首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mass-isolated imaginal discs of Drosophila melanogaster form a chitin-containing pupal procuticle In vitro. Optimal procuticle deposition occurs when the discs are incubated for 4–6 hr with 0.5–1.0 μg/ml of 20-hydroxyecdysone and then with less than 0.05 μg/ml of 20-hydroxyecdysone. The formation of the chitin-containing procuticle is demonstrated using three independent assays: with fluorescene-conjugated cuticle proteins that bind to chitin; by electron microscopy; by incorporation of [3H]glucosamine into a chitin fraction. Synthesis and deposition of pupal cuticle proteins are also demonstrated. Incorporation of [3H]glucosamine into chitin is sensitive to inhibitors of protein, RNA and chitin synthesis, but has little sensitivity to inhibitors of DNA synthesis, and dolichol-dependent glycosylation.  相似文献   

2.
In the tobacco hornworm, Manduca sexta, metamorphosis occurs in response to two releases of ecdysone that occur 2 days apart. Epidermis was explanted from feeding final-instar larvae before the first release of ecdysone and was cultured in Grace's medium. When exposed to 1 μg/ml of β-ecdysone for 24 hr and then to hormone-free medium for 24 hr, followed by 5 μg/ml of β-ecdysone for 4 days, the epidermis produced tanned pupal cuticle in vitro. During the first 24 hr of exposure to β-ecdysone, the epidermis first changed its cellular commitment to that for pupal cuticle formation (ET50 = 14 hr), then later (by 22 hr) it became committed to tan that cuticle. Then, for most of the pupal cuticle to be tanned, at least a 12-hr period of culture in hormone-free medium was required before the cuticle synthesis was initiated. Consequently, some events prerequisite to sclerotization of pupal cuticle not only occur during the ecdysone-induced change in commitment but also during the ecdysone-free period. When the tissue was preincubated in 3 μg/ml of juvenile hormone (JH I or a mimic epoxygeranylsesamole) for 3 hr and then exposed to both ecdysone and juvenile hormone for 24 hr, it subsequently formed larval cuticle. The optimal conditions for this larval cuticle formation were exposure to 5 μg/ml of β-ecdysone in the presence of 3 μg/ml of epoxygeranylsesamole for 48 hr. When the epidermis was cultured in Grace's medium for 3 days and then exposed to 5 μg/ml of β-ecdysone for 4 days, 70% of the pieces formed pupal cuticle. By contrast, if both ecdysone and JH were added, 77% formed larval cuticle. Therefore, the change from larval to pupal commitment of the epidermal cells requires not only the absence of JH, but also exposure to ecdysone.  相似文献   

3.
The morphogenetic activity of three hormonal substances—α-ecdysone, β-ecdysone, and inokosterone—has been studied in vitro on isolated imaginal leg discs of third-instar larvae of Drosophila melanogaster.In the presence of α-ecdysone (0.3–3 μg/ml) and also of the phytohormone inokosterone (0.3–3 μg/ml), the discs underwent metamorphosis, as characterized by complete evagination (in less than 24 hr), secretion, and shedding (48 hr after explanation) of the pupal cuticle, secretion, and structural differentiation of the imaginal cuticle, namely pigmentation and formation of claws, bristles, and hairs (during days 3–6).In the presence of β-ecdysone (10, 6, 3, 0.3, 0.03, 0.003 μg/ml), evagination was always abnormal and incomplete. With all concentrations but the lowest, the partially everted legs had a swollen appearance and, at all concentrations, the subsequent development was inhibited. No imaginal differentiation occurred at any of the concentrations tested.Larval fat body or larval epidermis added to the isolated discs had no influence on their response to either α-ecdysone or β-ecdysone.Changing the osmotic pressure of the β-ecdysone containing medium likewise did not alter the noxious effect of β-ecdysone.Discs cultured first in the presence of β-ecdysone (for 24 hr), then transferred to fresh medium containing α-ecdysone were unable to undergo normal development. The inhibitory effect of β-ecdysone thus appears to be irreversible.Discs cultured first in the presence of α-ecdysone (for 24, 48 or 72 hr), then transferred to β-ecdysone containing medium, were unable to continue their normal differentiation. Further development was blocked within a few hours after the transfer.Results are discussed in view of results obtained with other in vitro and in vivo cultivation techniques. In conclusion, isolated leg discs of Drosophila are unable to respond physiologically to exogenous β-ecdysone. Only α-ecdysone and inokosterone will induce complete and normal metamorphosis in leg discs cultured in vitro.  相似文献   

