首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of the Adh1 gene (alcohol dehydrogenase, EC 1.1.1.1) was studied in the aleurone layer of barley ( Hordeum vulgare cv. Himalaya). Expression increased markedly during grain development at the levels of activity, enzyme protein and mRNA. mRNA content, but not enzyme activity, could be increased further by exogenous abscisic acid (ABA) when isolated, de-embryonated developing grains were pre-treated with gibberellic acid (GA3) or fluridone. In isolated mature aleurone layers incubated with exogenous hormones, ADH mRNA was strongly up-regulated by ABA and down-regulated by GA3 within 6 h. With ABA, this increase in mRNA was followed by an increase in ADH protein and activity, peaking at 18 h. With GA3, the decrease in mRNA was accompanied by simultaneous decreases in protein and activity. In general, GA3 counteracted the effect of ABA and vice versa. In the aleurone of germinating grain, ADH activity decayed in a distal direction from the embryo, consistent with down-regulation by gibberellin(s) diffusing from it. It was concluded that ADH gene expression in the aleurone of the intact grain is regulated by an ABA/gibberellin interaction.  相似文献   

2.
As part of our investigation of the mode of action of plant hormones in barley (Hordeum vulgare L.) aleurone layers, we have studied the expression of five identified and three unidentified mRNA species in the presence of exogenous gibberellic acid (GA3) and abscisic acid. Three of the mRNAs are GA3-inducible, three are suppressed by GA3, and two are constitutive. The extent of the GA3 effect differs considerably for both inducible and suppressible mRNAs. For example, a ten-fold higher concentration of GA3 (10-8 M) is required for full induction of the high-pl group -amylase mRNA than is required for the low-pI -amylase mRNA (10-9 M). Temporal regulation of mRNA abundance also varies between the two -amylase isoenzyme groups. The three GA3-suppressible mRNA species studied, alcohol dehydrogenase (ADH1), a probable amylase and protease inhibitor, and an unidentified barley mRNA species also varied in response to GA3. The ADH1 mRNA decreased drastically within 8 h of GA3 treatment, whereas the other two began to decrease in abundance only after 12–16 h of GA3 treatment. Abscisic-acid treatment counteracted the GA3 effects for both the inducible and suppressible mRNA species. Comparison of -amylase-mRNA levels and -amylase-synthesis rates showed a strong correlation between the two parameters, the only exception being a lack of -amylase synthesis in the presence of -amylase mRNA at low GA3 concentrations. Therefore, the expression of -amylase seems to be regulated primarily by its mRNA levels.Abbreviations ABA abscisic acid - ADH1 alcohol dehydrogenase 1 - cDNA copy DNA - GA3 gibberellic acid - PAPI probable amylase/protease inhibitor  相似文献   

3.
Moll BA  Jones RL 《Plant physiology》1982,70(4):1149-1155
The secretion of α-amylase from single isolated (Hordeum vulgare L. cv Himalaya) aleurone layers was studied in an automated flow-through apparatus. The apparatus, consisting of a modified sample analyzer linked to a chart recorder, automatically samples the flow-through medium at 1 minute intervals and assays for the presence of α-amylase. The release of α-amylase from aleurone layers begins after 5 to 6 hours of exposure to gibberellic acid and reaches a maximum rate after 10 to 12 hours. The release of α-amylase shows a marked dependence on Ca2+, and in the absence of Ca2+ it is only 20% of that in the presence of 10 millimolar Ca2+. Withdrawal of Ca2+ from the flow-through medium results in the immediate cessation of enzyme release and addition of Ca2+ causes immediate resumption of the release process. The effect of Ca2+ is concentration-dependent, being half-maximal at 1 millimolar Ca2+ and saturated at 10 millimolar Ca2+. Ruthenium red, which blocks Ca2+ but not Mg2+ efflux from barley aleurone layers, renders α-amylase release insensitive to Ca2+ withdrawal. Inhibitors of respiratory metabolism cause a burst of α-amylase release which lasts for 0.5 to 5 hours. Following this phase of enhanced α-amylase release, the rate of release declines to zero. Pretreatment of aleurone layers with HCl prior to incubation in HCN also causes a burst of α-amylase release, indicating that the inhibitor is affecting the secretion of α-amylase and not its movement through the cell wall. The rapid inhibition of α-amylase release upon incubation of aleurone layers at low temperature (5°C) or in 0.5 molar mannitol also indicates that enzyme release is dependent on a metabolically linked process and is not diffusion-limited. This conclusion is supported by cytochemical observations which show that, although the cell wall matrix of aleurone layers undergoes extensive digestion after gibberellin treatment, the innermost part of the cell wall is not degraded and could influence enzyme release.  相似文献   

