首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The balance between positive and negative signals plays a key role in determining T cell function. CTL-associated Ag-4 is a surface receptor that can inhibit T cell responses induced upon stimulation of the TCR and its CD28 coreceptor. Little is known regarding the signaling mechanisms elicited by CTLA-4. In this study we analyzed CTLA-4-mediated inhibition of TCR signaling in primary resting human CD4(+) T cells displaying low, but detectable, CTLA-4 cell surface expression. CTLA-4 coligation with the TCR resulted in reduced downstream protein tyrosine phosphorylation of signaling effectors and a striking inhibition of extracellular signal-regulated kinase 1/2 activation. Analysis of proximal TCR signaling revealed that TCR zeta-chain phosphorylation and subsequent zeta-associated protein of 70 kDa (ZAP-70) tyrosine kinase recruitment were not significantly affected by CTLA-4 engagement. However, the association of p56(lck) with ZAP-70 was inhibited following CTLA-4 ligation, correlating with reduced actions of p56(lck) in the ZAP-70 immunocomplex. Moreover, CTLA-4 ligation caused the selective inhibition of CD3-mediated phosphorylation of the positive regulatory ZAP-70 Y319 site. In addition, we demonstrate protein tyrosine phosphatase activity associated with the phosphorylated CTLA-4 cytoplasmic tail. The major phosphatase activity was attributed to Src homology protein 2 domain-containing tyrosine phosphatase 1, a protein tyrosine phosphatase that has been shown to be a negative regulator of multiple signaling pathways in hemopoietic cells. Collectively, our findings suggest that CTLA-4 can act early during the immune response to regulate the threshold of T cell activation.  相似文献   

2.
An investigation into the role of CD45 isoforms in T cell antigen receptor signal transduction was carried out by transfecting CD45-negative CD4(+)CD8(+) HPB-ALL T cells with the CD45R0, CD45RBC, and CD45RABC isoforms. Fluorescence resonance energy transfer analysis showed that the CD45R0 isoform, but not the CD45RBC or CD45RABC isoforms, was found as homodimers and also preferentially associated with CD4 and CD8 at the cell-surface. A comparison was therefore made of T cell antigen receptor signaling between sub-clones expressing either CD45R0 or CD45RBC. Under basal conditions CD4-associated p56(lck) tyrosine kinase activity and cellular protein tyrosine phosphorylation levels were higher in the CD45R0(+) than in the CD45RBC(+) sub-clones. Upon CD3-CD4 ligation, TCR-zeta phosphorylation, ZAP-70 recruitment to the p21/p23 TCR-zeta phosphoisomers, ZAP-70 phosphorylation, as well as p56(lck), c-Cbl and Slp-76 phosphorylation, were all markedly increased in CD45R0(+) compared with CD45RBC(+) cells. T cell antigen receptor (TCR) stimulation alone also promoted c-Cbl phosphorylation in CD45R0(+) but not in CD45RBC(+) cells. Our results are consistent with a model in which association of CD45R0 with CD4 generates a more active pool of CD4-associated p56(lck) kinase molecules. Upon CD3-CD4 co-ligation, the active p56(lck) increases the intensity of T cell antigen receptor signal transduction coupling by promoting TCR-zeta chain phosphorylation and ZAP-70 recruitment.  相似文献   

3.
This study addresses the role of the tyrosine kinase ZAP-70 in CD2-mediated T cell activation. Patients lacking ZAP-70 have few mature CD8+ T cells and high numbers of CD4+ T cells that are nonfunctional upon TCR triggering. Such a patient with a homozygous deletion in the zap-70 gene that resulted in the complete absence of ZAP-70 protein expression has been identified. Expression of the tyrosine kinases Lck, Fyn, and Syk was normal. The patient's T cells were activated with two different pairs of mitogenic mAbs. CD2-induced phosphorylation of the zeta-chain and influx of Ca2+ was defective in the ZAP-70-deficient T cells, whereas CD2-induced phosphorylation of several other proteins, including Syk, was not affected. CD2-induced proliferation as well as production of TNF-alpha and IFN-gamma was abrogated in ZAP-70-deficient T cells, whereas PMA plus ionomycin induced normal activation of these cells. Together, this study shows that CD2-activation triggers ZAP-70-dependent and -independent pathways. Deletion of ZAP-70 affected CD2- and CD3-mediated proliferation and cytokine production in a similar way, suggesting that one of the different CD2 pathways converges with a CD3 pathway at or upstream of the activation of ZAP-70.  相似文献   

