首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of ecosystems during periods of stasis in their macro-evolutionary trajectory is studied from a non-equilibrium thermodynamic perspective. Individuals of the species are considered as units of entropy production and entropy exchange in an open thermodynamic system. Within the framework of the classical theory of irreversible thermodynamics, and under the condition of constant external constraints, such a system will naturally evolve toward a globally stable thermodynamic stationary state. It is thus suggested that the ecological steady state, or stasis, is a particular case of the thermodynamic stationary state, and that the evolution of community stability through natural selection is a manifestation of non-equilibrium thermodynamic directives. Furthermore, it is argued that punctuation of stasis leading to ecosystem succession, may be a manifestation of non-equilibrium "phase transitions" brought on by a change of external constraints through a thermodynamic critical point.  相似文献   

2.
Detritus, trophic dynamics and biodiversity   总被引:11,自引:1,他引:10  
Traditional approaches to the study of food webs emphasize the transfer of local primary productivity in the form of living plant organic matter across trophic levels. However, dead organic matter, or detritus, a common feature of most ecosystems plays a frequently overlooked role as a dynamic heterogeneous resource and habitat for many species. We develop an integrative framework for understanding the impact of detritus that emphasizes the ontogeny and heterogeneity of detritus and the various ways that explicit inclusion of detrital dynamics alters generalizations about the structure and functioning of food webs. Through its influences on food web composition and dynamics, detritus often increases system stability and persistence, having substantial effects on trophic structure and biodiversity. Inclusion of detrital heterogeneity in models of food web dynamics is an essential new direction for ecological research.  相似文献   

3.
耗散结构,等级系统理论与生态系统   总被引:25,自引:2,他引:23  
耗散结构理论与其他热力学概念一起,可以解释生态学中的许多现象。生态系统是耗散系统,用耗散结构理论来分析和讨论生态平衡等问题更为合理、准确。等级系统理论是为理解和研究高度复杂系统而发展起来的系统理论。等级系统理论为研究生态系统的行为和特征提供了客观的、适用的概念构架和实践指南,并为生态系统科学的统一性理论的形成开辟了广阔前景。本文拟就耗散结构理论和等级系统理论的主要内容及其在生态学中的应用作一介绍和讨论。  相似文献   

4.
邬建国 《生态学杂志》1991,2(2):181-186
耗散结构理论与其他热力学概念一起,可以解释生态学中的许多现象。生态系统是耗散系统,用耗散结构理论来分析和讨论生态平衡等问题更为合理、准确。等级系统理论是为理解和研究高度复杂系统而发展起来的系统理论。等级系统理论为研究生态系统的行为和特征提供了客观的、适用的概念构架和实践指南,并为生态系统科学的统一性理论的形成开辟了广阔前景。本文拟就耗散结构理论和等级系统理论的主要内容及其在生态学中的应用作一介绍和讨论。  相似文献   

5.
GUY WOODWARD 《Freshwater Biology》2009,54(10):2171-2187
1. Dramatic advances have been made recently in the study of biodiversity–ecosystem functioning (B-EF) relations and food web ecology. These fields are now starting to converge, and this fusion has the potential to improve our understanding of how environmental stressors modulate ecosystem processes and the supply of 'goods and services'.
2. Food web structure and dynamics can exert particularly strong influences on B-EF relations in fresh waters, as consumer–resource interactions (e.g. trophic cascades) are often more important than horizontal interactions within trophic levels. For instance, many freshwater food webs are size structured, with large organisms tending to occupy the higher trophic levels and often exerting powerful effects on ecosystem processes. However, because they are also vulnerable to perturbations, non-random losses of these large taxa can alter both food web structure and ecosystem functioning profoundly.
3. Recently, the focus of food web research has shifted away from exploring patterns, towards developing an understanding of processes (e.g. quantifying fluxes of individuals, biomass, energy, nutrients) and how the two interact. Many of the best-characterized food webs are from fresh waters, and these ecosystems are now being used to address some of the shortcomings of earlier B-EF studies. I have identified several key gaps in our current knowledge and highlighted potentially fruitful avenues of future B-EF and food web research.
4. A major challenge for this newly emerging research is to place it within a unified theoretical framework. The application of metabolic theory and ecological stoichiometry may help to achieve this goal by considering biological systems within the constraints imposed upon them by physical and chemical laws.  相似文献   

