首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mRNA for human hormone-sensitive lipase (HSL) was identified using Northern blot analysis and a cDNA-probe for rat HSL. As in the rat, human adipose tissue expresses a single mRNA species of 3.3 kb. Using Western blotting with a polyclonal rabbit antibody towards rat adipose tissue HSL, the corresponding enzyme in human adipose tissue was identified with an apparent 88 kDa polypeptide, thus slightly larger than the rat and bovine 84 kDa, and the mouse and guinea-pig 82 kDa species. Additional evidence for the identification was provided by the inhibition of HSL diacylglycerol lipase activity by the anti-rat HSL antibody, and by NaF, DFP and Hg2+, known inhibitors of HSL. The concentration of the enzyme, as reflected by its activity per g tissue and the specific activity was about two thirds of that in the rat adipose tissue (200 g rats). The identification of the human enzyme protein made it possible to directly demonstrate its phosphorylation by cAMP-dependent protein kinase, thus extending the previous report regarding activation of the lipase with this kinase and ATP-Mg2+ in human adipose tissue extracts (Khoo, J.C., Aquino, A.A. and Steinberg, D. (1974) J. Clin. Invest. 53, 1124-1131).  相似文献   

3.
Hormone-sensitive lipase (HSL) is expressed predominantly in white and brown adipose tissue where it is believed to play a crucial role in the lipolysis of stored triglycerides (TG), thereby providing the body with energy substrate in the form of free fatty acids (FFA). From in vitro assays, HSL is known to hydrolyze TG, diglycerides (DG), cholesteryl esters, and retinyl esters. In the current study we have generated HSL knock-out mice and demonstrate three lines of evidence that HSL is instrumental in the catabolism of DG in vivo. First, HSL deficiency in mice causes the accumulation of DG in white adipose tissue, brown adipose tissue, skeletal muscle, cardiac muscle, and testis. Second, when tissue extracts were used in an in vitro lipase assay, a reduced FFA release and the accumulation of DG was observed in HSL knock-out mice which did not occur when tissue extracts from control mice were used. Third, in vitro lipolysis experiments with HSL-deficient fat pads demonstrated that the isoproterenol-stimulated release of FFA was decreased and DG accumulated intracellularly resulting in the essential absence of the isoproterenol-stimulated glycerol formation typically observed in control fat pads. Additionally, the absence of HSL in white adipose tissue caused a shift of the fatty acid composition of the TG moiety toward increased long chain fatty acids implying a substrate specificity of the enzyme in vivo. From these in vivo results we conclude that HSL is the rate-limiting enzyme for the cellular catabolism of DG in adipose tissue and muscle.  相似文献   

4.
A new technique for single-step subcellular fractionation of adipose tissue homogenates by analytical sucrose density gradient centrifugation in a vertical pocket reorientating rotor is described. The density gradient distributions of mitochondrial and peroxisomal marker enzymes in brown and white adipose tissue of control and cold exposed rats are compared. The equilibrium density of brown fat mitochondria was found to be significantly increased compared with white fat mitochondria. GDP binding activity was localized solely to the mitochondria in both control and cold-adapted brown adipose tissue. Brown and white fat mitochondria fractions were isolated by differential centrifugation and the specific activities of various enzymes in the homogenate and mitochondrial preparations determined. The specific activity of creatine kinase in brown adipose tissue was found to be ten-fold higher than in white fat and subcellular fractionation studies showed the activity to have an exclusively cytosolic distribution in both tissues. GDP binding activity and some of the mitochondrial enzymes showed, in brown adipose, a striking increase in total activity in cold adapted rats compared to control animals. For some enzyme activities there was a small increase when expressed per mg tissue or per mg mitochondrial protein. When expressed per mg DNA i.e. per cell, there was a reduced specific activity of the mitochondrial and peroxisomal enzymes in both brown and white adipose tissue on cold adaptation.  相似文献   

5.
M E Lean  W P James 《FEBS letters》1983,163(2):235-240
A protein of Mr 32 000 has been isolated from human infant brown adipose tissue mitochondria following the procedure used to purify the uncoupling protein from rat brown adipose tissue mitochondria. A specific antiserum has been raised against the human 32 kDa protein, and used to detect it by probing mitochondrial proteins separated by SDS-PAGE. The protein is present in large amounts in brown adipose tissue but is undetectable in human liver, heart or white adipose tissue. It has strong immunological cross-reactivity with rat brown adipose tissue uncoupling protein.  相似文献   