4.
Physical association of CD4 with the T cell receptor.   总被引:10,自引:0,他引:10  
The coreceptor hypothesis postulates that physical association of CD4 with the TCR is required for effective signaling for T cell activation. A variety of studies has suggested that the coreceptor function of CD4 allows responses to 10- to 100-fold lower levels of peptide:self MHC class II ligand. We test the hypothesis of CD4 physical association with the TCR in two different ways. First, we use a panel of soluble antibodies directed at different TCR epitopes to activate a cloned T cell line, and show that activation by antibodies directed at a particular TCR epitope can be inhibited by anti-CD4 antibodies binding to a certain CD4 epitope. These effects establish that the interaction of CD4 and the TCR occurs in a specific orientation. Second, we use the same system to provide evidence that the physical association of CD4 with the TCR is required for effective tyrosine phosphorylation of the TCR zeta-chain subunit, presumably reflecting delivery of p56lck (lck) to the TCR. Only anti-TCR antibodies that induce physical association of CD4 with the TCR as monitored by cocapping can induce efficient tyrosine-phosphorylation of the TCR zeta-chain, unless second antibodies are used to force CD4 and the TCR to associate. Furthermore, the phosphorylation of the TCR zeta-chain exactly parallesl physical association in time and drug sensitivity. We conclude from these studies that stimuli that drive physical association of CD4 and the TCR strongly favor T cell activation, supporting the coreceptor hypothesis of CD4 function.  相似文献   

5.
Peripheral T lymphocyte activation in response to TCR/CD3 stimulation is reduced in type 1 diabetic patients. To explore the basis of this deficiency, a comprehensive analysis of the signal transduction pathway downstream of the TCR/CD3 complex was performed for a cohort of patients (n = 38). The main result of the study shows that T cell hyporesponsiveness is positively correlated with a reduced amount of p56(lck) in resting T lymphocytes. Upon CD3-mediated activation, this defect leads to a hypophosphorylation of the CD3zeta-chain and few other polypeptides without affecting the recruitment of ZAP70. Other downstream effectors of the TCR/CD3 transduction machinery, such as phosphatidylinositol 3-kinase p85alpha, p59(fyn), linker for activation of T cells (LAT), and phospholipase C-gamma1, are not affected. In some patients, the severity of this phenotypic deficit could be linked to low levels of p56(lck) mRNA and resulted in the failure to efficiently induce the expression of the CD69 early activation marker. We propose that a primary deficiency in human type 1 diabetes is a defect in TCR/CD3-mediated T cell activation due to the abnormal expression of the p56(lck) tyrosine kinase.  相似文献   

6.
RhoH is an hematopoietic-specific, GTPase-deficient Rho GTPase that plays a role in T development. We investigated the mechanisms of RhoH function in TCR signaling. We found that the association between Lck and CD3ζ was impaired in RhoH-deficient T cells, due to defective translocation of both Lck and ZAP-70 to the immunological synapse. RhoH with Lck and ZAP-70 localizes in the detergent-soluble membrane fraction where the complex is associated with CD3ζ phosphorylation. To determine if impaired translocation of ZAP-70 was a major determinant of defective T cell development, Rhoh(-/-) bone marrow cells were transduced with a chimeric myristoylation-tagged ZAP-70. Myr-ZAP-70 transduced cells partially reversed the in vivo defects of RhoH-associated thymic development and TCR signaling. Together, our results suggest that RhoH regulates TCR signaling via recruitment of ZAP-70 and Lck to CD3ζ in the immunological synapse. Thus, we define a new function for a RhoH GTPase as an adaptor molecule in TCR signaling pathway.  相似文献   