4.
The switchover from a larval to a pupal epidermal commitment was studied on integument tissue fragments from early last-instar larvae (1–2 days after ecdysis) of Chilo suppressalis cultured in Grace's medium containing 0.01–0.5 μg/ml 20-hydroxyecdysone for 24–72 hr. Fragments were subsequently cultured in medium containing 1 μg/ml 20-hydroxyecdysone for 24 hr and maintained in hormone-free media for 6 additional days. The degree of switchover induction was measured as the ratio of the number of tissue fragments showing pupal characteristics to the total number of fragments used. The degree of switchover increased with the duration of culture, as well as with the concentration of the hormone (up to 0.1 μg/ml), in the first hormonal treatment. Above this concentration, apolysis and new cuticle formation were induced without change in the epidermal commitment. Cultured integument fragments from larvae in the diapause stage, 40–50 days after hatching, and from those in the penultimate stage, showed the switchover under almost the same hormonal conditions as those used with tissue from the early last-instar larvae. After the first hormone treatment, culture in hormone-free medium was unnecessary for cuticle tanning. Juvenile hormone II added to the medium (3 ng/ml) in the first hormonal treatment completely inhibited the switchover induced by 20-hydroxyecdysone. The potential use of the C. suppressalis integument as a bioassay system for juvenoids is discussed.  相似文献   

5.
Cytochalasin B (1 μg/ml) completely inhibited the evagination of isolated leg imaginal discs cultured in vitro in a synthetic medium (ME) containing α-ecdysone (3 μg/ml). In discs precultured for 6 hr in medium ME without the drug, then transferred to cytochalasin B-containing medium, continuation of evagination was stopped immediately. The inhibition of evagination was completely reversible, provided pretreatment with cytochalasin B did not exceed 8 hr. Results are discussed in view of what is known on the effect of cytochalasin B on other developmental systems. Findings are compatible with the primary action of the drug being an alteration of cell surface properties, thus bringing to light the importance of these properties in the course of normal imaginal disc evagination.  相似文献   

6.
Morphogenetic effect of juvenile hormone (JH) and its analogues, dodecyl methyl ether, ethyl trimethyl dodecadienoate and methylenedioxyphenoxy-6-epoxy-3-ethyl-7-methyl-2-nonene, on carefully timed Tenebrio pupae was determined. These results show that the response of pupal epidermal cells to JH varied with age during the first 48 hr after larval-pupal ecdysis. The pupae showed low morphogenetic response soon after pupal ecdysis but their response increased gradually until 18 hr. The response to JH decreased in pupae older than about 32 hr; and 48 hr old pupae were unresponsive to low doses of JH employed in this study. Age-related differences in the pattern of response of the individual body regions to JH were also observed.The synergistic effect of 1 μg of ecdysterone with these JH compounds was also tested in relation to the age of Tenebrio pupa. The results show that the synergistic effect of ecdysterone was generally limited to >18 hr old pupae. This suggests that the physiological basis of the synergistic effect of ecdysterone may be the latter's ability to synchronize epidermal cells.The significance of these observations in the analysis of time of action of juvenile hormone is discussed.  相似文献   

7.
Wild type (Oregon R) and non-pupariating as well as late-pupariating mutant larval tissues were cultured in vitro up to 5 weeks with and without 20-hydroxy ecdysone (1 μg/ml). The following responses were elicited by the hormone: in the case of wild type tissues detachment of the larval epidermis and muscles from the cuticle; puparial tanning and sclerotization of the larval cuticle; dissociation of the fat body into single cells; inhibition of the movement of the hind intestine. Most of these responses developed within 1 week of culturing. Of the 4 mutants tested, 3 behaved like the wild type. In cultures of ?(1)npr-1, however, puparial tanning, disc evagination, and inhibition of the movement of the hind intestine was abnormally weak and the dissociation of fat body was not observed at all. Detachment of the epidermis and muscles as well as formation of the pupal cuticle by disc tissue occurred normally. The results are discussed with respect to the ecdysteroid-induced metamorphosis of the tissues and the autonomy of mutant gene action.  相似文献   

8.
Summary Imaginal wing discs ofPieris brassicae can be cultured in vitro for extended periods. Their ultrastructural development was investigated after culture in the presence of various concentrations of ecdysone and ecdysterone. When ecdysone or low concentrations of ecdysterone (2×10–7 M) were added to culture media, larval discs secreted a pupal cuticle and they subsequently differentiated scales; prepupal discs completed their imaginal development. With a higher concentration of ecdysterone (2×10–6 M), all discs produced abundant but fragmentary cuticular material.Prepupal discs were able to metabolize both hormones in vitro. Ecdysterone was mainly converted into a polar compound detectable after a short period of incubation. Ecdysone was transformed, at a slower rate, forming a polar compound and 26-hydroxyecdysone but no ecdysterone.  相似文献   

