the other hand they showed bell-shaped promotive effects on PRL-ovarian receptor binding, the maximal effects being observed at 10-20 mM. Besides these ions, Ba++ also had a promotive effect, while other divalent metal ions such as Zn++, Cd++, Ni++, and Co++ showed inhibitory effects on PRL-ovarian receptor binding at 5 mM. Mg++ and Ca++ also promoted PRL-adrenal receptor binding, while Mn++ promoted the binding at 10 mM but inhibited it at higher concentrations. Association constant (Ka) and binding capacity (Bmax) of PRL receptors of the ovary and the adrenal were significantly different (ovary: Ka = 0.69 X 10(10) M-1, Bmax = 62 fmol/mg protein, adrenal: Ka = 0.21 X 10(10) M-1, Bmax = 99 fmol/mg protein). Ka of the ovarian PRL receptor was not influenced by these divalent ions, while that of the adrenal receptor was doubled by Ca and Mn ions, Bmax of the latter was also increased. A cooperative effect of Mg and Ca ions was observed on Ka and Bmax of the adrenal receptor. The sizes of the PRL binding sites of these organs revealed by affinity labelling were 17K and 40K in the ovary, and 40K and 110K in the adrenal. These results indicate the different properties of receptors in these different target organs.  相似文献   

15.
We investigated the effect of divalent metal ions on the proteolytic cleavage and activation of platelet Factor XIII by thrombin and trypsin. In the absence of metal ions (5 mM EDTA), trypsin and thrombin rapidly degraded platelet Factor XIII (80 kDa) to low-molecular-mass peptides (50-19 kDa) with simultaneous loss of transglutaminase activity. Divalent metal ions protected Factor XIII from proteolytic inactivation with an order of efficacy of Ca2+ greater than Zn2+ greater than Mg2+ greater than Mn2+. Calcium (2 mM) increased by 10- to 1000-fold the trypsin and thrombin concentrations required to degrade Factor XIII to a 19-kDa peptide. Factor XIIIa formed by thrombin in the presence of 5 mM EDTA had one-half the specific activity of Factor XIIIa formed in the presence of calcium. Factor XIII was cleaved by trypsin in the presence of 5 mM Ca2+ to a 51 +/- 3-kDa fragment that had 60% of the original Factor XIIIa activity. A similar tryptic peptide formed in the presence of 5 mM EDTA did not have transglutaminase activity. In the presence of 5 mM Mg2+, thrombin cleaved Factor XIII to a major 51 +/- 3-kDa fragment that had 60% of the Factor XIIIa activity. Mn2+ (0.1-5 mM) limited trypsin and thrombin proteolysis. The resulting digest containing a population of Factor XIII fragments (50-14 kDa) expressed 50-60% transglutaminase activity of Factor XIIIa. Factor XIII was fully activated by both trypsin and thrombin in the presence of 5 mM Zn2+, resulting in two fragments of 76 and 72 kDa. We conclude that the binding of divalent metal ions to platelet Factor XIII induces conformational changes in the protein that alter its susceptibility to proteolysis and influence the expression of transglutaminase activity.  相似文献   

16.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

17.
This report describes the activity of a novel phospholipid-stimulated protein kinase from mouse DA-1 leukemic cells. The kinase was activated by phosphatidylglycerol or phosphatidylinositol. Phospholipid-stimulated protein phosphorylation occurred in the presence of Mn2+ or Mg2+; kinase activity was greater with Mg2+ than with Mn2+ from 4 to 10 mM, although at lower divalent cation concentrations Mn2+ was preferred. A Mr 75,500-77,000 endogenous protein doublet and a Mr 42,000 endogenous protein were phosphorylated in whole cell extracts under these conditions. These substrates contrasted with those identified under protein kinase C conditions. Of the exogenous proteins tested, phospholipid-stimulated phosphorylation was highest with histone H2B followed by other histones. In addition to DA-1 cells, phospholipid-stimulated protein kinase also was detected in high levels in normal mouse spleen, marrow, and kidney but not detectable in brain extracts. The phosphatidylglycerol-stimulated kinase was separated from protein kinase C by anion-exchange chromatography on DEAE-Sephacel, from which it eluted at 0.2 to 0.3 M NaCl. Physiological dissociation of the two types of kinase activity was demonstrated by down regulation of protein kinase C over 24 h by phorbol 12-myristate 13-acetic acid. Under these conditions phosphatidylglycerol kinase activity and subcellular distribution were unaffected. Thus, phosphatidylglycerol-stimulated kinase was detectable in both normal and malignant cells and contrasted with, and was separable from, protein kinase C in numerous respects. Phosphatidylglycerol-stimulated protein kinase basic biochemistry and physiological roles are topics worthy of further investigation.  相似文献   