7.
8.
ZAP-70 is a cytoplasmic protein tyrosine kinase that is required for T cell antigen receptor (TCR) signaling. Both mice and humans deficient in ZAP-70 fail to develop functional T cells, thus demonstrating its necessity for T cell development and function. There is currently no highly specific, cell-permeable, small molecule inhibitor for ZAP-70; therefore, we generated a mutant ZAP-70 allele that retains kinase activity but is sensitive to inhibition by a mutant-specific inhibitor. We validated the chemical genetic inhibitor system in Jurkat T cell lines, where the inhibitor blocked ZAP-70-dependent TCR signaling in cells expressing the analog-sensitive allele. Interestingly, the inhibitor also ablated CD28 superagonist signaling, thereby demonstrating the utility of this system in dissecting the requirement for ZAP-70 in alternative mechanisms of T cell activation. Thus, we have developed the first specific chemical means of inhibiting ZAP-70 in cells, which serves as a valuable tool for studying the function of ZAP-70 in T cells.  相似文献   

9.
The TCR zeta-chain-associated protein of 70 kDA (ZAP-70) and Syk tyrosine kinases play critical roles in regulating TCR-mediated signal transduction. They not only share some overlapped functions but also may play unique roles in regulating the function and development of T cells. However, it is not known whether they have different effects on the activation and activation-induced cell death of T cells. To address this question, we generated cDNAs encoding chimeric molecules that a tailless TCR zeta-chain was directly linked to truncated ZAP-70 (Z/ZAP) or Syk (Z/Syk) molecules lacking the two Src homology 2 domains. Transfection of these molecules into zeta-chain-deficient cells restored their TCR expression. In addition, Z/ZAP and Z/Syk transfectants but not control cells demonstrated kinase activities in phosphorylating an exogenous substrate specific for ZAP-70 and Syk kinases. Z/ZAP transfectants activated through TCRs underwent a faster time course of apoptosis and had a greater percentage of apoptotic cells than that of Z/Syk and control cells. Activated Z/ZAP transfectants increased Fas and Fas ligand (FasL) expression 3- and 40-fold, respectively. Blocking of the Fas/FasL interaction could inhibit the apoptosis of Z/ZAP transfectants. In contrast, although activated Z/Syk transfectants could increase FasL expression, their Fas expression actually decreased and the percentage of apoptotic cells did not increase. Further studies of the mechanisms revealed that activation of Z/ZAP but not Z/Syk transfectants resulted in rapid activation of caspase-3 and caspase-8 that could also be inhibited by blocking Fas/FasL interaction. These results demonstrated that ZAP-70 and Syk play distinct roles in T cell activation and activation-induced cell death.  相似文献   

10.
11.
Yu Y  Fay NC  Smoligovets AA  Wu HJ  Groves JT 《PloS one》2012,7(2):e30704
Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88-103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL.  相似文献   

12.
Memory CD4 T cells must provide robust protection for an organism while still maintaining self-tolerance. Superantigens reveal a memory cell-specific regulatory pathway, by which signaling through the TCR can lead to clonal tolerance (anergy). Here we show that the src kinase Fyn is a critical regulator of anergy in murine memory CD4 T cells induced by the bacterial superantigen staphylococcal enterotoxin B (SEB). Exposure to SEB results in impaired TCR signaling due to failed CD3/ZAP-70 complex formation. Further, signal transduction through the TCR remains similarly blocked when anergic memory cells are subsequently exposed to agonist peptide antigen. Pharmacological inhibition or genetic elimination of Fyn kinase reverses memory cell anergy, resulting in SEB-induced cell proliferation. The mechanism underlying impaired TCR signaling and subsequent memory cell anergy must involve a Fyn signaling pathway given that the suppression of Fyn activity restores CD3/ZAP-70 complex formation and TCR proximal signaling.  相似文献   

