首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daily transrectal ultrasonography of ovaries was done in seven Finn ewes during three 17-day periods from May to July. Blood samples were collected each day for estimation of the serum follicle-stimulating hormone (FSH), oestradiol and progesterone concentrations, and also every 15 min for 6 h, halfway through each period of ultrasonographic examination, to determine the patterns of gonadotropic hormone secretion. Four ewes ceased cycling from March to mid-April (ewes entering anoestrus early) and three in May (ewes entering anoestrus late). In all ewes cyclicity resumed during the period from mid-August to mid-September. The growth of ovarian antral follicles to periovulatory sizes of >/=5 mm in diameter was seen at all stages of anoestrus. An average of four waves of follicular development (follicles growing from 3 to >/=5 mm in diameter before regression) with a periodicity of 4 days were recorded during each of the three scanning periods. There was a close temporal relationship between days of follicular wave emergence and peaks of successive FSH fluctuations. Ewes entering anoestrus late exceeded ewes that became anoestrus early in numbers of large (>/=5 mm in diameter) ovarian antral follicles and maximum follicle diameter. Peak concentrations of transient FSH increases were higher (P<0.05) in ewes entering anoestrus late than in ewes entering anoestrus early. The secretion of luteinising hormone, (LH; mean and basal level, and LH pulse frequency, but not amplitude) was lowest during the month of June in all ewes. Oestradiol production was markedly suppressed throughout anoestrus. Peaks of progesterone secretion appeared to occur at regular intervals and were associated with the end of the growth phase of the largest follicles of sequential waves. In conclusion, the growth of ovarian follicles to ostensibly ovulatory diameters is maintained throughout anoestrus in Finn ewes and periodic emergence of follicular waves is correlated with an endogenous rhythm of FSH secretion. The present study also provides evidence for the inverse relationship between the time of the onset of seasonal anoestrus and the number and size of antral follicles developing throughout anoestrus in Finn ewes, and indicates that differences exist in both the secretion of and ovarian responsiveness to gonadotropic hormones among early and late anoestrous ewes.  相似文献   

2.
Opioid modulation of LH secretion in the ewe   总被引:2,自引:0,他引:2  
Administration of opioid agonists and antagonists and measurement of resulting hormone changes were used to study the possible effects of opioids on reproductive function in the ewe. Intravenous administration of the long-acting methionine-enkephalin analogue FK33-824 (250 micrograms/h for 12 h) to 3 ewes during the follicular phase of the oestrous cycle depressed episodic LH secretion. This effect was reversed by administration of the opiate antagonist naloxone (25 mg/h) in combination with the FK33-824 treatment; in fact LH secretion was enhanced by the combined regimen. Naloxone (25 mg/h for 12 h) administered alone to 3 ewes in the follicular phase also enhanced LH secretion. In 3 animals treated with FK33-824 during the follicular phase, progesterone remained basal for 14 days after treatment, suggesting that ovulation was blocked. Jugular venous infusion of naloxone (25, 50 or 100 mg/h for 8h) into 5 ewes during the early and mid-luteal phase of the cycle resulted overall in a significant increase in mean plasma LH concentrations and LH episode frequency. To investigate whether endogenous opioids suppress LH release in seasonally anoestrous sheep, naloxone was infused intravenously into mature (25, 50 or 100 mg/h for 8 h) and yearling ewes (12 . 5, 25 or 50 mg/h for 8 h) during early, mid- and late anoestrus and plasma LH concentrations were measured. In the mature ewes, there was a trend for naloxone to increase LH values during the early anoestrous period but naloxone was without effect during mid- and late anoestrus. In the yearlings, naloxone infusion consistently increased plasma LH concentrations as a result of a significant increase in LH episode frequency. These experiments indicate that endogenous opioid peptides probably modulate gonadotrophin secretion during both the follicular and luteal phases of the oestrous cycle. However, the follicular phase of the sheep cycle is of short duration, and there may be residual effects of luteal-phase progesterone during this period. Secondly, there may be an age-dependent effect of naloxone on LH secretion during seasonal anoestrus in the ewe, with opioids playing a part in the suppression of LH in young but not in mature animals.  相似文献   

