首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
能化时线粒体内膜脂双分子层结构多相动态   总被引:1,自引:1,他引:0  
本文报道了鼠肝线粒体内膜体,在琥珀酸氧化或ATP水解建立跨膜质子电化学梯度时,膜脂双分子层中DPH荧光偏振值出现多个时相动态;r值先迅速下降,再缓慢上升,最终达到高于能化前的r值的恒稳态,表明能化时线粒体内膜脂双分子层有序性在经历短暂下降后,逐渐增大,最终达到更大的结构有序性。在相同时程内呼吸链细胞色素类也经历了相应的多相变化,本文讨论了这两者相关的可能机制,并为呼吸链电子传递机制的动态聚集模型提  相似文献   

2.
The analysis of polyion transmembrane translocation was performed using membrane electrical equivalent circuit. The dependence of polyion flux across membranes on time, membrane electrical conductance, membrane electrical capacitance, degree of polymerization, water solution conductance and applied transmembrane potential is discussed. The changes in polyion flux were up to 88% after 1 ms. Both the increase of polyion chain length and the decrease of membrane conductance resulted in the diminution of this effect. Inversion of flux direction was observed as a result of external potential changes. Reversal curves, representing the values of considered parameters for zero-flux were also shown. The replacement of a polyanion by a polycation of the same chain length resulted in the same shape of the surface plot but with opposite orientation. The analysis describes the effect of transmembrane potential on the translocation rate of polyanionic polysialic acid and polynucleotides, and polycationic peptides across membranes.  相似文献   

3.
In vivo ether stress of rats causes release of pituitary adrenocorticotropin (ACTH) leading to activation of steroidogenesis in adrenal cortex mitochondria. The present studies show that this treatment also induces a decrease in the volume of the intermembrane space in isolated adrenal mitochondria. This decrease is accompanied by an increase in the volume of the matrix, thus leaving the total mitochondrial volume approximately constant. These effects are prevented by the protein synthesis inhibitor, cycloheximide, and are specific to the adrenal gland. The decrease in the intermembrane space (or increase in the matrix volume) is correlated with activation of the cholesterol side chain cleavage reaction (the regulated step in steroidogenesis). We propose as a working hypothesis that these changes reflect a hormonally regulated alteration in the relationship between the outer and inner mitochondrial membranes, which may facilitate the rate-limiting movement of cholesterol from the outer to the inner membrane where the side chain cleavage enzyme is located.  相似文献   

4.
Ceramide (Cer) is involved in the regulation of several cellular processes by mechanisms that depend on Cer-induced changes on membrane biophysical properties. Accumulating evidence shows that Cers with different N-acyl chain composition differentially impact cell physiology, which may in part be due to specific alterations in membrane biophysical properties. We now address how the sphingolipid (SL) N-acyl chain affects membrane properties in cultured human embryonic kidney cells by overexpressing different Cer synthases (CerSs). Our results show an increase in the order of cellular membranes in CerS2-transfected cells caused by the enrichment in very long acyl chain SLs. Formation of Cer upon treatment of cells with bacterial sphingomyelinase promoted sequential changes in the properties of the membranes: after an initial increase in the order of the fluid plasma membrane, reorganization into domains with gel-like properties whose characteristics are dependent on the acyl chain structure of the Cer was observed. Moreover, the extent of alterations of membrane properties correlates with the amount of Cer formed. These data reinforce the significance of Cer-induced changes on membrane biophysical properties as a likely molecular mechanism by which different acyl chain Cers exert their specific biological actions.  相似文献   

5.
Transmembrane translocation of polyion homopolymers takes place in the case of polyanionic polysialic acid (polySia), polyanionic polynucleotides and polycationic polypeptides. The purpose of this work was to determine the role of membrane electrical parameters on the kinetics of polyion translocation, the influence of polysialic acid on ion adsorption on positively charged membrane surface and the dynamics of the phospholipid hydrocarbon chains and choline group by using 1H-NMR. The analysis of polyion translocation was performed by using the electrical equivalent circuit of the membrane for the initial membrane potential equal to zero. The changes in polysialic acid flux was up to 75% after 1 ms in comparison with the zero-time flux. Both a decrease of membrane conductance and an increase of polyion chain length resulted in the diminution of this effect. An increase of praseodymium ions adsorption to positively charged liposomes and an increase of the rate of segmental movement of the -CH2 and -CH3 groups, and the choline headgrup of lipid molecules, was observed in the presence of polySia. The results show that the direction of the vectorial polyion translocation depends both on the membrane electrical properties and the degree of polymerization of the polymer, and that polysialic acid can modulate the degree of ion adsorption and the dynamics of membrane lipids.  相似文献   