13.
The Tec family tyrosine kinase, Itk has been implicated in T cell antigen receptor (TCR) signaling, yet little is known about Itk regulation. Here, we investigate the role of the tyrosine kinase ZAP-70 in regulating Itk. Whereas Itk was activated in Jurkat T cells in response to CD3 cross-linking, Itk activation was defective in the ZAP-70-deficient P116 Jurkat T cell line. Itk responsiveness to TCR engagement was restored in P116 cells stably transfected with ZAP-70 cDNA. ZAP-70 itself could not directly phosphorylate the Itk kinase domain, indicating an indirect regulation of Itk activity. No role was found for ZAP-70 in regulating Itk recruitment to the plasma membrane, an event that has been suggested to be rate-limiting for the activation of Tec family kinases. Indeed, Itk was found to be constitutively targeted to the membrane fraction in both Jurkat and P116 cells. Lat, a prominent in vivo substrate of ZAP-70 that mediates assembly of multimolecular signaling complexes at the plasma membrane of T cells was also found to be required for TCR-stimulated Itk activation. Itk could not be activated by CD3 cross-linking in a Lat-negative cell line, unless Lat expression was restored. Lat and Itk were observed to co-associate in response to CD3 cross-linking in Jurkat T cells, but not in P116 T cells. The Lat-Itk association correlated with Lat tyrosine phosphorylation, which was deficient in the P116 T cells. These data suggest that ZAP-70 and Lat play important, probably sequential, roles in regulating the activation of Itk following TCR engagement.  相似文献   

14.
The protein tyrosine kinase, ZAP-70, is pivotally involved in transduction of Ag-binding signals from the TCR required for T cell activation and development. Defects in ZAP-70 result in SCID in humans and mice. We describe an infant with SCID due to a novel ZAP-70 mutation, comparable with that which arose spontaneously in an inbred mouse colony. The patient inherited a homozygous missense mutation within the highly conserved DLAARN motif in the ZAP-70 kinase domain. Although the mutation only modestly affected protein stability, catalytic function was absent. Despite identical changes in the amino acid sequence of ZAP-70, the peripheral T cell phenotypes of our patient and affected mice are distinct. ZAP-70 deficiency in this patient, as in other humans, is characterized by abundant nonfunctional CD4(+) T cells and absent CD8(+) T cells. In contrast, ZAP-70-deficient mice lack both major T cell subsets. Although levels of the ZAP-70-related protein tyrosine kinase, Syk, may be sufficiently increased in human thymocytes to rescue CD4 development, survival of ZAP-70-deficient T cells in the periphery does not appear to be dependent on persistent up-regulation of Syk expression.  相似文献   

15.
16.
Lymphocytes must promote protective immune responses while still maintaining self-tolerance. Stimulation through the T cell receptor (TCR) can lead to distinct responses in naive and memory CD4 T cells. Whereas peptide antigen stimulates both naive and memory T cells, soluble anti-CD3 antibodies and bacterial superantigens stimulate only naive T cells to proliferate and secrete cytokines. Further, superantigens, like staphylococcal enterotoxin B (SEB), cause memory T cells to become anergic while soluble anti-CD3 does not. In the present report, we show that signal transduction through the TCR is impaired in memory cells exposed to either anti-CD3 or SEB. A block in signaling leads to impaired activation of the kinase ZAP-70 so that downstream signals and cell proliferation do not occur. We further show that the signaling defect is unique to each agent. In anti-CD3-treated memory T cells, the src kinase Lck is only transiently activated and does not phosphorylate and activate ZAP-70. In SEB-treated memory T cells, ZAP-70 does not interact with the TCR/CD3 complex to become accessible to Lck. Finally, we provide evidence that alternative signaling pathways are initiated in SEB-treated memory cells. Altered signaling, indicated by an elevation in activity of the src kinase Fyn, may be responsible for memory cell anergy caused by SEB. Thus, differentiation of naive T cells into memory cells is accompanied by alterations in TCR-mediated signaling that can promote heightened recall immunity or specific tolerance.  相似文献   

17.
Sodium ortho-vanadate (Na3VO4), an inhibitor of protein tyrosine phosphatase, induces a rapid (15 min) and strong inhibition of phosphatidylserine synthesis with an IC50 = 100 microM. The mode of action of Na3VO4 was compared to that of CD3 mAbs. It was found that Na3VO4 bypasses the major CD3-induced T cell activation signals including protein tyrosine phosphorylation, p56lck activation and the generation of second messengers including inositol phosphates and its subsequent Ca2+ mobilization as well as diacylglycerol production. These facts were confirmed by using a panel of Jurkat clones that differs by the expression of either tyrosine kinases involved in the CD3-induced T cell activation pathway such as p56lck, p72syk and ZAP-70 or some cell surface receptors such as the CD3/TCR complex or the CD45 phosphatase.  相似文献   

