首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nemeth MJ  Bodine DM 《Cell research》2007,17(9):746-758
Hematopoietic stem cells (HSCs) are a rare population of cells that are responsible for life-long generation of blood cells of all lineages. In order to maintain their numbers, HSCs must establish a balance between the opposing cell fates of self-renewal (in which the ability to function as HSCs is retained) and initiation of hematopoietic differentiation. Multiple signaling pathways have been implicated in the regulation of HSC cell fate. One such set of pathways are those activated by the Wnt family of ligands. Wnt signaling pathways play a crucial role during embryogenesis and deregulation of these pathways has been implicated in the formation of solid tumors. Wnt signaling also plays a role in the regulation of stem cells from multiple tissues, such as embryonic, epidermal, and intestinal stem cells. However, the function of Wnt signaling in HSC biology is still controversial. In this review, we will discuss the basic characteristics of the adult HSC and its regulatory microenvironment, the "niche", focusing on the regulation of the HSC and its niche by the Wnt signaling pathways.  相似文献   

2.
Biliary fibrosis is an important pathological indicator of hepatobiliary damage. Cholangiocyte is the key cell type involved in this process. To reveal the pathogenesis of biliary fibrosis, it is essential to understand the normal development as well as the aberrant generation and proliferation of cholangiocytes. Numerous reports suggest that the Wnt signaling pathway is implicated in the physiological and pathological processes of cholangiocyte development and ductular reaction. In this review, we summarize the effects of Wnt pathway in cholangiocyte development from embryonic stem cells, as well as the underlying mechanisms of cholangiocyte responses to adult ductal damage. Wnt signaling pathway is regulated in a step-wise manner during each of the liver differentiation stages from embryonic stem cells to functional mature cholangiocytes. With the modulation of Wnt pathway, cholangiocytes can also be generated from adult liver progenitor cells and mature hepatocytes to repair liver damage. Non-canonical Wnt signaling is triggered in the active ductal cells during biliary fibrosis. Targeted control of the Wnt signaling may hold the great potential to reduce and/or reverse the biliary fibrogenic process.  相似文献   

3.
Stemness,fusion and renewal of hematopoietic and embryonic stem cells   总被引:7,自引:0,他引:7  
Development of replacement cell therapies awaits the identification of factors that regulate nuclear reprogramming and the mechanisms that control stem cell renewal and differentiation. Once such factors and signals will begin to be elucidated, new technologies will have to be envisaged where uniform differentiation of adult or embryonic stem cells along one differentiation pathway can be induced. Controlled differentiation of stem cells will require the engineering of niches and extracellular signal combinations that would amplify a particular signaling network and allow uniform and selective differentiation. Three recent advances in stem cell research open the possibility to approach engineering studies for cell replacement therapies. Fusion events between stem cells and adult cells or between adult and embryonic stem cells have been shown to result in altered fates and nuclear reprogramming of cell hybrids. Hematopoietic stem cells were shown to require Wnt signaling in order to renew. The purification of Wnt proteins would allow their use as exogenous purified cytokines in attempts to amplify stem cells before bone marrow transplantation. The homeodomain protein Nanog has been shown to be crucial for the embryonic stem cell renewal and pluripotency. However, the cardinal question of how stemness is preserved in the early embryo and adult stem cells remains opened.  相似文献   

4.
Wnt信号通过直接参与细胞的增殖、极化和命运特化,控制胚胎发育和成体稳态,其信号异常不仅会造成发育缺陷,而且与多种癌症和代谢性疾病的发生密切相关。分泌型卷曲相关蛋白(secreted frizzled-related proteins,sFRPs)是一种可溶性蛋白质,因其结构与Wnt信号的卷曲蛋白(frizzled,Fz)受体高度同源而被认为是一类Wnt通路拮抗剂。但随着对sFRPs家族的深入研究,发现sFRPs在Wnt信号通路传导过程中并不局限于作为一种拮抗因子,还发挥激活因子的功能。最新研究还发现,sFRPs不仅作为经典的胞外因子发挥作用,在一些肿瘤干细胞中还可进入细胞核双向调节(拮抗或激活)Wnt信号传导。本文结合最新研究,全面综述了sFRPs家族蛋白在Wnt信号传导中的双向调节作用,这有助于理解sFRPs蛋白在生物体器官发育和疾病发生中的作用。  相似文献   