6.
Bacillus stearothermophilus, a useful model to evaluate membrane interactions of lipophilic drugs, adapts to the presence of amiodarone in the growth medium. Drug concentrations in the range of 1-2 microM depress growth and 3 microM completely suppresses growth. Adaptation to the presence of amiodarone is reflected in lipid composition changes either in the phospholipid classes or in the acyl chain moieties. Significant changes are observed at 2 microM and expressed by a decrease of phosphatidylethanolamine (relative decrease of 23.3%) and phosphatidylglycerol (17.9%) and by the increase of phosphoglycolipid (162%). The changes in phospholipid acyl chains are expressed by a decrease of straight-chain saturated fatty acids (relative decrease of 12.2%) and anteiso-acids (22%) with a parallel increase of the iso-acids (9.8%). Consequently, the ratio straight-chain/branched iso-chain fatty acids decreases from 0. 38 (control cultures) to 0.30 (cultures adapted to 2 microM amiodarone). The physical consequences of the lipid composition changes induced by the drug were studied by fluorescence polarization of diphenylhexatriene and diphenylhexatriene-propionic acid, and by differential scanning calorimetry. The thermotropic profiles of polar lipid dispersions of amiodarone-adapted cells are more similar to control cultures (without amiodarone) than those resulting from a direct interaction of the drug with lipids, i.e., when amiodarone was added directly to liposome suspensions. It is suggested that lipid composition changes promoted by amiodarone occur as adaptations to drug tolerance, providing the membrane with physico-chemical properties compatible with membrane function, counteracting the effects of the drug.  相似文献   

7.
Effects of high dietary cholesterol on erythrocyte membrane lipids were studied. Feeding rats with a diet containing 0.5% cholesterol and 0.15% sodium cholate for two weeks induced changes in erythrocyte membrane lipids including a decrease in cholesterol, an increase in alpha-tocopherol (alpha-Toc) and changes in the fatty acid composition of phospholipids. Oleic acid and linoleic acid increased, while arachidonic acid decreased in phosphatidylcholine. Saturated fatty acids decreased and unsaturated fatty acids increased in phosphatidylethanolamine. Almost the same changes in membrane lipids were also noted after six weeks of feeding rats with the diet. A diet containing 0.5% cholesterol but without sodium cholate caused a decrease in erythrocyte cholesterol and an increase in erythrocyte alpha-Toc after two weeks of feeding, as compared to the basal diet, indicating that high dietary cholesterol, but not sodium cholate, was responsible for these changes in the erythrocyte membrane.  相似文献   

8.
Effects of high dietary cholesterol on erythrocyte membrane lipids were studied. Feeding rats with a diet containing 0.5% cholesterol and 0.15% sodium cholate for two weeks induced changes in erythrocyte membrane lipids including a decrease in cholesterol, an increase in α-tocopherol (α-Toc) and changes in the fatty acid composition of phospholipids. Oleic acid and linoleic acid increased, while arachidonic acid decreased in phosphatidylcholine. Saturated fatty acids decreased and unsaturated fatty acids increased in phosphatidylethanolamine. Almost the same changes in membrane lipids were also noted after six weeks of feeding rats with the diet. A diet containing 0.5% cholesterol but without sodium cholate caused a decrease in erythrocyte cholesterol and an increase in erythrocyte α-Toc after two weeks of feeding, as compared to the basal diet, indicating that high dietary cholesterol, but not sodium cholate, was responsible for these changes in the erythrocyte membrane.  相似文献   

9.
Endocrine cells, such as H295R have been widely used to study secretion of steroid and other hormones. Exocytosis-dependent hormone release is accompanied by an increase in plasma membrane surface area and a decrease in vesicle content. Recovery of vesicles and decrease in plasma membrane area is achieved by endocytotic processes. These changes in the extent of the surface area lead to morphological changes which can be determined by label-free real-time impedance measurements. Exo- and endocytosis have been described to be triggered by activation of L-type Ca2+ channels. The present study demonstrates that activation of L-type calcium channels induces prolonged oscillating changes in cellular impedance. The data support the hypothesis that a tight regulation of the intracellular Ca2+ concentration is a prerequisite for the observed cellular impedance oscillations. Furthermore evidence is presented for a mechanism in which the oscillations depend on a Ca2+-triggered calmodulin-dependent cascade involving myosin light chain kinase, nonmuscle myosin II and ultimately actin polymerization, a known determinant for cell shape changes and exocytosis in secretory cells. The described assay provides a method to determine continuously prolonged changes in cellular morphology such as exo/endocytosis cycles.  相似文献   