18.
The activation of the epidermal growth factor (EGF) receptor tyrosine kinase activity is thought to represent a key initial step in EGF-mediated mitogenesis. The mechanisms underlying the regulation of the EGF receptor tyrosine kinase activity were examined through comparisons of the holoreceptor, purified from human placenta, and a soluble 42 kDa tyrosine kinase domain (TKD), generated by the limited trypsin proteolysis of the holoreceptor. The results of these studies highlight the importance of divalent metal ions (Me2+), i.e., Mn2+ and Mg2+, as activators of the tyrosine kinase activity. Manganese is an extremely effective activator of the holoreceptor tyrosine kinase, and under some conditions (low ionic strength) it completely alleviates the need for EGF to stimulate activity. In contrast, Mg2+ only weakly stimulates the holoreceptor tyrosine kinase activity in the absence of EGF, but promotes essentially full activity in the presence of the growth factor. Like the holoreceptor, the soluble TKD is highly active in the presence of Mn2+. However, the isolated TKD is completely inactive in the presence of Mg2+, and, in fact, Mg2+ inhibits the Mn2(+)-stimulated tyrosine kinase activity. The differences in the effects of Mn2+ and Mg2+ on the isolated TKD were further demonstrated by monitoring the effects of Me2+ on the modification of a reactive cysteine residue(s) on the TKD. While Mn2+ potentiates the inhibition by cysteine-directed reagents of the tyrosine kinase activity, Mg2+ has no effect on either the rate or the extent of the inhibition. Both the regulation by Mn2+ of the kinase activity of the TKD and the potentiation by Mn2+ of the cysteine reactivity of the TKD occur over a millimolar concentration range, which implicates a direct binding interaction by the metal ion. Overall, these results demonstrate that there are two key activator sites on the EGF receptor, i.e., the EGF binding site on the extracellular domain and a Me2+ binding site on the cytoplasmic TKD. Me2+ interactions with the cytoplasmic kinase domain apparently result in conformational changes which regulate the levels of tyrosine kinase activity, influence the degree to which this activity is responsive to EGF, and probably account for the effects of Me2+ on the aggregation state of the receptor (Carraway, K.L., III, Koland, J.G. and Cerione, R.A. (1989) J. Biol. Chem. 264, 8699-8707). In general, Mg2(+)-induced conformation changes prime the receptor for activation by EGF, while Mn2+ can fully activate the receptor tyrosine kinase and thereby short-circuit growth factor control.  相似文献   

19.
Insulin stimulates autophosphorylation of the beta subunit of its receptor and activates the associated tyrosine kinase. This kinase, in turn, phosphorylates a number of specific protein substrates; however, the functional and structural identity of these substrates is largely unknown. In this study, we demonstrate that insulin also stimulates the phosphorylation of calmodulin by rat hepatocyte insulin receptors partially purified by wheat germ agglutinin affinity chromatography. Phosphorylation occurred predominantly on tyrosine residues and had an absolute requirement for insulin receptors, divalent cations, and certain basic proteins. Maximal 32P incorporation was observed at an insulin concentration of 5 X 10(-9) M, and the K0.5 for insulin was approximately 4 X 10(-10) M. Phosphorylation of calmodulin was dependent upon ATP, saturating at 100 microM ATP with a K0.5 of 30 microM. Insulin-stimulated phosphorylation of calmodulin was also dependent upon Mg2+ or Mn2+, but was approximately 12-fold greater in the presence of Mg2+. Maximal phosphorylation was observed in the absence of Ca2+ and was inhibited at Ca2+:EGTA ratios greater than 0.8 (0.16 microM free Ca2+). Certain basic proteins, such as polylysine, histone Hf2b, and protamine sulfate, were necessary to observe insulin-stimulated phosphorylation of calmodulin. The relative amount of insulin-stimulated phosphorylation of calmodulin observed in the presence of each of these proteins differed. Maximal insulin-stimulated phosphorylation was observed in the presence of polylysine. These data suggest that both Ca2+ and calmodulin may participate in the early post-receptor events in the cellular mechanism of insulin action in hepatocytes.  相似文献   

20.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号