3.
Overall, significantly more antral follicles greater than or equal to 1 mm diameter were present in Romney ewes during anoestrus than in the breeding season (anoestrus, 35 +/- 3 (mean +/- s.e.m.) follicles per ewe, 23 sheep; Day 9-10 of oestrous cycle, 24 +/- 1 follicles per ewe, 22 sheep; P less than 0.01), although the mean numbers of preovulatory-sized follicles (greater than or equal to 5 mm diam.) were similar (anoestrus, 1.3 +/- 0.2 per ewe; oestrous cycle, 1.0 +/- 0.1 per ewe). The ability of ovarian follicles to synthesize oestradiol did not differ between anoestrus and the breeding season as assessed from the levels of extant aromatase enzyme activity in granulosa cells and steroid concentrations in follicular fluid. Although the mean plasma concentration of LH did not differ between anoestrus and the luteal phase of the breeding season, the pattern of LH secretion differed markedly; on Day 9-10 of the oestrous cycle there were significantly more (P less than 0.001) high-amplitude LH peaks (i.e. greater than or equal to 1 ng/ml) in plasma and significantly fewer (P less than 0.001) low amplitude peaks (less than 1 ng/ml) than in anoestrous ewes. Moreover, the mean concentrations of FSH and prolactin were significantly lower during the luteal phase of the cycle than during anoestrus (FSH, P less than 0.05, prolactin, P less than 0.001). It is concluded that, in Romney ewes, the levels of antral follicular activity change throughout the year in synchrony with the circannual patterns of prolactin and day-length. Also, these data support the notion that anovulation during seasonal anoestrus is due to a reduced frequency of high-amplitude LH discharges from the pituitary gland.  相似文献   

4.
Jugular vein blood was collected daily from four mature ewes throughout anoestrus and the first oestrous cycle of the breeding season until 4 days after the second oestrus. The levels of oestrogen, progesterone and LH were determined by radioimmunoassay. There were fluctuations in the LH level throughout most of the observed anoestrous period with a mean plus or minus S.E. value of 2-3 plus or minus 0-9 ng/ml. High LH values of 20-0, 41-2 and 137-5 ng/ml were observed in three ewes on Day - 24 of anoestrus. A brief minor rise in progesterone level was also observed around this period. Progesterone levels were consistently low (0.11 plus or minus 0-01 ng/ml) before Day - 25 of anoestrus. A major rise occurred on Day - 12 of anoestrous and this was followed by patterns similar to those that have been previously reported for the oestrous cycle of the ewe. Random fluctuations of oestrogens deviating from a mean level of 4-40 plus or minus 0-1 pg/ml were observed during anoestrus and the mean level during the period from the first to the second oestrus was 5-2 plus or minus 0-3 pg/ml. A well-defined peak of 13-3 plus or minus 0-7 pg/ml was seen in all ewes on the day of the second oestrus. Results of the present study suggest that episodic releases of LH occur during anoestrus and periods of low luteal activity. The fluctuations in LH levels, as observed during the period of low luteal activity, i.e. before Day - 25 of anoestrus, were less pronounced during the periods of high luteal activity. The view that luteal activity precedes the first behavioural oestrus of the breeding season is supported.  相似文献   

5.
Père David's deer hinds were treated with GnRH, administered as intermittent i.v. injections (2.0 micrograms/injection at 2-h intervals) for 4 days, or as a continuous s.c. infusion (1.0 micrograms/h) for 14 days. These treatments were given early (February-March) and late (May-June) in the period of seasonal anoestrus. The administration of repeated injections of GnRH increased mean LH concentrations from pretreatment values of 0.54 +/- 0.09 to 2.10 +/- 0.25 ng/ml over the first 8 h of treatment in early anoestrus, and from 0.62 +/- 0.11 to 2.73 +/- 0.49 ng/ml in late anoestrus. The mean amplitude of GnRH-induced LH episodes was greater (P less than 0.01) in late (4.03 +/- 0.28 ng/ml) than in early (3.12 +/- 0.26 ng/ml) anoestrus, but within each replicate (early or late anoestrus), neither mean LH episode amplitude nor mean plasma LH concentrations differed significantly between the four periods of intensive blood sampling. On the basis of their progesterone profiles, 6/12 hinds had ovulated in response to treatment with injections of GnRH (1/6 in early anoestrus and 5/6 in late anoestrus), and oestrus and a preovulatory LH surge were recorded in all of these animals. Oestrus and a preovulatory LH surge were also recorded in one other animal treated in early anoestrus in which progesterone concentrations remained low. The mean times of onset of oestrus (91.0 +/- 1.00 and 62.4 +/- 0.98 h) and of the preovulatory LH surge (85.8 +/- 3.76 and 59.4 +/- 0.25 h) both occurred significantly earlier (P less than 0.001) in animals treated in late anoestrus. Continuous infusion of GnRH to seasonally anoestrous hinds resulted in an increase in mean plasma LH concentrations, but this response did not differ significantly between early (2.15 +/- 0.28 ng/ml) and late (2.48 +/- 0.26 ng/ml) anoestrus. Ovulation, based on progesterone profiles, occurred in 2/7 hinds in early anoestrus and in 4/6 hinds in late anoestrus. Oestrus was detected in all except one of these hinds. The mean time of onset of oestrus occurred earlier in animals treated in late anoestrus (66.2 +/- 0.32 h and 46.7 +/- 0.67 h, P less than 0.01). The administration of GnRH, given either intermittently or continuously, will induce ovulation in a proportion of seasonally anoestrous Père David's deer. However, more animals ovulate in response to this treatment in late than in early anoestrus (75% compared with 23%).  相似文献   