18.
Lnk was originally cloned from a rat lymph node cDNA library and shown to participate in T cell signaling. Human Lnk (hLnk) was cloned by screening a Jurkat cell cDNA library. hLnk has a calculated molecular mass of 63 kDa, and its deduced amino acid sequence indicates the presence of an N-terminal proline-rich region, a pleckstrin homology domain, and a Src homology 2 domain. When expressed in COS cells, hLnk migrates with an apparent molecular mass of 75 kDa. Confocal fluorescence microscope analysis indicates that in COS cells transfected with an expression vector encoding a chimeric Lnk-green fluorescent protein, hLnk is found at the juxtanuclear compartment and also appears to be localized at the plasma membrane. Lnk is tyrosine-phosphorylated by p56lck. Following phosphorylation, p56lck binds to tyrosine-phosphorylated hLnk through its Src homology 2 domain. In COS cells cotransfected with hLnk, p56lck, and CD8-zeta, hLnk associated with tyrosine-phosphorylated TCR zeta-chain through its Src homology 2 domain. The overexpression of Lnk in Jurkat cells led to an inhibition of anti-CD3 mediated NF-AT-Luc activation. Our study reveals a potentially new mechanism of T cell-negative regulation.  相似文献   

19.
CD28 costimulation amplifies TCR-dependent signaling in activated T cells, however, the biochemical mechanism(s) by which this occurs is not precisely understood. The small GTPase Rac-1 controls the catalytic activity of the mitogen-activated protein kinases (MAPKs) and cell cycle progression through G1. Rac-1 activation requires the phospho-tyrosine (p-Tyr)-dependent recruitment of the Vav GDP releasing factor (GRF) to the plasma membrane and assembly of GTPase/GRF complexes, an event critical for Ag receptor-triggered T cell activation. Here, we show that TCR/CD28 costimulation synergistically induces Rac-1 GDP/GTP exchange. Our findings, obtained by using ZAP-70-negative Jurkat T cells, indicate that CD28 costimulation augments TCR-mediated T cell activation by increasing the ZAP-70-mediated Tyr phosphorylation of Vav. This event regulates the Rac-1-associated GTP/GDP exchange activity of Vav and downstream pathway(s) leading to PAK-1 and p38 MAPK activation. CD28 amplifies TCR-induced ZAP-70 activity and association of Vav with ZAP-70 and linker for activation of T cells (LAT). These results favor a model in which ZAP-70 regulates the intersection of the TCR and CD28 signaling pathways, which elicits the coupling of TCR and CD28 to the Rac-1, PAK-1, and p38 MAPK effector molecules.  相似文献   

20.
D H Chu  H Spits  J F Peyron  R B Rowley  J B Bolen    A Weiss 《The EMBO journal》1996,15(22):6251-6261
The protein tyrosine phosphatase CD45 is a critical component of the T cell antigen receptor (TCR) signaling pathway, acting as a positive regulator of Src family protein tyrosine kinases (PTKs) such as Lck. Most CD45-deficient human and murine T cell lines are unable to signal through their TCRs. However, there is a CD45-deficient cell line that can signal through its TCR. We have studied this cell line to identify a TCR signaling pathway that is independent of CD45 regulation. In the course of these experiments, we found that the Syk PTK, but not the ZAP-70 PTK, is able to mediate TCR signaling independently of CD45 and of Lck. For this function, Syk requires functional kinase and SH2 domains, as well as intact phosphorylation sites in the regulatory loop of its kinase domain. Thus, differential expression of Syk is likely to explain the paradoxical phenotypes of different CD45-deficient T cells. Finally, these results suggest differences in activation requirements between two closely related PTK family members, Syk and ZAP-70. The differential activities of these two kinases suggest that they may play distinct, rather than completely redundant, roles in lymphocyte signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号