4.
Response of barley aleurone layers to abscisic Acid   总被引:3,自引:0,他引:3       下载免费PDF全文
Ho DT 《Plant physiology》1976,58(2):175-178
Cordycepin, an inhibitor of RNA synthesis in barley (Hordeum vulgare L.) aleurone cells, does not inhibit the gibberellic acid-enhanced α-amylase (EC 3.2.1.1.) synthesis in barley aleurone layers if it is added 12 hours or more after the addition of the hormone. However, the accumulation of α-amylase activity after 12 hours of gibberellic acid can be decreased by abscisic acid. The accumulation of α-amylase activity is sustained or quickly restored when cordycepin is added simultaneously or some time after abscisic acid, indicating that the response of aleurone layers to abscisic acid depends on the continuous synthesis of a short lived RNA. By analysis of the newly synthesized proteins by gel electrophoresis with sodium dodecylsulfate, we observed that the synthesis of α-amylase is decreased in the presence of abscisic acid while the synthesis of most of the other proteins remains unchanged. From the rate of resumption of α-amylase production in the presence of cordycepin and abscisic acid, it appears that abscisic acid does not have a measurable effect on the stability of α-amylase mRNA.  相似文献   

5.
The addition of abscisic acid to barley (Hordeum vulgare L. cv. Himalaya) aleurone layers at the same time as gibberellic acid completely prevents the gibberellin-induced increases in the percentage of polysomes, the formation of polyribosomes, and the synthesis of α-amylase, even when the molar concentration of gibberellic acid is four times greater than the concentration of abscisic acid. The addition of abscisic acid to aleurone cells producing α-amylase (midcourse addition) inhibits the further synthesis of α-amylase and decreases the percentage of polysomes but does not change the number of ribosomes per cell.  相似文献   

6.
Activities of phosphatases in the aleurone layers of a husklessbarley, Ehime-hadaka No. 1, were enhanced in the absence ofgibberellic acid (GA3), while the enzyme secretion was absolutelydependent upon its presence. GA3 was required for both inductionand secretion of a-amylase. The longer the preincubation ofthe tissue without GA3, the longer was the lag period beforesecretion of both a group of phosphatases and a-amylase. Changesin the fine structure of aleurone cells were also investigated.Characteristics of the phase transition from enzyme accumulationto enzyme secretion seemed to be a development of a bundledtype of endoplasmic reticulum. 1Present address: Institute of Biological Sciences, The Universityof Tsukuba, Ibaraki 300-31, Japan. (Received August 25, 1975; )  相似文献   

7.
Substrate induction of nitrate reductase in barley aleurone layers   总被引:5,自引:5,他引:5       下载免费PDF全文
Nitrate induces the formation of nitrate reductase activity in barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. Previous work has demonstrated de novo synthesis of α-amylase by gibberellic acid in the same tissue. The increase in nitrate reductase activity is inhibited by cycloheximide and 6-methylpurine, but not by actinomycin D. Nitrate does not induce α-amylase synthesis, and it has no effect on the gibberellic acid-induced synthesis of α-amylase. Also, there is little or no direct effect of gibberellic acid (during the first 6 hr of induction) or of abscisic acid on the nitrate-induced formation of nitrate reductase. Gibberellic acid does interfere with nitrate reductase activity during long-term experiments (greater than 6 hr). However, the time course of this inhibition suggests that the inhibition may be a secondary one. Barley aleurone layers therefore provide a convenient tissue for the study of both substrate- and hormone-induced enzyme formation.  相似文献   

8.
Heat shock suppresses secretory protein synthesis in GA(3)-stimulated barley (Hordeum vulgare cv. Himalaya) aleurone layers by selectively destabilizing their mRNAs and dissociating the stacked rough endoplasmic reticulum (ER) lamellae upon which they are translated. Heat shock also increases phosphatidylcholine (PC) synthesis, and these PC molecules have increased levels of fatty acid saturation. This appears to be adaptive, for aleurone layers maintained at heat shock temperatures for 18 h resynthesize secretory protein mRNAs, rebuild stacked ER lamellae, and resume secretory protein synthesis. In the present study aleurone layers were incubated at warmer than normal pre-heat shock temperatures to determine whether this would favor the formation of heat-resistant ER lamellae that could continue secretory protein synthesis during heat shock. Western blot and SDS-PAGE analyses showed that such treatment did not induce heat shock protein (HSP) synthesis, but it preserved significant secretory protein synthesis during heat shock. Northern hybridizations revealed that levels of mRNAs encoding secretory proteins were several-fold elevated as compared to 25°C preincubated controls, and transmission electron microscopic observations revealed stacked ER lamellae. Thin layer and gas chromatography showed that PC molecules in warm-incubated barley aleurone layers had more fatty acid saturation than did controls. These observations indicate that previous incubation temperature influences both the induction of HSP synthesis and the suppression of normal protein synthesis in the heat shock response. However, we found that it does not affect the temperature at which heat shock becomes lethal.  相似文献   