9.
During the larval-pupal transformation, various regions of the epidermis of Manduca sexta larvae have previously been found to require different lengths of exposure to the prothoracic glands in order to form pupal cuticle. To distinguish between requirements for differing threshold concentrations of ecdysone and those for differing durations of exposure to ecdysone, wandering stage larval epidermis was cultured in Grace's medium. When most of the thick larval cuticle was removed, the epidermis responded to concentrations of β-ecdysone of 1.0 μ/ml or greater for 4 days by forming cysts which later formed tanned pupal cuticle. No fat body or protein supplement was required. When the larval integument was explanted intact, similar requirements for cuticle formation and for tanning were found. All regions of the fifth abdominal segment required similar concentrations of β-ecdysone (0.4–0.6 μg/ml) for 4 days for 50% to form pupal cuticle, but gin trap epidermis required the least exposure to a threshold concentration of ecdysone (1.5 days in 0.9 μg/ml). The anterior dorsal intersegmental region required about 0.5 day longer, followed by the posterior intersegmental and the dorsal intrasegmental regions. Thus, the duration of exposure seemed more important. About 1 day longer of exposure to ecdysone was required for subsequent tanning of the new cuticle than for cuticle formation, yet tanning of the cuticle did not occur with prolonged exposure to ecdysone.  相似文献   

10.
Summary This paper reviews the effects of insect hormones on lepidopteran imaginal discs cultured in vitro.β-ecdysone stimulated both evagination and cuticle deposition of wing discs ofPlodia interpunctella (Hübner). However, evagination required a shorter exposure to ecdysone than did cuticle deposition. Cuticle deposition was obtained under the following conditions: (a) a 24-hr pulse ofβ-ecdysone (0.5–5.0μg/ml); (b) continuous treatment with 0.2μg/mlβ-ecdysone; or (c) continuous treatment with 0.5 to 50.0μg/mlβ-ecdysone in medium conditioned with larval fat body. Investigations of some biochemical effects of ecdysone showed that RNA and protein synthesis was required for evagination and cuticle deposition. In particular, studies with actinomycin D and cycloheximide (at nontoxic levels) showed that RNA and protein synthesis during the ecdysone-dependent period was essential for subsequent development. These findings support the hypothesis that stimulation of macromolecular synthesis is fundamental to the action of ecdysone on imaginal discs. The influence of beta-ecdysone on chitin synthesis was also examined.β-ecdysone stimulated uptake and incorporation of tritiated-glucosamine by culturedP. interpunctella wing discs. Addition of hexosamines to the culture medium had no influence on ecdysone-induced cuticle deposition, but inhibition of glucose-uptake by cytochalasin B prevented the formation of cuticle. The action of ecdysone on particular enzymes in the chitin pathway remains to be elucidated. Presented in the formal symposium on Information Transfer in Eukaryotic Cells, at the 26th Annual Meeting of the Tissue Culture Association, Montreal, Quebec, June 2–5, 1975.  相似文献   

11.
Cuticle deposition has been studied with the electron microscope in cockroach embryos (Blabera craniifer) during normal incubation in situ and in culture in vitro, in the absence or presence of inokosterone (a phytoecdysone).Two cuticles are deposited successively during embryonic life, respectively between stages 11 and 17, and stage 21 and 24 hr after hatching. The occurrence of two embryonic cycles is thus demonstrated, the first ending at stage 17 without exuviation since there is no old cuticle to be shed, the second one at hatching.In embryos explanted at stage 17 and cultured in vitro, the formation of cuticle 2 occurred at the same rate as in situ. The addition of inokosterone (50 μg/ml) to the medium resulted in the early onset of cuticle deposition (in 3 days as compared with 15 days in situ) in legs previously cut at the base of the tarsus. Cuticle 2 was completed within 9 days after explantation (as compared with about 20 days elapsing in the normal embryo between stage 17 and the completion of cuticle 2). Unsectioned appendages were insensitive to the hormone.Regeneration of sectioned legs, which occurred normally n vitro in non-treated embryos, was completely inhibited in the presence of inokosterone, presumably because the hormone caused early immobilization of cells through accelerated cuticle formation.Results suggest that embryonic cycles are controlled by the same hormonal mechanism as larval cycles.  相似文献   