6.
王少鹏 《生物多样性》2020,28(11):1391-537
食物网刻画了物种间通过捕食而形成的复杂网络关系。阐明食物网结构与功能之间的关系, 既是生态学的基本理论问题, 也是预测全球变化背景下生态系统响应的重要依据。早期关于食物网结构与功能的研究往往是分离的, 或是基于食物链等的简单网络模型, 而近期研究基于复杂食物网模型取得了重要理论进展。本文综述了食物网研究的理论方法和近期进展, 特别介绍了复杂食物网中的结构、多样性和功能的度量指标、结构-多样性-功能之间的关系以及全球变化对食物网结构与功能的影响。本文最后对未来的一些研究方向进行了展望, 包括与功能性状和化学计量学的整合、食物网与其他网络类型的整合以及拓展食物网研究的空间和时间尺度。  相似文献   

7.
8.
Explaining the structure of ecosystems is one of the great challenges of ecology. Simple models for food web structure aim at disentangling the complexity of ecological interaction networks and detect the main forces that are responsible for their shape. Trophic interactions are influenced by species traits, which in turn are largely determined by evolutionary history. Closely related species are more likely to share similar traits, such as body size, feeding mode and habitat preference than distant ones. Here, we present a theoretical framework for analysing whether evolutionary history--represented by taxonomic classification--provides valuable information on food web structure. In doing so, we measure which taxonomic ranks better explain species interactions. Our analysis is based on partitioning of the species into taxonomic units. For each partition, we compute the likelihood that a probabilistic model for food web structure reproduces the data using this information. We find that taxonomic partitions produce significantly higher likelihoods than expected at random. Marginal likelihoods (Bayes factors) are used to perform model selection among taxonomic ranks. We show that food webs are best explained by the coarser taxonomic ranks (kingdom to class). Our methods provide a way to explicitly include evolutionary history in models for food web structure.  相似文献   

9.
水生生态系统食物网复杂性与多样性的关系   总被引:1,自引:0,他引:1  
李晓晓  杨薇  孙涛  崔保山  邵冬冬 《生态学报》2021,41(10):3856-3864
探索食物网的复杂结构是生态学的中心问题之一。基于构建的黄河口海草床食物网并耦合实际食物网的数据集,整理了包含河口、湖泊、海洋和河流四种水生生态系统类型的48个实际食物网案例。以食物网的节点数反映食物网多样性,物种之间的营养链接数、链接密度和连通度来表示食物网的复杂性,采用营养缩尺模型描述水生生态系统食物网的复杂性特征与节点数的普适性规律。结果表明:所涉及的48个水生生态系统食物网的多样性和复杂性跨度较大,其中,节点数的分布范围为4-124,链接数为3-1830,链接密度为0.75-15.71,连通度为0.06-0.25。不同类型水生生态系统间的连通度存在显著性差异(P=0.01),节点数、链接数、链接密度不存在显著性差异。各类型生态系统的食物网链接数、链接密度均随节点数的增加而增加(R2=0.92,P<0.001和R2=0.82,P<0.001)。湖泊生态系统的连通度随节点数的变化不明显,围绕在0.20附近;而其他3种类型生态系统的食物网连通度随节点数的增加而降低(R2=0.06-0.41,P<0.001)。对全球尺度的水生食物网多样性和复杂性的定量化研究对于提升对食物网的复杂结构的科学认识,从系统尺度探究多样性和复杂性的关系提供数据支撑。  相似文献   

10.
Understanding how ecological processes determine patterns among species coexisting within ecosystems is central to ecology. Here, we explore relationships between species’ local coexistence and their trophic niches in terms of their feeding relationships both as consumers and as resources. We build on recent concepts and methods from community phylogenetics to develop a framework for analysing mechanisms responsible for community composition using trophic similarity among species and null models of community assembly. We apply this framework to 50 food webs found in 50 Adirondack lakes and find that species composition in these communities appears to be driven by both bottom‐up effects by which the presence of prey species selects for predators of those prey, and top‐down effects by which prey more tolerant of predation out‐compete less tolerant prey of the same predators. This approach to community food webs is broadly applicable and shows how species interaction networks can inform an increasingly large array of theory central to community ecology.  相似文献   

11.
In the face of stochastic climatic perturbations, the overall stability of an ecosystem will be determined by the balance between its resilience and its resistance, but their relative importance is still unknown. Using aquatic food web models we study ecosystem stability as a function of food web complexity. We measured three dynamical stability properties: resilience, resistance, and variability. Specifically, we evaluate how a decrease in the strength of predator-prey interactions with food web complexity, reflecting a decrease in predation efficiency with the number of prey per predator, affects the overall stability of the ecosystem. We find that in mass conservative ecosystems, a lower interaction strength slows down the mass cycling rate in the system and this increases its resistance to perturbations of the growth rate of primary producers. Furthermore, we show that the overall stability of the food webs is mostly given by their resistance, and not by their resilience. Resilience and resistance display opposite trends, although they are shown not to be simply opposite concepts but rather independent properties. The ecological implication is that weaker predator-prey interactions in closed ecosystems can stabilize food web dynamics by increasing its resistance to climatic perturbations.  相似文献   