6.
The effects of season and of oestradiol and progesterone on the tonic secretion of LH were studied in ovariectomized Merino and Suffolk ewes, two breeds which differ markedly in the seasonal pattern of their reproductive activity. In the absence of exogenous steroids, the frequency of LH pulses was lower and the amplitude of the pulses was higher in anoestrus than in the breeding season for Merino and Suffolk ewes 30 days after ovariectomy. In long-term (190 days) ovariectomized ewes, this seasonal change in LH secretion was observed in Suffolk ewes only. During seasonal anoestrus, treatment of ewes with subcutaneous oestradiol-17 beta implants (3, 6 or 12 mm in length) decreased the frequency of LH pulses in a dose-dependent manner, with Suffolk ewes being far more sensitive to the inhibitory effects of oestradiol than Merino ewes. The lowest dose of oestradiol (3 mm) had no effect on the secretion of LH in Merino ewes, but reduced secretion in Suffolk ewes. Treatment of ewes with the highest dose of oestradiol (12 mm) completely abolished LH pulses in Suffolk ewes, whereas infrequent pulses remained evident in Merino ewes. During the breeding season, oestradiol alone had no effect on the pulsatile release of LH in either breed, but in combination with progesterone there was a significant reduction in LH pulse frequency. Progesterone effectively decreased LH secretion in both breeds in both seasons. It was concluded that differences between breeds in the 'depth' of anoestrus could be related to differences in the sensitivity of the hypothalamus to both negative feedback by oestradiol and the direct effects of photoperiod.  相似文献   

7.
The pattern of LH secretion and response to exogenous GnRH was determined on 5 occasions during seasonal anoestrus of the Père David's deer hind. LH pulse frequency was low (3.3 +/- 0.6 pulses/18 h) in early anoestrus (February), increased significantly in mid-anoestrus (April; 8.4 +/- 1.4 pulses/18 h) and thereafter declined slightly in late anoestrus (June; 6.3 +/- 0.25 pulses/18 h). Mean LH concentrations also showed significant changes during anoestrus with higher levels in mid-anoestrus (April; 0.85 +/- 0.12 ng/ml) when compared with other times (0.53 +/- 0.05, 0.60 +/- 0.10, 0.68 +/- 0.06 and 0.71 +/- 0.05 ng/ml for February, March, May and June, respectively). LH pulse amplitude showed no significant changes during the study. The LH response to intravenous injections of 2 micrograms GnRH was lowest in early anoestrus (February), increased significantly in mid-anoestrus (April) and remained high through late anoestrus. The response during the luteal phase was similar to that seen during late anoestrus. These results indicate that seasonal anoestrus in the Père David's deer hind is not a uniform state but is characterized by an early period of 'deep' anoestrus.  相似文献   

8.
Two groups of 12 seasonally anoestrous ewes were infused with Gn-RH at the rate of 125 or 250 ng/h for 48 h. Four control ewes were infused with the saline vehicle alone. Mean LH concentrations increased significantly in response to Gn-RH infusion and were significantly higher (P less than 0.05) in ewes receiving 250 ng Gn-RH/h. LH concentrations remained unchanged in the control ewes. Oestrus was detected in 22/24 Gn-RH-treated ewes and occurred at a mean time of 37.0 +/- 1.2 h after the start of infusion. Ovulation occurred in all but one of the 24 Gn-RH-treated ewes with mean ovulation rates of 1.27 +/- 0.14 (125 ng-Gn-RH/h) and 1.75 +/- 0.22 (250 ng Gn-RH/h). These results demonstrate that a sustained elevation in mean circulating concentrations of LH induced by continuous administration of Gn-RH is sufficient to invoke the final phases of follicular development, and thereby ovulation, in the seasonally anoestrous ewe.  相似文献   