6.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis.  相似文献   

7.
In white adipose tissue, lipolysis can occur by hormone-sensitive lipase (HSL)-dependent or HSL-independent pathways. To study HSL-independent lipolysis, we placed HSL-deficient mice in conditions of increased fatty acid flux: beta-adrenergic stimulation, fasting, and dietary fat loading. Intraperitoneal administration of the beta(3)-adrenergic agonist CL-316243 caused a greater increase in nonesterified fatty acid level in controls (0.33 +/- 0.05 mmol/l) than in HSL(-/-) mice (0.12 +/- 0.01 mmol/l, P < 0.01). Similarly, in isolated adipocytes, lipolytic response to CL-316243 was greatly reduced in HSL(-/-) mice compared with controls. Fasting for 相似文献   

8.
A further investigation of the lipolysis induced by medium-chain triglyceride (MCT) was conducted on C57BL/6J mice fed with a diet containing 2% MCT or 2% long-chain triglyceride (LCT). Blood norepinephrine, body fat and blood lipid variables, and the protein or mRNA expression of the genes relevant to lipolysis were measured and analyzed in the white and brown adipose tissue (WAT, BAT). Decreased body fat and improved blood lipid profiles attributable to MCT were confirmed. A higher level of blood norepinephrine was observed with the MCT diet. The adipose triglyceride lipase (ATGL) activity and its mRNA expression, the expression of protein and mRNA of the beta 3 adrenergic receptor (β3-AR) in both WAT and BAT, and the hormone-sensitive lipase (HSL) activity and its mRNA expression in BAT were significantly increased in the mice with MCT feeding. The lipolysis induced by MCT might be partially mediated by increasing norepinephrine, thereafter signaling the up-regulation of β3-AR, ATGL, and HSL in WAT and BAT.  相似文献   

9.
During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

10.
11.
Wnt10b inhibits development of white and brown adipose tissues   总被引:2,自引:0,他引:2  
Wnt is a family of secreted signaling proteins that regulate diverse developmental processes. Activation of canonical Wnt signaling by Wnt10b inhibits differentiation of preadipocytes in vitro. To determine whether Wnt signaling blocks adipogenesis in vivo, we created transgenic mice in which Wnt10b is expressed from the FABP4 promoter. Expression of Wnt10b in adipose impairs development of this tissue throughout the body, with a decline of approximately 50% in total body fat and a reduction of approximately 60% in weight of epididymal and perirenal depots. FABP4-Wnt10b mice resist accumulation of adipose tissue when fed a high fat diet. Furthermore, transgenic mice are more glucose-tolerant and insulin-sensitive than wild type mice. Expression of Wnt10b from the FABP4 promoter also blocks development of brown adipose tissue. Interscapular tissue of FABP4-Wnt10b mice has the visual appearance of white adipose tissue but expresses neither brown (e.g. uncoupling protein 1) nor white adipocyte markers. Transgenic mice are unable to maintain a core body temperature when placed in a cold environment, providing further evidence that Wnt10b inhibits development of brown adipose tissue. Although food intake is not altered in FABP4-Wnt10b mice, oxygen consumption is decreased. Thus, FABP4-Wnt10b mice on a chow diet gain more weight than controls, largely because of an increase in weight of skin. In summary, inhibition by Wnt10b of white and brown adipose tissue development results in lean mice without lipodystrophic diabetes.  相似文献   

12.
13.
Adipose tissues and other tissues of the pig have been examined for the presence of the mitochondrial "uncoupling protein," characteristic of brown adipose tissue, in order to assess whether brown fat is present in this species. Mitochondria were prepared from various tissues and the proteins separated on the basis of molecular weight by sodium dodecyl sulphate--polyacrylamide gel electrophoresis. Immunoblotting procedures were then used to probe for uncoupling protein, employing a rabbit anti-(rat uncoupling protein) serum. Pigs were examined at 4 days, 4 weeks, and 8 weeks of age. No evidence for the presence of uncoupling protein was found at any of these ages. The protein was, however, readily detected in brown adipose tissue from rats, mice, golden hamsters, guinea pigs, Richardson's ground squirrel, and lambs. An additional group of pigs was acclimated to the cold (10 degrees C) for a period of 10 days prior to the examination of tissues, but again uncoupling protein was not detected in any tissue. These results indicate that uncoupling protein is either absent from adipose tissues of the pig or is present at such a low concentration that it is unlikely to support thermogenesis. It is concluded that the pig does not contain adipose tissue that is functionally "brown;" adipose tissues in this species appear to be exclusively "white."  相似文献   