12.
王玉玉  徐军  雷光春 《生态学报》2013,33(19):5990-5996
食物链长度是生态系统的基本属性,其变化决定着群落结构和生态系统功能。稳定同位素分析技术的进步推进了生态系统中食物链长度决定因子相关研究的开展。尽管近期的研究证明了食物链长度与资源可利用性、生态系统大小、干扰等远因之间的关系,但是对于食物网内部结构变化这一近因对食物链长度的影响作用关注较少。综述了边界明确和开放类型淡水生态系统中食物链长度的相关研究进展;探讨了远因和近因机制在决定食物链长度中的作用;给出了判断不同层次和尺度上决定食物链长度机制的概念框架;为今后更好的开展不同生态系统间食物链长度的比较研究提出了建议。  相似文献   

13.
Complexity in the networks of interactions among and between the living and abiotic components forming ecosystems confounds the ability of ecologists to predict the economic consequences of perturbations such as species deletions in nature. Such uncertainty hampers prudent decision making about where and when to invest most intensively in species conservation programmes. Demystifying ecosystem responses to biodiversity alterations may be best achieved through the study of the interactions allowing biotic communities to compensate internally for population changes in terms of contributing to ecosystem function, or their intrinsic functional redundancy. Because individual organisms are the biologically discrete working components of ecosystems and because environmental changes are perceived at the scale of the individual, a mechanistic understanding of functional redundancy will hinge upon understanding how individuals' behaviours influence population dynamics in the complex community setting. Here, I use analytical and graphical modelling to construct a conceptual framework for predicting the conditions under which varying degrees of interspecific functional redundancy can be found in dynamic ecosystems. The framework is founded on principles related to food web successional theory, which provides some evolutionary insights for mechanistically linking functional roles of discrete, interacting organisms with the dynamics of ecosystems because energy is the currency both for ecological fitness and for food web commerce. Net productivity is considered the most contextually relevant ecosystem process variable because of its socioeconomic significance and because it ultimately subsumes all biological processes and interactions. Redundancy relative to productivity is suggested to manifest most directly as compensatory niche shifts among adaptive foragers in exploitation ecosystems, facilitating coexistence and enhancing ecosystem recovery after disturbances which alter species' relative abundances, such as extinctions. The framework further explicates how resource scarcity and environmental stochasticity may constitute 'ecosystem legacies' influencing the emergence of redundancy by shaping the background conditions for foraging behaviour evolution and, consequently, the prevalence of compensatory interactions. Because it generates experimentally testable predictions for a priori hypothesis testing about when and where varying degrees of functional redundancy are likely to be found in food webs, the framework may be useful for advancing toward the reliable knowledge of biodiversity and ecosystem function relations necessary for prudent prioritization of conservation programmes. The theory presented here introduces explanation of how increasing diversity can have a negative influence on ecosystem sustainability by altering the environment for biotic interactions and thereby changing functional compensability among biota--under particular conditions.  相似文献   

14.
The functional role of producer diversity in ecosystems   总被引:6,自引:0,他引:6  
Over the past several decades, a rapidly expanding field of research known as biodiversity and ecosystem functioning has begun to quantify how the world's biological diversity can, as an independent variable, control ecological processes that are both essential for, and fundamental to, the functioning of ecosystems. Research in this area has often been justified on grounds that (1) loss of biological diversity ranks among the most pronounced changes to the global environment and that (2) reductions in diversity, and corresponding changes in species composition, could alter important services that ecosystems provide to humanity (e.g., food production, pest/disease control, water purification). Here we review over two decades of experiments that have examined how species richness of primary producers influences the suite of ecological processes that are controlled by plants and algae in terrestrial, marine, and freshwater ecosystems. Using formal meta-analyses, we assess the balance of evidence for eight fundamental questions and corresponding hypotheses about the functional role of producer diversity in ecosystems. These include questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems, how primary producer diversity influences the transfer and recycling of biomass to other trophic groups in a food web, and the number of species and spatial /temporal scales at which diversity effects are most apparent. After summarizing the balance of evidence and stating our own confidence in the conclusions, we outline several new questions that must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems.  相似文献   

15.
For decades, food web theory has proposed phenomenological models for the underlying structure of ecological networks. Generally, these models rely on latent niche variables that match the feeding behaviour of consumers with their resource traits. In this paper, we used a comprehensive database to evaluate different hypotheses on the best dependency structure of trait‐matching patterns between consumers and resource traits. We found that consumer feeding behaviours had complex interactions with resource traits; however, few dimensions (i.e. latent variables) could reproduce the trait‐matching patterns. We discuss our findings in the light of three food web models designed to reproduce the multidimensionality of food web data; additionally, we discuss how using species traits clarify food webs beyond species pairwise interactions and enable studies to infer ecological generality at larger scales, despite potential taxonomic differences, variations in ecological conditions and differences in species abundance between communities.  相似文献   