10.
Endocrine cells, such as H295R have been widely used to study secretion of steroid and other hormones. Exocytosis-dependent hormone release is accompanied by an increase in plasma membrane surface area and a decrease in vesicle content. Recovery of vesicles and decrease in plasma membrane area is achieved by endocytotic processes. These changes in the extent of the surface area lead to morphological changes which can be determined by label-free real-time impedance measurements. Exo- and endocytosis have been described to be triggered by activation of L-type Ca(2+) channels. The present study demonstrates that activation of L-type calcium channels induces prolonged oscillating changes in cellular impedance. The data support the hypothesis that a tight regulation of the intracellular Ca(2+) concentration is a prerequisite for the observed cellular impedance oscillations. Furthermore evidence is presented for a mechanism in which the oscillations depend on a Ca(2+)-triggered calmodulin-dependent cascade involving myosin light chain kinase, nonmuscle myosin II and ultimately actin polymerization, a known determinant for cell shape changes and exocytosis in secretory cells. The described assay provides a method to determine continuously prolonged changes in cellular morphology such as exo/endocytosis cycles. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

11.
A detailed morphometric study of the basilar membrane was made from serial sections and graphic reconstructions of the cochlea of three little brown bats. Four distinct morphometric changes were observed within the basilar membrane. First, between 0-1.4 mm from the basal end of the cochlea, there is a rapid increase in width and cross-sectional area of the basilar membrane. Secondly, between 1.4-2.5 mm, there is little change in width of the basilar membrane (its cross-sectional area is at its greatest in this region). Thirdly, between 2.7-3.1 mm, there is a sudden decrease in cross-sectional area concomitant with an increase in the width of the basilar membrane. Finally, between 3.1 mm and the apex, there is a gradual decrease in cross-sectional area concomitant with an increase in the width of the basilar membrane. The magnitudes of the cross-sectional areas of the scalae media and vestibuli decrease from base to apex, but this is not true for the scala tympani. The cross-sectional area of the scala tympani appears to decrease from the base to 0.7 mm, then it increases up to 1.4 mm, and then it decreases to the apex. These morphometric changes in the basilar membrane of the little brown bat are compared to those in other echolocating and non-echolocating mammals. The significance of these changes is discussed in relation to the range of hearing in the little brown bat.  相似文献   

12.
J Graf  M Rupnik  G Zupancic    R Zorec 《Biophysical journal》1995,68(4):1359-1363
We have used the whole-cell patch-clamp technique to study changes in membrane conductance and membrane capacitance after osmotic swelling in rat hepatocytes. Hypoosmotic solutions induced an instantaneous increase in the volume of patch-clamped cells that was followed by a slow decline reminiscent of regulatory volume decrease as seen in intact cells. These morphological changes were associated with a transient increase in membrane conductance. The rise in conductance was not correlated with changes in capacitance, neither in time after the initiation of cell swelling nor in magnitude. Therefore we conclude that an osmotically induced increase in conductance is probably a result of the activation of existent channels in the plasmalemma and not a result of the fusion of vesicle membrane containing ionic channels.  相似文献   

13.
Modulatory effect of quercetin on azathioprine induced toxic changes was studied in spleen of experimental animals. Azathioprine treatment caused an increase in serum albumin/globin ratio and a decrease in total protein in spleen tissue. An increase in a membrane bound ATPases was also noted. Supplementation of quercetin with azathioprine increased the protein content and lowered the activities of membrane ATPase in spleen. There was a decrease in serum albumin globulin ratio. It was concluded that quercetin modulated the protein and membrane bound ATPase activities and protected the spleen from azathioprine induced membrane damage.  相似文献   