9.
Abscisic Acid localization and metabolism in barley aleurone layers   总被引:1,自引:6,他引:1       下载免费PDF全文
Aleurone layers of Hordeum vulgare, cv. `Himalaya' took up [14C]-abscisic acid (ABA) when incubated for various times. Radioactivity accumulated with time in a low speed, DNA-containing pellet accounting for 1.6 to 2.3% of the radioactivity recovered in subcellular fractions at 18 hours. Thin layer chromatography of ethanolic or methanolic extracts of the cytosol, which contained greater than 95% of the radioactivity taken up by layers, revealed that labeled ABA was metabolized to phaseic acid (PA) and 4′-dihydrophaseic acid (DPA) and three polar metabolites Mx1, Mx2, and Mx3. ABA was not metabolized by endosperm, incubated under conditions used for layers, indicating that metabolism was tissue-specific. Layers metabolized [3H]DPA to Mx1 and Mx2. ABA, PA, and DPA-methyl ester and epi-DPA-methyl ester inhibited synthesis of α-amylase by layers incubated for either 37 or 48 hours. These layers converted the methyl DPA and epi-methyl-DPA esters to their respective acids. DPA did not inhibit Lactuca sativa germination or root and coleoptile elongation of germinating Hordeum vulgare seeds, or coleoptile elongation of germinating Zea mays seeds.  相似文献   

10.
Antisense oligodeoxynucleotides (ODNs) have been applied to regulate gene expression using cell-free media or animal cells. Here we demonstrate the specific inhibition of barley alpha-amylase gene expression by synthetic antisense ODNs. In a cell free system using wheat-germ extracts, 5 microM of a 20-mer antisense ODN prevented the synthesis of the polypeptide corresponding to the predetermined length of alpha-amylase translated in vitro, whereas there was no effect on other protein synthesis. Furthermore, in cultured aleurone cells, alpha-amylase activity was efficiently decreased by addition of ODNs. At the concentrations higher than 5 microM, antisense ODN inhibited alpha-amylase gene expression almost completely. These results imply that ODN could transport into the cultured aleurone cells crossing the cell membrane, and regulate specific gene expression. This simple model system could be applicable not only for the analysis of the alpha-amylase multigene family in barley but also for studying functions of cryptic genes in higher plant.  相似文献   

11.
Russell L. Jones 《Planta》1980,150(1):58-69
Techniques for the isolation and purification of endoplasmic reticulum (ER) from aleurone layers of barley (Hordeum vulgare L.) were assessed. Neither differential centrifugation nor density gradient centrifugation of a homogenate separate the ER or other organelles of this tissue from the lipidcontaining spherosomes. Isopycnic sucrose gradient centrifugation of organelles first purified by molecular sieve chromatography on Sepharose 4B, however, results in separation of the organelles based on their differing buoyant densities. Manipulation of the magnesium concentration of the isolation media and density-gradient solutions affords isolation of ER at a density of 1.13–1.14 g cc-1 and 1.17–1.18 g cc-1. Electron microscopy shows that the membranes sedimenting at 1.13–1.14 g cc-1 are devoid of ribosomes and are characteristic of smooth ER, while those sedimenting at 1.17–1.18 g cc-1 are studded with ribosomes and have the features of rough ER. Endoplasmic reticulum isolated by isopycnic density gradient centrifugation can be further purified by rate-zonal centrifugation.Abbreviations EDTA ethylenediaminetetraacetic acid - ER endoplasmic reticulum - GA gibberellin - GA3 gibberellic acid - Trizma tris(hydroxymethyl)aminomethane  相似文献   