9.
Nutrition is a major factor affecting cow reproductive efficiency. Long-term moderate or chronic dietary restriction results in a gradual reduction in dominant follicle (DF) growth rate, maximum diameter and persistence. Animals become anoestrus when they lose on average 22-24% of their initial body weight. There is evidence of significant animal-to-animal variation in the interval from the imposition of dietary restriction to onset of anoestrus and from the recommencement of re-alimentation to resumption of ovulation. In contrast, acute dietary restriction to 40% of maintenance requirements rapidly reduces dominant follicle growth rate and maximum diameter and induces anoestrus in a high proportion (60%) of heifers within 13-15 days of dietary restriction. In lactating dairy and beef cows negative energy balance or reduced dietary intake in the early post-partum period, while not affecting the population of small-to-medium size follicles, adversely affects the size and ovulatory fate of the dominant follicle. Re-alimentation of nutritionally induced anoestrous heifers results in an initial gradual increase in dominant follicle growth rate and maximum diameter, followed by a more accelerated increase in dominant follicle growth rate and maximum diameter as the time of resumption of ovulation approaches. Increased dominant follicle growth rate and maximum diameter are associated with increased peripheral concentrations of IGF-I, pulsatile LH and oestradiol. Direct nutritional effects on ovarian function appear to operate through hepatic rather than follicular regulation of IGF-I, and on systemic concentrations of IGF-I BPs and insulin; cumulatively reducing follicular responsiveness to LH and ultimately shutting down follicular oestradiol production. Indirect nutritional effects are apparently mediated through altering the GnRH pulse generator and in-turn selectively reducing pulsatile LH secretion without any apparent adverse effect on FSH secretory patterns. Endogenous opioid peptides, NPY and glucose appear to play a role in the nutritional regulation of GnRH release and in turn pulsatile LH secretion.  相似文献   

10.
A synthetic gonadotropin-releasing hormone (Gn-RH) was administered to female and male adult bovines in order to study the release of luteinizing and follicle-stimulating hormones into blood by the pituitary gland. Plasma LH and FSH were determined by means of a radioimmunological method. In females as well as in males, increasing doses of Gn-RH (range 50 to 1500 μg) administered i.v. or i.m. caused a linear increase in plasma LH. The release of FSH evidently was curvilinear over the same dosage range.After 2 or 3 injections of Gn-RH every 3 hours, or every 24 hours or more, smaller amounts of LH were released; repeated treatment did not result in reduction of FSH. Thus pituitary depletion of LH occurred more readily than FSH. The effect of Gn-RH on plasma levels of LH and FSH at various stages of the estrous cycle shows a tendency for an increasing release of both gonadotropins on Days 17 – 18 in comparison to Days 4 – 5 or Days 11 – 12.The results suggest that, within the limits allowed by the heterogenous FSH assay and the method of administration used in these experiments, synthetic Gn-RH does not evoke completely normal physiological responses. Therefore, further work is needed to determine its role in improving reproductive function.  相似文献   

11.
Ovulation was induced in seasonally anoestrous ewes by repeated 2-h injections of 250 ng Gn-RH, after 12 days (Group 1, N = 7; Group 2, N = 8), 2 days (Group 3, N = 8) or no (Group 4, N = 7) progesterone pretreatment. A preovulatory LH peak occurred spontaneously at a mean (+/- s.e.m.) time of 43.1 +/- 2.0 h, 38.5 +/- 3.1 h and 26.8 +/- 1.7 h after the start of Gn-RH treatment in Groups 1, 3 and 4 respectively, and was artificially induced in ewes in Group 2, after 24 h of treatment, by a single i.v. injection of 150 micrograms Gn-RH. Normal luteal function occurred in all progesterone-pretreated ewes, but in only 1/7 animals not treated with progesterone. These results demonstrate that, although normal luteal function in progesterone-primed ewes induced to ovulate with repeated injections of low doses of Gn-RH is associated with a delayed preovulatory LH peak, it is not this extended period of follicle development which is responsible for functional competence of the resultant corpus luteum. Since as little as 2 days of exposure to elevated plasma progesterone concentrations is effective, it is suggested that progesterone may act directly on the preovulatory follice.  相似文献   