14.
Simultaneous comparisons were made between a freezing-tolerant, cold-acclimating (CA) wild potato species (Solanum commersonii) and a freezing-sensitive, nonacclimating (NA) cultivated species (Solanum tuberosum). Comparative studies allowed differentiation of plasma membrane lipid changes associated with increased freezing tolerance following CA from lipid changes that can result from metabolic adjustment to reduced temperature during CA. Following CA treatment lipid changes found in both the NA and CA species included a decrease in palmitic acid, an increase in unsaturated to saturated fatty acid ratio, an increase in free sterols, an increase in sitosterol, and a slight decrease in cerebrosides. Lipid changes detected only in the acclimating species included an increase in phosphatidylethanolamine, a decrease in sterol to phospholipid ratio, an increase in linoleic acid, a decrease in linolenic acid, and an increase in acylated steryl glycoside to steryl glycoside ratio. These changes were either absent or opposite in the NA species, suggesting an association of these lipid changes with CA. Furthermore, the lipid changes associated with increased freezing tolerance during CA were distinct from lipid differences between the two species in the NA state.  相似文献   

15.
The lipid composition of Balb/c3T3, SV3T3, and the concanavalin A-selected SV3T3 revertant cells has been analyzed at the whole cell and plasma membrane levels. In comparison to untransformed 3T3 whole cells, SV3T3 cells showed an unchanged content of triacylglycerols, free fatty acids, and glycerylether diesters but a lower concentration of total phospholipids, while no significant difference was found in the phospholipid composition. Whole SV3T3 revertant cells exhibited a lipid composition similar to that in untransformed 3T3 cells with the exception of a higher proportion of sphingomyelin. Analysis of isolated plasma membranes did not reveal any significant differences in the cholesterol to phospholipid molar ratio between 3T3 and SV3T3 or SV3T3 revertant cells. The major changes in the acyl chain pattern SV3T3 compared with whole 3T3 cells consisted of an increase of oleic and palmitoleic acids coupled with a decrease of C20 and C22 polyunsaturated acids in phosphatidylethanolamine and phosphatidylcholine; an increase of oleic acid was also evident in SV3T3 phosphatidylinositol plus phosphatidylserine. An increase of palmitoleic and oleic acids together with a decrease of arachidonic acid was also found in phosphatidylethanolamine of SV3T3 plasma membranes; the only change in SV3T3 plasma membrane phosphatidylcholine was an increase of oleic acid. An increase of monoenoic acids together with a decrease of arachidonic acid was also found in phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol plus phosphatidylserine of SV3T3 revertant cells at the level of both whole cells and plasma membranes.  相似文献   

16.
Botulinum neurotoxin (BoNT) is an extremely toxic protein to animals and humans. In its mode of action, one of its subunits mediates its translocation by integrating itself into the membrane bilayer. We have examined the membrane channel activity of type A BoNT (BoNT/A) and its heavy (H) chain in planar lipid membrane under various pH conditions to understand the possible role of the channel activity in the translocation of the BoNT/A light (L) chain under physiological conditions. Only BoNT/A H chain, and not the BoNT/A, exhibited membrane channel activity for translocation of ions. The H chain-induced increase in conductance did not require a pH gradient across the lipid membrane, although it was enhanced by a pH gradient. To understand the molecular basis of the membrane channel activity and the translocation of the L chain, the secondary structure of BoNT/A and its H and L chains were analyzed using circular dichroism (CD) and Fourier-transform infrared (FT-IR) spectroscopy at different pH values. BoNT/A showed no structural alternation upon acidifying the buffer pH. However, an increase in beta-sheet content of BoNT/A H chain at low pH was noted when examined by FT-IR. The L chain structure significantly changed with decrease in pH, and the change was mostly reversible. In addition, the neurotoxin and its subunit chains induced a partially reversible aggregation of liposomes at low pH, which indicated their integration into the lipid bilayer. Temperature-induced denaturation studies of BoNT/A H chain indicated major structural reorganization upon its interaction with membrane, especially at low pH.  相似文献   