5.
《Cellular signalling》2014,26(3):570-579
Signaling initiated by secreted glycoproteins of the Wnt family regulates many aspects of embryonic development and it is involved in homeostasis of adult tissues. In the gastrointestinal (GI) tract the Wnt pathway maintains the self-renewal capacity of epithelial stem cells. The stem cell attributes are conferred by mutual interactions of the stem cell with its local microenvironment, the stem cell niche. The niche ensures that the threshold of Wnt signaling in the stem cell is kept in physiological range. In addition, the Wnt pathway involves various feedback loops that balance the opposing processes of cell proliferation and differentiation. Today, we have compelling evidence that mutations causing aberrant activation of the Wnt pathway promote expansion of undifferentiated progenitors and lead to cancer.The review summarizes recent advances in characterization of adult epithelial stem cells in the gut. We mainly focus on discoveries related to molecular mechanisms regulating the output of the Wnt pathway. Moreover, we present novel experimental approaches utilized to investigate the epithelial cell signaling circuitry in vivo and in vitro. Pivotal aspects of tissue homeostasis are often deduced from studies of tumor cells; therefore, we also discuss some latest results gleaned from the deep genome sequencing studies of human carcinomas of the colon and rectum.  相似文献   

6.
7.
beta-Catenin signaling in biological control and cancer   总被引:7,自引:0,他引:7  
  相似文献   

8.
The Wnt family of secreted signaling proteins regulates many aspects of animal development and the behavior of several types of stem cells, including embryonic stem (ES) cells. Activation of canonical Wnt signaling has been shown to either inhibit or promote the differentiation of ES cells into neurons, depending on the stage of differentiation. Here, we describe the expression of all 19 mouse Wnt genes during this process. Using the well-established retinoic acid induction protocol we found that all Wnt genes except Wnt8b are expressed as ES cells differentiate into neurons, many of them in dynamic patterns. The expression pattern of 12 Wnt genes was analyzed quantitatively at 2-day intervals throughout neural differentiation, showing that multiple Wnt genes are expressed at each stage. A large proportion of these, including both canonical and noncanonical Wnts, are expressed at highest levels during later stages of differentiation. The complexity of the patterns observed indicates that disentangling specific roles for individual Wnt genes in the differentiation process will be a significant challenge.  相似文献   

9.
10.
Aberrant activation of the Wnt signaling pathway is a common event in human tumor progression. Wnt signaling has also been implicated in maintaining a variety of adult and embryonic stem cells by imposing a restraint to differentiation. To understand the effect of Wnt signaling on the differentiation of epithelial cells, we used mouse teratocarcinoma F9 cells as a model. The F9 cells can be differentiated into visceral endoderm (VE) resembling absorptive columnar epithelial cells. We performed comparative gene expression analysis on retinoic acid-differentiated and undifferentiated F9 cells and confirmed that markers of VE and intestinal epithelium were induced upon differentiation. The induction of these markers by retinoic acid was reduced in the presence of Wnt, although Wnt alone did not change their expression. This suggests that Wnt signaling inhibited the differentiation of F9 cells by altering gene expression. This inhibition was also reflected in the morphology of the F9 cells as their apical-basal polarity was disrupted by inclusion of Wnt during differentiation. These results support a model in which Wnt modulates the expression of genes required for normal terminal differentiation of the stem cells. However, it follows that progenitor cells must escape from Wnt signaling to attain the differentiated state. Accordingly, we found that differentiated F9 cells no longer responded to Wnt and that a blockade in Wnt signaling occurred upstream of Axin. Consistent with this, Wnt negative regulators, such as Dickkopf-1 and Disabled-2, were induced upon the differentiation of F9 cells. We propose that a similar system to produce Wnt inhibitors regulates homeostasis of certain stem cell compartments in vivo.  相似文献   

11.
12.

Background

The intricate regulation of several signaling pathways is essential for embryonic development and adult tissue homeostasis. Cancers commonly display aberrant activity within these pathways. A population of cells identified in several cancers, termed cancer stem cells (CSCs) show similar properties to normal stem cells and evidence suggests that altered developmental signaling pathways play an important role in maintaining CSCs and thereby the tumor itself.

Scope of review

This review will focus on the roles of the Notch, Wnt and Hedgehog pathways in the brain, breast and colon cancers. We describe the roles these pathways play in normal tissue homeostasis through the regulation of stem cell fate in these three tissues, and the experimental evidence indicating that the role of these pathways in cancers of these is directly linked to CSCs.