12.
Specimens of sea bass (Dicentrarchus labrax) were exposed to two different cadmium concentrations (0.5 and 5 μg Cd2+/ml seawater) for a period of 7 days. Cadmium accumulated in the tissues of D. labrax in the following order: kidney > liver > gills at both concentrations. Accumulation patterns in fish exposed to 0.5 μg Cd2+/ml seawater were different with respect to 5.0 μg Cd2+/ml seawater. At both Cd concentrations a similar stress situation occurred during the first 4 hr as noted by the depletion of glycogen stores and the increase in free glucose in the muscle; metallothionein was induced in the liver, but failed to bind all the cytosolic Cd, which was in part bound to high-molecular-weight ligands. Fish recovered from this initial stress situation within 24 hr as indicated by the increase in glycogen and the decrease of glucose. Long-term effects were clearly dependent upon metal concentration: at lower Cd exposure, metallothionein induction increased linearly with time and counteracted the toxic effect of the metal; on the other hand, when fish were exposed to 5.0 μg Cd2+/ml seawater a clear stress occurred at the end of the exposure, as indicated by the notable decrease of glycogen stores, the increase of free glucose, the decrease of AEC in the muscle and the increase of Cd bound to high-molecular-weight ligands in the liver.  相似文献   

13.
The juvenile hormone antagonist ETB (ethyl-4-2(t-butylcarbonyloxy)-butoxybenzoate) caused formation of precocious larval-pupal intermediates after the 4th (penultimate)-larval instar of the tobacco hornworm, Manduca sexta, when 50 μg were applied to any 3rd stage larvae or to 4th stage larvae within 12 hr after ecdysis. This dose was most effective within 12 hr after ecdysis to the 3rd stage. In the black mutant larval assay for juvenile hormone, ETB had activity, 0.75 μg per larva giving half-maximal score. In vitro ETB acted as a juvenile hormone to prevent the ecdysteroid-induced change in commitment at concentrations above 0.1 μg/ml with an ED50 at 2.8 μg/ml and as a partial juvenile hormone antagonist to 0.1 μg/ml juvenile hormone I at concentrations between 10?3 and 10?2 μg/ml. By contrast, EMD (ethyl-E-3-methyl-2-dodecenoate) had little juvenile hormone-like activity in vitro up to its limits of solubility (100 μg/ml) and exhibited sporadic partial juvenile hormone antagonistic activity in vitro at concentrations between 1 and 100 μg/ml. Since these concentrations were 10–1000 times that of juvenile hormone I in the medium, EMD apparently is not an efficient competitor.  相似文献   

14.
The relative DNA content of Drosophila melanogaster imaginal leg disc nuclei during larval growth and pupal and adult differentiation was measured by microspectrophotometry. During the larval proliferative phase there were twice as many nuclei in the 4C class as nuclei in the 2C class. At the end of the third larval instar, the proportion of nuclei with a 4C DNA value increased. By 3 hr after pupariation, during pupal cuticle secretion, 90% of the nuclei were in this class. After pupal apolysis which occurs at 12 hr after pupariation, the 4C to 2C ratio was reversed. The increase in the proportion of nuclei with a 2C value was observed until 24 hr after pupariation when 90% of the nuclei were in this class. We propose that most cells divide at least once between pupal and adult differentiation. All of these changes in the cell cycle were correlated temporally with changes in the ecdysteroid titers that occur during these periods.  相似文献   

15.
During the postembryonic development of Sarcophaga bullata, two large peaks of dopa decarboxylase activity were observed. These were associated with the sclerotization (hardening) of the puparium and the adult cuticle, respectively. A small peak of activity 5.5–6.5 days after pupariation was possibly associated with the sclerotization of the prothoracic spiracles.A premature increase in enzyme activity was observed in young, third-instar larvae injected with 20 μg of β-ecdysone. However, the advantage of studying the effect of the hormone on enzyme activity in vitro led to an attempt to induce2 dopa decarboxylase in cultured wing discs.In the presence of β-ecdysone, wing discs underwent evagination and a substantial increase in dopa decarboxylase activity was observed in these discs. The enzyme activity began to appear after the rupture of the peripodial membrane and reached a maximum about the time disc evagination ceased. We suggest that this enzyme activity was responsible for the slight sclerotization of a fine cuticle secreted by the discs. The cultured imaginal discs underwent changes that are very similar to those which occur in intact animals. Therefore, this system appears promising for further studies on the role in differentiation of the hormonal control of enzyme activity.  相似文献   

