首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
The Puf family of RNA-binding proteins regulates mRNA translation and decay via interactions with 3' untranslated regions (3' UTRs) of target mRNAs. In yeast, Puf3p binds the 3' UTR of COX17 mRNA and promotes rapid deadenylation and decay. We have investigated the sequences required for Puf3p recruitment to this 3' UTR and have identified two separate binding sites. These sites are specific for Puf3p, as they cannot bind another Puf protein, Puf5p. Both sites use a conserved UGUANAUA sequence, whereas one site contains additional sequences that enhance binding affinity. In vivo, presence of either site partially stimulates COX17 mRNA decay, but full decay regulation requires the presence of both sites. No other sequences outside the 3' UTR are required to mediate this decay regulation. The Puf repeat domain of Puf3p is sufficient not only for in vitro binding to the 3' UTR, but also in vivo stimulation of COX17 mRNA decay. These experiments indicate that the essential residues involved in mRNA decay regulation are wholly contained within this RNA-binding domain.  相似文献   

5.
6.
Liu X  Reig B  Nasrallah IM  Stover PJ 《Biochemistry》2000,39(38):11523-11531
The 5' untranslated region (UTR) of the human cytoplasmic serine hydroxymethyltransferase (cSHMT) message is alternatively spliced, creating a full-length 5' UTR (LUTR) encoded within exons 1-3 and a shorter UTR (SUTR) that results from excision of exon 2. The role of the 5' UTRs in cSHMT expression was investigated by fusing the cSHMT 5' UTRs to the 5' end of the luciferase gene. Human cSHMT protein at 10 microM inhibits in vitro translation of cSHMT 5' UTR-luciferase fusion mRNA templates by more than 90%, but does not inhibit translation of the luciferase message lacking the UTR. Translation inhibition is independent of amino acid and folate substrate binding to the cSHMT enzyme. The cSHMT SUTR-luciferase mRNA binds to the cSHMT.glycine.5-formyltetrahydrofolate ternary complex with an apparent K(d) of 10 microM. Gel mobility shift assays demonstrate that the human cSHMT protein binds to the cSHMT LUTR-luciferase fusion mRNA in the presence and absence of glycine and 5-formyltetrahydrofolate pentaglutamate. The fusion cSHMT SUTR-luciferase message at 65 microM inhibits the cSHMT-catalyzed cleavage of allothreonine as a partial mixed type inhibitor, reducing both k(cat) and K(m) by 40 and 75%, respectively, while tRNA has no effect on cSHMT catalysis. These studies indicate that the cSHMT protein can bind mRNA, and displays increased affinity for the 5' untranslated region of its mRNA.  相似文献   

7.
8.
9.
10.
11.
Sidiropoulos KG  Pontrelli L  Adeli K 《Biochemistry》2005,44(37):12572-12581
Insulin has been shown to acutely regulate hepatic apolipoprotein B (apoB) secretion at both translational and post-translational levels; however, mechanisms of apoB mRNA translational control are largely unknown. Recent studies of apoB untranslated regions (UTRs) revealed a potentially important role for cis-trans interactions at the 5' and 3' UTRs. In the present paper, deletion constructs of the UTR regions of apoB revealed that the 5' UTR was necessary and sufficient for insulin to inhibit synthesis of apoB15. Metabolic radiolabeling and in vitro translation experiments in the presence of protease inhibitors confirmed that the effect of insulin on the apoB 5' UTR was translational in nature. Using the nondenaturing electrophoretic mobility shift assay (EMSA), protein-RNA complexes were detected binding to the apoB 5' and 3' UTRs. Denaturing EMSA identified a 110-kDa protein interacting at the 5' UTR. Nondenaturing EMSA determined that insulin altered binding of large protein complexes to the 5' UTR. Binding specificity was determined by competition with both specific and nonspecific competitors. Insulin treatment decreased binding of the 110-kDa protein to the 5' UTR as visualized by EMSA. Absence of insulin increased binding of this trans-acting factor to the 5' UTR by 2-fold. Analysis of the 3' UTR showed no significant insulin-mediated changes in binding of trans-acting factors. We thus propose the existence of a novel RNA-binding insulin-sensitive factor that binds to the 5' UTR and may regulate apoB mRNA translation. Perturbations in hepatic insulin signaling as observed in insulin-resistant states may alter cis-trans interactions at the 5' UTR, leading to alterations in the rate of apoB mRNA translation, thus contributing to apoB-lipoprotein overproduction.  相似文献   