Major conclusions

A large body of evidence is accumulating to indicate that the deregulation of Notch, Wnt and Hedgehog pathways play important roles in both normal and cancer stem cells. We are only beginning to understand how these pathways interact, how they are coordinated during normal development and adult tissue homeostasis, and how they are deregulated during cancer. However, it is becoming increasingly clear that if we are to target CSCs therapeutically, it will likely be necessary to develop combination therapies.

General significance

If CSCs are the driving force behind tumor maintenance and growth then understanding the molecular mechanisms regulating CSCs is essential. Such knowledge will contribute to better targeted therapies that could significantly enhance cancer treatments and patient survival. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

13.
Wnt signaling has been implicated in many developmental processes, but its role in early endoderm development is not well understood. Wnt signaling is active in posterior endoderm as early as E7.5. Genetic and chemical activation show that the Wnt pathway acts directly on endoderm to induce the intestinal master regulator Cdx2, shifting global gene away from anterior endoderm and toward a posterior, intestinal program. In a mouse embryonic stem cell differentiation platform that yields pure populations of definitive endoderm, Wnt signaling induces intestinal gene expression in all cells. We have identified a set of genes specific to the anterior small intestine, posterior small intestine, and large intestine during early development, and show that Wnt, through Cdx2, activates large intestinal gene expression at high doses and small intestinal gene expression at lower doses. These findings shed light on the mechanism of embryonic intestinal induction and provide a method to manipulate intestinal development from embryonic stem cells.  相似文献   

14.
Wnt信号通路参与外周免疫调节的研究进展   总被引:1,自引:0,他引:1  
Wnt信号通路最初是由于其在动物胚胎发育和形态发生过程中的作用而引起了人们的注意。过去二十多年来,人们又发现Wnt通路参与干细胞的分化及多种疾病的发生,这使它成为研究的一个热点。近年来的研究表明,Wnt通路与免疫系统也有密切的联系,不仅参与各种免疫细胞的发育分化,还能调控外周免疫细胞的功能。该文就对Wnt信号通路在外周免疫系统中的研究进展作一综述。  相似文献   

15.
Both embryonic and adult neurogenesis involves the self-renewal/proliferation,survival,migration and lineage differentiation of neural stem/progenitor cells.Such dynamic process is tightly regulated by...  相似文献   

16.
Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes.  相似文献   

17.

Background

Stem cells are mainly characterized by two properties: self-renewal and the potency to differentiate into diverse cell types. These processes are regulated by different growth factors including members of the Wnt protein family. Wnt proteins are secreted glycoproteins that can activate different intracellular signaling pathways.

Scope of review

Here we summarize our current knowledge on the role of Wnt/β-catenin signaling with respect to these two main features of stem cells.

Major conclusions

A particular focus is given on the function of Wnt signaling in embryonic stem cells. Wnt signaling can also improve reprogramming of somatic cells towards iPS cells highlighting the importance of this pathway for self-renewal and pluripotency. As an example for the role of Wnt signaling in adult stem cell behavior, we furthermore focus on intestinal stem cells located in the crypts of the small intestine.

General significance

A broad knowledge about stem cell properties and the influence of intrinsic and extrinsic factors on these processes is a requirement for the use of these cells in regenerative medicine in the future or to understand cancer development in the adult. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

18.
19.
Canonical Wnt signaling supports the formation and maintenance of stem and cancer stem cells. Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, and allow a first assessment how embryonic and tissue stem cells are generated and maintained, and how Wnt signaling might be involved. The core of this review highlights the roles of Wnt signaling in stem and cancer stem cells of tissues such as skin, intestine and mammary gland. Lastly, we refer to the characterization of novel and powerful inhibitors of canonical Wnt signaling and describe attempts to bring these compounds into preclinical and clinical studies.  相似文献   

20.
The tumor suppressor adenomatous polyposis coli (APC) is a crucial regulator of many stem cell types. In constantly cycling stem cells of fast turnover tissues, APC loss results in the constitutive activation of a Wnt target gene program that massively increases proliferation and leads to malignant transformation. However, APC function in skeletal muscle, a tissue with a low turnover rate, has never been investigated. Here we show that conditional genetic disruption of APC in adult muscle stem cells results in the abrogation of adult muscle regenerative potential. We demonstrate that APC removal in adult muscle stem cells abolishes cell cycle entry and leads to cell death. By using double knockout strategies, we further prove that this phenotype is attributable to overactivation of β-catenin signaling. Our results demonstrate that in muscle stem cells, APC dampens canonical Wnt signaling to allow cell cycle progression and radically diverge from previous observations concerning stem cells in actively self-renewing tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号