12.
The levels of plasma LH and FSH were measured in serial blood samples taken at 15-min intervals for 6 h from ewes that had remained fertile after grazing oestrogenic pasture (clover-fertile ewes), from ewes that were permanently affected by clover disease (clover-infertile ewes) and from normal ewes. Two flocks of ewes from different locations were studied. In flock 1, tonic LH secretion (total area under the curve of LH concentration versus time, 1 area unit = 1 ng ml-1 x 1 h) was significantly (P < 0.05) greater in clover-infertile ewes (10.4 area units) during anoestrus than in ewes that had remained fertile after prolonged grazing of oestrogenic clover (5.4 area units). Tonic LH and FSH secretions during the bleeding season and FSH secretion during anoestrus were not significantly different. In flock 2, LH levels during the breeding season were significantly (P < 0.05) elevated in clover-infertile ewes (10.9 area units) compared to normal ewes (5.4 area units) that had never grazed oestrogenic clover. LH secretion in clover-infertile ewes (7.8 area units) was intermediate to that found in infertile and control ewes. Concentrations of FSH, progesterone and ovarian vein oestradiol-17 beta (E2) during the breeding season were similar in the three groups. In another experiment, the positive feedback release of LH following administration of E2 (12.5, 25 or 50 micrograms per ewe) was measured in anoestrous ewes of flock 2. Significantly (P < 0.01) more clover-infertile ewes demonstrated a positive feedback effect than control ewes when given 12.5 micrograms E2 but not when given higher doses. The elevation of LH secretion in permanently affected clover-infertile ewes is inconsistent with the hypothesis that the hypothalamo-pituitary axis of these ewes is less responsive to the negative feedback effect of oestrogen. Furthermore, the patency of the positive feedback loop is consistent with the ability to ovulate.  相似文献   

13.
In two experiments carried out during seasonal anoestrus, Romney Marsh ewes were treated with small-dose (250 ng) multiple injections of GnRH at 2-h intervals with and without progesterone pretreatment. In Exp. 1, 8/8 progesterone-primed ewes ovulated and produced functionally normal corpora lutea compared with 2/9 non-primed ewes. Follicles were recovered from similarly treated animals 18 or 28 h after the start of GnRH treatment (at least 14 h before the estimated time of the LH peak) and assessed in terms of diameter, granulosa cell number, oestradiol, testosterone and progesterone concentrations in the follicular fluid, oestradiol production in vitro and binding of 125I-labelled hCG to granulosa and theca. There were no significant differences in any of these measures in 'ovulatory' follicles recovered from the progesterone-pretreated compared to non-pretreated animals. In Exp. 2, follicles were removed from similar treatment groups just before and 2 h after the start of the LH surge. Unlike 'ovulatory' follicles recovered from the non-pretreated ewes, those recovered from progesterone-pretreated ewes responded to the LH surge by significantly increasing oestradiol secretion (P less than 0.01) and binding of 125I-labelled hCG (P less than 0.05) to granulosa cells. Overall there was also more (P less than 0.05) hCG binding to granulosa and theca cells from progesterone-pretreated animals. Non-ovulatory follicles recovered from progesterone-primed ewes had more (P less than 0.05) binding of 125I-labelled hCG to theca and a higher testosterone concentration in follicular fluid (P less than 0.05) than did those from non-primed ewes. These results suggest that inadequate luteal function after repeated injections of GnRH may be due to a poor response to the LH surge indicative of a deficiency in the final maturational stages of the follicle.  相似文献   