12.
13.
14.
15.
16.
17.
The Escherichia coli RNA chaperone Hfq was discovered originally as an accessory factor of the phage Qbeta replicase. More recent work suggested a role of Hfq in cellular physiology through its interaction with ompA mRNA and small RNAs (sRNAs), some of which are involved in translational regulation. Despite their stability under certain conditions, E. coli sRNAs contain putative RNase E recognition sites, that is, A/U-rich sequences and adjacent stem-loop structures. We show herein that an RNase E cleavage site coincides with the Hfq-binding site in the 5'-untranslated region of E. coli ompA mRNA as well as with that in the sRNA, DsrA. Likewise, Hfq protects RyhB RNA from in vitro cleavage by RNase E. These in vitro data are supported by the increased abundance of DsrA and RyhB sRNAs in an RNase E mutant strain as well as by their decreased stability in a hfq(-) strain. It is commonly believed that the RNA chaperone Hfq facilitates or promotes the interaction between sRNAs and their mRNA targets. This study reveals another role for Hfq, that is, protection of sRNAs from endonucleolytic attack.  相似文献   

18.
N S Lee  E Bertrand    J Rossi 《RNA (New York, N.Y.)》1999,5(9):1200-1209
Subcellular localization signals for several mRNAs are positioned in their 3' untranslated regions (UTR). We have utilized the human alpha- and beta-actin 3' UTRs as signals for colocalizing hammerhead ribozymes with a lacZtarget mRNA. Ribozyme and target genes containing matched or unmatched 3' UTRs were cotransfected into 12-day-old chicken embryonic myoblast and fibroblast (CEMF) cultures and assayed by in situ hybridization (ISH) using a dual label, antibody sandwich procedure, and dual fluorescence microscopy to monitor intracellular colocalization. Beta-galactosidase localization in transfectants was visualized by incubation with X-gal and also quantitated by an o-nitrophenyl beta-D-galactopyranoside (ONPG) assay. We found that the percentage of colocalization using the matched alpha- or beta-actin 3' UTR (alpha-alpha or beta-beta) was enhanced approximately threefold relative to unmatched 3' UTRs. The increase in ribozyme-mediated inhibition of beta-galactosidase activity observed when matched 3' UTRs were used was consistent with the observed percentage of colocalization. These results represent the first direct demonstration that mRNA localization signals (zipcodes) can be utilized to enhance intracellular ribozyme efficacy.  相似文献   

19.
It has previously been proposed that Escherichia coli ribosomal protein S1 is required for the translation of highly structured mRNAs. In this study, we have examined the influence of structural features at or near the start codon of different mRNAs. The requirement for ribosomal protein S1 for translation initiation was determined when (i) the ribosome-binding site (RBS) was either preceded by a 5' non-translated leader sequence; (ii) the RBS was located 5' proximal to a mRNA start codon; and (iii) the start codon was the 5' terminal codon as exemplified by leaderless mRNAs. In vitro translation studies revealed that the leaderless lambda cl mRNA is translated with Bacillus stearothermophilusribosomes, naturally lacking a ribosomal protein S1 homologue, whereas ompA mRNA containing a 5' leader is not. These studies have been verified by toeprinting with E. coli ribosomes depleted for S1. We have shown that S1 is required for ternary complex formation on ompA mRNA but not for leaderless mRNAs or for mRNAs in which the RBS is close to the 5' end.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号