16.
The ecdysterone contact period required for pupal development of Sarcophaga wing disks was studied in vitro. When the disks were cultured in a medium with 1 × 10?6 M ecdysterone for about 21 hr, evagination of wing disks occurred independent of a later transfer into a hormone-free medium. The contact period required for wing evagination was dependent on the concentration of ecdysterone.When the disks cultured in the ecdysterone-containing medium were subjected to an intervening ecdysterone-free condition, evagination of the wing occurred if the period of the hormone contact before and after the ecdysterone-free period totalled a certain length. The total period required for wing evagination was altered both by the duration of the intervening hormone-free culture and duration of the first culture with ecdysterone.The morphogenetic effect of ecdysterone is discussed in relation to RNA synthesis in vitro.  相似文献   

17.
The plant chemical azadirachtin was administered, either in artificial diet or by oral injection, to fifth instar larvae of the tobacco budworm, Heliothis virescens (Fabr.). At a dietary concentration of 0.03125 ppm, azadirachtin significantly reduced the amount of diet consumed and the weight gained by the larvae. Higher dietary concentrations (0.25 and 0.5 ppm) were necessary to reduce the efficiency of larval conversion of digested and ingested food, respectively. However, the approximate digestibility increased at the dietary concentration of 0.25 ppm.Orally injected azadirachtin (0.25 and 0.5 μg) delayed moulting to the pupal stage, produced defective pupae or adults, and inhibited development to the adult stage. Higher doses (5.0 and 10.0 μg) reduced the pre-pupal weight loss normally associated with pupation, and completely inhibited pupation. At the critical dose of 1.0 μg (the minimal dose that disrupted development to the pupal stage), azadirachtin had less of an effect on older than on younger larvae. Larvae injected on the first day of the fifth instar failed to pupate, whereas approx 40% of those injected on subsequent days pupated.The results suggest that azadirachtin affects H. virescens in a manner similar to other tested species of insects. The significance of these results, especially regarding hormonal events in the insects, is discussed.  相似文献   

18.
The level of ecdysteroids in Sarcophaga bullata was determined by radioimmunoassay (RIA) from the time of larviposition (0 hr) until adult eclosion. Five distinct peaks of ecdysteroid activity were recorded. The first two, which occurred midway through the duration of the stadia (14 and 30 hr, respectively), resulted in larval/larval moults (24 and 44 hr). The third peak of ecdysteroid activity commenced at 131 hr and was associated with formation of the white prepuparium. The fourth peak was sustained over a long time period (from 79 hr post pupariation to 120 hr) and resulted in pupal/adult apolysis and the definition of the adult form. The last elevation of the ecdysteroid titre at approx. 160 hr post pupariation) was associated with the synthesis and secretion of adult cuticle.  相似文献   

19.
R P Bodnaryk 《Life sciences》1975,16(9):1411-1416
Cyclic GMP and cyclic AMP have distinct and opposite effects upon the action of ecdysterone in diapausing pupae of the Bertha armyworm, Mamestraconfigurata. Cyclic GMP enhanced the effectiveness of suboptimal doses of ecdysterone in breaking diapause; the amount of cyclic GMP required to lower the ED50 of ecdysterone by half was 80 μg/g. Dibutyryl cyclic GMP had no apparent effect on the action of ecdysterone over a wide dose range (0.07 – 70 μg/g). On the other hand, cyclic AMP and dibutyryl cyclic AMP effectively blocked the diapause-breaking action of ecdysterone when administered simultaneously with the steroid hormone. The amount of cyclic AMP required to reduce the incidence of diapause termination from 100% to 50% was 60 μg/g; for dibutyryl cyclic AMP the amount required was only 14 μg/g. No cyclic nucleotide tested in the study could by itself break the pupal diapause of M.configurata. The concept that cyclic GMP and cyclic AMP provide at least different if not opposing regulatory influences in certain insect systems is discussed briefly in the light of these observations.  相似文献   

20.
Changes in the morphology of the salivary glands of Drosophila lebanonensis have been followed at both the light and electronmicroscopic level during a period of 30 hr before puparium formation and during puparium formation itself. Three striking differences were observed in comparison to other Drosophila species studied: (1) the secretion product of Drosophila lebanonensis has a different stainability to PAS reagent and uranyl acetate and no internal structures or “caps” can be observed; (2) the release of this secretion product is not restricted to a time period shortly before puparium formation but is a continuous process starting about 24 hr before puparium formation; and (3) the histolysis of these glands starts immediately after puparium formation, whereas in other Drosophila species this event starts 5 hr later.Puparium formation of Drosophila lebanonensis is controlled by the circadian oscillation. Injection of ecdysterone before the “gate” period results in changes in the cuticle as observed during normal development, but is not followed by the histolysis of the glands. Injection of ecdysterone after the “gate” is not followed by changes in the cuticle but histolysis is induced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号