14.
The role of endogenous opioids and nutrition on the inhibition of luteinizing hormone (LH) secretion during the postpartum period was investigated in a Spanish breed of sheep lambing in the mid-late breeding season. Two groups of adult Rasa Aragonesa ewes housed in individual pens and lambing on 30 December were fed during the suckling period to provide maintenance requirements and the production of 1.1 (M; n=8) or 0.55 (L; n=8) kg of milk per day. On days 10, 20 and 30 after lambing, the effect of a treatment with the opiate receptor antagonist naloxone (1 mg/kg at four hourly intervals) on LH secretion was assessed in half of the ewes of each group, the remaining females receiving four saline injections. After weaning, animals were fed to provide requirements for maintenance of liveweight. Blood samples were collected twice a week from day 20 postpartum until the end of March, and assayed for progesterone and prolactin. Although underfed ewes showed significantly lower mean plasma concentrations during the control period on day 20 postpartum, nutrition did not seem to modify LH secretion before naloxone or saline injections. Moreover, no differences between nutritional groups in the response to naloxone injections on pattern of LH secretion were found. In fact, naloxone treatment induced an increase of mean LH concentrations on days 10, 20 and 30 postpartum (at least, P<0.05), of LH pulse frequency on days 20 and 30 (P<0.05), and of LH pulse amplitude on days 10 and 20 (P<0.05). Underfed ewes during the postpartum period showed a slower decline in plasma prolactin levels, with significant differences on days 29, 36 and 39 after lambing (P<0.05). Only 3 M ewes ovulated before the onset of the seasonal anoestrus period. It is concluded that endogenous opioids are involved in the inhibition of LH secretion during the early suckling period of a reduced seasonality breed of sheep without any influence of nutrition on the response to naloxone treatment; however, ewes underfed before weaning failed to reactivate their cyclicity prior to the onset of the seasonal anoestrus.  相似文献   

15.
This article reviews the neuroendocrine factors which control the menstrual cycle in the macaque monkey. It describes the pulsatile characteristics of gonadotrophin secretion, the control of LH pulses by an arcuate neural Gn-RH oscillator and the significance of pulsatile Gn-RH secretion. The factors which may modulate the activity of the Gn-RH arcuate neural oscillator are anaesthesia, ovarian hormones and endogenous opiates, as well as the possible significance of changes in Gn-RH pulsatile characteristics. Finally, the oestrogen and progesterone feedback control of the mid-cycle gonadotrophin surge and the site of action (hypothalamic or hypophysial) of these steroids are contrasted in the monkey and rat.  相似文献   

16.
This study examined the importance of pulsatile luteinizing hormone (LH) release on diestrus 1 (D1; metestrus) in the rat estrous cycle to ovarian follicular development and estradiol (E2) secretion. Single injections of a luteinizing hormone-releasing hormone (LHRH) antagonist given at -7.5 h prior to the onset of a 3-h blood sampling period on D1 reduced mean blood LH levels by decreasing LH pulse amplitude, while frequency was not altered. Sequential injections at -7.5 and -3.5 h completely eliminated pulsatile LH secretion. Neither treatment altered the total number of follicles/ovary greater than 150 mu in diameter, the number of follicles in any size group between 150 and 551 mu, or plasma E2, progesterone, or follicle-stimulating hormone (FSH) levels. However, both treatments with LHRH antagonist significantly increased the percentage of atretic follicles in the ovary. These data indicate that: 1) pulsatile LH release is an important factor in determining the rate at which follicles undergo atresia on D1; 2) reductions in LH pulse amplitude alone are sufficient to increase the rate of follicular atresia on D1; 3) an absence of pulsatile LH release for a period of up to 10 h on D1 is not sufficient to produce a decline in ovarian E2 secretion, most likely because the atretic process was in its early stages and had not yet affected a sufficient number of E2-secreting granulosa cells to reduce the follicle's capacity to secrete E2; and 4) suppression or elimination of pulsatile LH release on D1 is not associated with diminished FSH secretion.  相似文献   

17.
LH pulsatility changes throughout the normal menstrual cycle. The number of LH pulses increases during the first days after menstruation, remains unchanged thereafter until after ovulation and declines progressively during the luteal phase. LH pulse amplitude is highest during midcycle. In hypothalamic amenorrhea, gonadotropin levels are reduced. This appears to be a consequence of a reduction of hypothalamic Gn-RH secretion which is reflected by a diminished frequency and amplitude of LH pulses during the 24-hour span. Administration of an opiate antagonist, naloxone, increases LH pulse frequency in those patients, and in patients with secondary hypothalamic amenorrhea the daily oral administration of naltrexone, another specific opiate antagonist, induces ovulatory cycles. Patients suffering from hyperandrogenemia may present with eumenorrhea, oligomenorrhea or amenorrhea. There is an increase in mean LH levels and of the LH/FSH ratio with increasing severity of the ovarian disturbance. The increase in mean LH levels is a consequence of an increase in LH pulse amplitude while LH pulse frequency is not changed compared to the early follicular phase of the menstrual cycle.  相似文献   