16.
Many human influences on the world's ecosystems have their largest direct impacts at either the top or the bottom of the food web. To predict their ecosystem-wide consequences we must understand how these impacts propagate. A long-standing, but so far elusive, problem in this endeavour is how to reduce food web complexity to a mathematically tractable, but empirically relevant system. Simplification to main energy channels linking primary producers to top consumers has been recently advocated. Following this approach, we propose a general framework for the analysis of bottom-up and top-down forcing of ecosystems by reducing food webs to two energy pathways originating from a limiting resource shared by competing guilds of primary producers (e.g. edible vs. defended plants). Exploring dynamical models of such webs we find that their equilibrium responses to nutrient enrichment and top consumer harvesting are determined by only two easily measurable topological properties: the lengths of the component food chains (odd-odd, odd-even, or even-even) and presence vs. absence of a generalist top consumer reconnecting the two pathways (yielding looped vs. branched webs). Many results generalise to other looped or branched web structures and the model can be easily adapted to include a detrital pathway.  相似文献   

17.
Integrating ecosystem engineering and food webs   总被引:1,自引:0,他引:1  
Ecosystem engineering, the physical modification of the environment by organisms, is a common and often influential process whose significance to food web structure and dynamics is largely unknown. In the light of recent calls to expand food web studies to include non‐trophic interactions, we explore how we might best integrate ecosystem engineering and food webs. We provide rationales justifying their integration and present a provisional framework identifying how ecosystem engineering can affect the nodes and links of food webs and overall organization; how trophic interactions with the engineer can affect the engineering; and how feedbacks between engineering and trophic interactions can affect food web structure and dynamics. We use a simple integrative food chain model to illustrate how feedbacks between the engineer and the food web can alter 1) engineering effects on food web dynamics, and 2) food web responses to extrinsic environmental perturbations. We identify four general challenges to integration that we argue can readily be met, and call for studies that can achieve this integration and help pave the way to a more general understanding of interaction webs in nature. Synthesis All species are affected by their physical environment. Because ecosystem engineering species modify the physical environment and belong to food webs, such species are potentially one of the most important bridges between the trophic and non‐trophic. We examine how to integrate the so far, largely independent research areas of ecosystem engineering and food webs. We present a conceptual framework for understanding how engineering can affect food webs and vice versa, and how feedbacks between the two alter ecosystem dynamics. With appropriate empirical studies and models, integration is achievable, paving the way to a more general understanding of interaction webs in nature.  相似文献   

18.
The central rôle of energy in all life processes has led to the development of numerous hypotheses, conjectures and theories on the relationships between thermodynamics and ecological processes. In this paper we examine the theoretical and empirical support for these developments, and in particular for the widely published set of thermodynamic conjectures developed by H.T. Odum, in which the maximum power principle is put forward as a generic feature of evolution in ecosystems. Although they are widely used, we argue that many of the ecological studies that have adopted the ideas encapsulated in Odum's work have done so without being aware of some of the fundamental problems underlying this approach. We discuss alternative ways in which a general available-work concept could be constructed for use as a numeraire in an energy-centered ecological theory or paradigm. In so doing, we examine what is meant by material accessibility and energy stocks and flows with respect to traditional food web and food chain theories, and relate these to results from the evolutionary dynamics of ecosystems. We conclude that the various forms and uses of energy bound up in essential ecosystem processes present a formidable obstacle to obtaining an operational definition of a general, aggregated available-work concept, a prerequisite for the systems approach of Odum and others. We also show that the prototypical derivations of the maximum power principle, and its interpretation, are contradicted on many scales both by empirical data and models, thereby invalidating the maximum power principle as a general principle of ecological evolution. The conclusions point to the fundamental problem of trying to describe ecosystems in a framework which has a one-dimensional currency.  相似文献   

19.
20.
Food chain models have dominated empirical studies of trophic interactions in the past decades, and have lead to important insights into the factors that control ecological communities. Despite the importance of food chain models in instigating ecological investigations, many empirical studies still show a strong deviation from the dynamics that food chain models predict. We present a theoretical framework that explains some of the discrepancies by showing that trophic interactions are likely to be strongly influenced by the spatial configuration of consumers and their resources. Differences in the spatial scale at which consumers and their resources function lead to uncoupling of the population dynamics of the interacting species, and may explain overexploitation and depletion of resource populations. We discuss how changed land use, likely the most prominent future stress on natural systems, may affect food web dynamics by interfering with the scale of interaction between consumers and their resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号