12.
13.
14.
Aleurone layers, with testa attached, were prepared from degermed, decorticated barley with the aid of a fungal enzyme preparation. The preparations appeared intact under the scanning electron microscope. By using antibiotics only in an early stage preparations were obtained uncontaminated by micro-organisms and which, when incubated under optimal conditions with gibberellic acid, GA3, produced near-maximal amounts of α-amylase. The enzyme accumulated in the tissue before it was released into the incubation medium. Daily replacement of the incubation medium, containing GA3, depressed the quantity of α-amylase produced. α-Amylase was also produced in response to gibberellins GA1, GA4 and GA7 and, to a much lesser extent, helminthosporol and helminthosporic acid. A range of other substances, reported elsewhere to induce α-amylase formation, failed to do so in these trials. At some concentrations, glutamine marginally enhanced the quantity of enzyme formed during prolonged incubations. It is confirmed that α-glucosidase occurs in the aleurone layer and embryo of ungerminated barley, and increases in amount during germination. GA3 is shown to enhance this increase. When embryos arc burnt, to prevent gibberellin formation, no rise in α-glucosidase levels occurs unless GA3 is supplied to the grains. As the activity of α-glucosidase and other enzymes have been determined as ‘α-amylase’ by some assay methods, their alterations in activity in response to GA3 necessitates a re-evaluation of the evidence for de novo) synthesis of α-amylase in aleurone tissue.  相似文献   

15.
Intact tissue assay for nitrite reductase in barley aleurone layers   总被引:15,自引:8,他引:7       下载免费PDF全文
A method has been devised for the detection and measurement of nitrite reductase activity in intact barley (Hordeum vulgare L. cv. Himalaya) aleurone layers. The technique involves feeding aleurone layers nitrite and measuring nitrite disappearance after a given time period. The method also allows simultaneous determination of nitrite uptake by the tissue. Quantitative recovery of nitrite is obtained by rapid heating of tissue in the presence of dimethyl sulfoxide.  相似文献   

16.
17.
Amylases from aleurone layers and starchy endosperm of barley seeds   总被引:3,自引:2,他引:1       下载免费PDF全文
Amylases from incubated aleurone layers or from starchy endosperm of barley seeds (Hordeum vulgare L. cv. Himalaya) were investigated using acrylamide gel electrophoresis and analytical gel filtration with Sephadex G-200. Electrophoresis of amylase from aleurone layers yields seven visually distinct isozymes with an estimated molecular weight of 43,000. Because each isozyme hydrolyzes β-limit dextrin azure and incorporates calcium-45, they are α-amylases. On Sephadex G-200, amylase from the aleurone layers is separated into seven fractions ranging in estimated molecular weights from 45,000 to 3,000. Little or no activity is observed when six fractions are subjected to electrophoresis. Electrophoresis of only the fraction with the estimated molecular weight of 45,000 gave the seven isozymes. The amylases are heat labile and cannot be stabilized by the presence of substrate or by the protease inhibitor, phenylmethylsulfonylfluoride. Electrophoresis of amylase from the starchy endosperm yields nine β-amylases. Four of these β-amylases are isozymes with an estimated molecular weight of 43,000. The other five forms of β-amylase represent molecular aggregates of the four basic β-amylase monomers. A dimer, a tetramer, and an octamer of β-amylase can be identified with estimated molecular weights of about 86,000, 180,000 and 400,000, respectively. These estimated molecular weights were confirmed on Sephadex G-200. There are five additional fractions of β-amylase with estimated molecular weights ranging from 30,000 to 4,000. These fractions are not observed electrophoretically.  相似文献   

18.
Summary When aleurone layers were treated with labeled gibberellin A1 (3H-GA1), gibberellin A5 (3H-GA5) and the methyl ester of 3H-GA5 (3H-GA5-ME), radioactivity was accumulated by the tissue for a period of 20–30 h. After this time, radioactivity was released into the medium. Concomitantly, ribonuclease was also liberated by the tissue. The radioactivity accumulated by aleurone layers was associated with polar metabolites of the respective GAs, and the extent of extent of accumulation was a function of the degree of GA metabolism (GA5-ME>GA5>GA1). Accumulation of radioactivity was inhibited in the cold and by the metabolic poisons NaF and dinitrophenol. This was thought to be due to inbition of GA metabolism. The accumulation of 3H-GA1 in aleurone tissue did not reach saturation when unlabeled GA3 up to 10-2 M was added to the incubation medium.Abbreviations GA gibberellin - GA5 ME, gibberellin A5 methyl ester - RNase ribonuclease  相似文献   

19.
Phospholipids of barley (Hordeum vulgare L. cv Himalaya) aleurone layers were labeled with myo-[2-3H]inositol or [32Pi], extracted, and analyzed by physical (chromatography) and chemical (deacylation) techniques. Three phospholipids were found to incorporate both myo-[2-3H]inositol and [32Pi]—phosphatidylinositol, phosphatidylinositol-monophosphate, and phosphatidylinositol-bisphosphate. Stimulation of [3H]inositol prelabeled aleurone layers with GA3 showed enhanced incorporation of label into phosphatidylinositol within 30 seconds and subsequent rapid breakdown. Stimulation of phosphatidylinositol labeling observed in these studies is the earliest response of aleurone cells to gibberellic acid reported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号