18.
During the breeding season, five groups of three ewes were implanted at ovariectomy with 0.36, 0.5, 1.0 and 6.0 cm oestradiol implants or implants containing no steroid. Eleven days after receiving implants, blood samples were taken every 10 min for 6 h; implants were then removed. Treatments were repeated three times during each of two consecutive breeding seasons and four times during the intervening anoestrus. In ovariectomized ewes without steroid treatment, luteinizing hormone (LH) pulse frequency increased from early to mid-breeding season, decreased to a minimum at mid-anoestrus and increased to reach a maximum at the mid-point of the second breeding season, subsequently declining. LH pulse amplitude was inversely related to frequency. Basal serum LH concentrations decreased gradually from the first breeding season to reach a minimum at mid-anoestrus and gradually increased to reach a maximum at the end of the second breeding season. Mean serum LH and follicle-stimulating hormone (FSH) concentrations were higher at the end of the second breeding season compared with the beginning of the first breeding season. All parameters of gonadotrophin secretion were decreased much more by oestradiol during the anoestrus than during the breeding season. LH pulse frequency was decreased during anoestrus and at high oestradiol concentrations during the first breeding season. Apart from LH pulse amplitude, the decreases in all parameters of gonadotrophin secretion were less during the second compared with the first breeding season. The minimum effective dose of oestradiol required to decrease mean and basal serum concentrations of LH during anoestrus was lower than in the breeding season. The minimum effective dose of oestradiol required to decrease mean serum concentrations of FSH was lower in the first compared with the second breeding season. Oestradiol depression of LH pulse amplitude and mean serum concentrations of LH and FSH showed a dose dependency during the breeding season. During anoestrus dose dependency was seen for basal concentrations of LH and mean serum concentrations of LH and FSH. We conclude that significant chronic changes in gonadotrophin secretion occur in the ewe with time after ovariectomy. Sensitivity to oestradiol also changes, and the effects of oestradiol are not always dose dependent. We suggest that the circannual pattern of LH pulse frequency and basal LH secretion are directly linked to the circannual cycle of photoperiod.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Jugular venous blood samples were obtained from 7 dairy cows every 10 min for 10-19 h during the early- or mid-luteal phase of the oestrous cycle, and each cow was given 1 or 2 i.v. injections of 100 micrograms synthetic Gn-RH. Four of these cows were also sampled in a different cycle with no treatment being administered. Peaks of plasma LH, FHS and progesterone were detected in each animal in the absence of treatment; those of LH and progesterone often occurred in parallel. Injection of Gn-RH was always followed by a significant increase in plasma LH and progesterone concentrations and in most cases by a significant FSH increase. There was a significant temporal relationship between the peaks of all 3 hormones. A further 8 cows were sampled during the first 10 days post partum when the mean plasma progesterone concentration was low. An i.v. injection of 200 micrograms synthetic Gn-RH was given to each animal and this resulted in a significant increase in plasma LH and FSH concentrations, but in only one cow was the Gn-RH injection followed by a significant increase in plasma progesterone concentration. The LH response to Gn-RH injection was significantly less in cows injected on or before Day 5 post partum than in cows injected on Days 7-10 post partum.  相似文献   

20.
In this study, we monitored episodic luteinizing hormone (LH) secretion throughout development in eight April-born ewe lambs to determine if a change in LH pulse patterns preceded first ovulation at puberty. LH pulses were measured in samples collected every 12 min for 6 h once in July, twice a month from 22 August to 2 October, and then weekly until puberty. Progesterone concentrations, measured in samples taken 3/wk, were used as an index of first ovulation, which occurred at 29.3 +/- 0.7 wk of age. LH pulse frequencies throughout most of this period ranged from 0 to 2 pulses/6 h, with no change over time. However, during the week prior to the first progesterone rise, there was a significant increase in pulse frequency to a level seen during the follicular phase in post-pubertal lambs. This increase in pulse frequency was evident in 7 of 8 lambs; pulses were not analyzed in the last lamb because samples were taken during the LH surge. In contrast, LH pulse amplitude did not increase prior to puberty. In fact, pulse amplitude declined linearly during the 3 wk before first ovulation and then increased during the follicular phase in post-pubertal animals. These results support the hypothesis that an increase in the frequency of episodic LH secretion is a key event leading to the onset of ovarian cycles in the lamb. Whether an increase in pulse amplitude is also necessary remains unclear. If so, it must occur just before the LH surge, since it was not detected in any samples taken before puberty in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号