17.
Duchenne muscular dystrophy (DMD) arises as a consequence of mutations in the dystrophin gene. Dystrophin is a membrane-spanning protein that connects the cytoskeleton and the basal lamina. The most distinctive features of DMD are a progressive muscular dystrophy, a myofiber degeneration with fibrosis and metabolic alterations such as fatty infiltration, however, little is known on lipid metabolism changes arising in Duchenne patient cells. Our goal was to identify metabolic changes occurring in Duchenne patient cells especially in terms of L-carnitine homeostasis, fatty acid metabolism both at the mitochondrial and peroxisomal level and the consequences on the membrane structure and function. In this paper, we compared the structural and functional characteristics of DMD patient and control cells. Using radiolabeled L-carnitine, we found, in patient muscle cells, a marked decrease in the uptake and the intracellular level of L-carnitine. Associated with this change, a decrease in the mitochondrial metabolism can be seen from the analysis of mRNA encoding for mitochondrial proteins. Probably, associated with these changes in fatty acid metabolism, alterations in the lipid composition of the cells were identified: with an increase in poly unsaturated fatty acids and a decrease in medium chain fatty acids, mono unsaturated fatty acids and in cholesterol contents. Functionally, the membrane of cells lacking dystrophin appeared to be less fluid, as determined at 37°C by fluorescence anisotropy. These changes may, at least in part, be responsible for changes in the phospholipids and cholesterol profile in cell membranes and ultimately may reduce the fluidity of the membrane. A supplementation with L-carnitine partly restored the fatty acid profile by increasing saturated fatty acid content and decreasing the amounts of MUFA, PUFA, VLCFA. L-carnitine supplementation also restored muscle membrane fluidity. This suggests that regulating lipid metabolism in DMD cells may improve the function of cells lacking dystrophin.  相似文献   

18.
The role of the alpha-tocopherol molecule isoprenoid chain in synaptosomal membrane protection from lipid peroxidation activation and phospholipase A2 damage was investigated. A comparative study of alpha-tocopherol analogs differing in the length of the isoprenoid chain revealed that the increase in the chain length results in a decrease of the efficiency of inhibition in the course of synaptosomal lipid peroxidation activation. This effect is due to the diminution of mobility of chromanols in the lipid bilayer which is associated with an increase in the length of the isoprenoid fragment. The decreased efficiency of lipid peroxidation inhibition resulting from the lengthening of the chromanol nucleus phytol chain is concomitant with the appearance of new stabilizing properties, e. g., the ability to protect synaptosomal membranes from the damaging action of phospholipase A2. This effect is lost with a decrease in the length of the chromanol isoprenoid chain.  相似文献   

19.
The alterations in chloroplast phospholipid acyl chain composition and phospholipid molecular species composition of Dunaliella salina (UTEX 1644) were monitored during acclimation to low temperature. Chlorophyll fluorescence yield, an indicator of chloroplast membrane stability, was used as a physical means of following the acclimation process.

Minor alterations in phospholipid acyl chain composition were evident within 36 hours of shifting the cells from 30 to 12°C. Between 36 and 60 hours, pronounced changes in the acyl chain composition of phosphatidylglycerol (PG) were observed. Changes in the acyl chain composition of phosphatidylcholine (PC) did not occur until sometime after 60 hours.

Alterations in the phospholipid molecular species during acclimation were also examined. The pattern of change observed in PC molecular species, namely a decrease in species having one saturated chain (16:0) paired with a C18 acyl chain and a concomitant increase in species having two unsaturated C18 acyl chains, suggests that molecular species changes augment fatty acid compositional changes as a mean of adapting to low temperature. The molecular species of PG were found to change abruptly between 36 and 60 hours following a shift to low temperature. During this time, a dramatic alteration in the threshold temperature of thermal denaturation of the photosynthetic apparatus, as measured by chlorophyll fluorescence, also occurred. Lipid compositional changes other than those associated with PG were negligible during this time. This strongly suggests that a correlation exists between the molecular species composition of PG and the thermal stability of the photosynthetic membrane.

  相似文献   

20.
To study the consequences of depleting the major membrane phospholipid phosphatidylcholine (PC), exponentially growing cells of a yeast cho2opi3 double deletion mutant were transferred from medium containing choline to choline-free medium. Cell growth did not cease until the PC level had dropped below 2% of total phospholipids after four to five generations. Increasing contents of phosphatidylethanolamine (PE) and phosphatidylinositol made up for the loss of PC. During PC depletion, the remaining PC was subject to acyl chain remodeling with monounsaturated species replacing diunsaturated species, as shown by mass spectrometry. The remodeling of PC did not require turnover by the SPO14-encoded phospholipase D. The changes in the PC species profile were found to reflect an overall shift in the cellular acyl chain composition that exhibited a 40% increase in the ratio of C16 over C18 acyl chains, and a 10% increase in the degree of saturation. The shift was stronger in the phospholipid than in the neutral lipid fraction and strongest in the species profile of PE. The shortening and increased saturation of the PE acyl chains were shown to decrease the nonbilayer propensity of PE. The results point to a regulatory mechanism in yeast that maintains intrinsic membrane curvature in an optimal range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号