14.
The thermogenic capacity of brown adipose tissue in winter- and summer-acclimatized short-tailed field voles (Microtus agrestis) was investigated by examining changes in mass of brown adipose tissue, the ratio of white adipose tissue to brown adipose tissue, the concentration of the uncoupling protein (thermogenin) in whole depots (μg) and in mitochondrial mass (μg·mg-1) and the activity of cytochrome c oxidase in the depots (mmol·min-1). The concentration of thermogenin in winter-acclimatized voles (n=8), per brown adipose tissue depot and per mitochondrial mass, was significantly higher than in summer-acclimatized voles (n=6). There was no significant difference in the level of cytochrome c oxidase activity between these two groups. Four groups of winter-acclimatized voles (n=6 in each group) were exposed to 5°C for 10, 20, 50 and 100 days in a 14L:10D photoperiod. Body mass, brown adipose tissue mass, white adipose tissue mass and basal metabolic rate were significantly positively related to the length of time cold exposed up to 100 days. There was a significant inverse relationship between the ratio of white to brown adipose tissue mass and the duration of cold exposure. There was no significant relationship between thermogenin concentration, either per depot or in mitochondrial mass of brown adipose tissue, with the length of time cold exposed. The level of cytochrome c oxidase activity increased significantly from control levels to a maximum after 10 days in the cold but decreased from 10 days onwards. In winter-acclimatized M. agrestis, a 14L:10D photoperiod is not a sufficient stimulus to reduce thermogenic capacity during cold acclimation. Indeed, some changes in the indirect parameters reflecting thermogenesis, notably the increase in basal metabolic rate and the decrease in the ratio of white to brown adipose tissue mass, indicated that despite the long photophase the thermogenic capacity was slightly further enhanced during the cold acclimation.  相似文献   

15.
The effects of fasting and refeeding on the concentration of uncoupling protein in brown adipose tissue mitochondria have been investigated in mice. Fasting mice for 48 h led to a large decrease in the total cytochrome oxidase activity of the interscapular brown fat pad. Mitochondrial GDP binding and the specific mitochondrial concentration of uncoupling protein also fell on fasting. After 24 h refeeding both GDP binding and the mitochondrial concentration of uncoupling protein were normalized, but there was no alteration in the total tissue cytochrome oxidase activity. Fasting appears to induce a selective loss of uncoupling protein from brown adipose tissue mitochondria, which is rapidly reversible on refeeding.  相似文献   

16.
17.
18.
The substrate specificity of mitochondrial monoamine oxidase (MAO) in pancreatic and adipose tissues of obese mice and their lean counterparts was determined. The pancreatic MAO of obese mice had a greater specific activity than that of the lean mice. The white adipose tissue MAO was found to be more active than the brown adipose MAO in both groups of mice. While there was no appreciable difference in the MAO activities of brown adipose tissues between obese and lean mice, the enzyme from the white adipose tissue of obese mice had a higher specific activity than that of the lean mice. The higher MAO activity in white adipose tissue was observed when tyramine or serotonin was employed as substrate but not with benzylamine. Examination of mitochondrial MAO from epididymal adipocytes revealed marked differences in the properties of the enzyme between whole adipose tissue and isolated adipocytes. The inhibition characteristics of MAO from these tissues were studied with the specific inhibitors clorgyline and deprenyl.  相似文献   

19.
Objective: To directly ascertain the physiological roles in adipocytes of hormone‐sensitive lipase (HSL; E.C. 3.1.1.3), a multifunctional hydrolase that can mediate triacylglycerol cleavage in adipocytes. Research Methods and Procedures: We performed constitutive gene targeting of the mouse HSL gene (Lipe), subsequently studied the adipose tissue phenotype clinically and histologically, and measured lipolysis in isolated adipocytes. Results: Homozygous HSL?/? mice have no detectable HSL peptide or cholesteryl esterase activity in adipose tissue, and heterozygous mice have intermediate levels with respect to wild‐type and deficient littermates. HSL‐deficient mice have normal body weight but reduced abdominal fat mass compared with normal littermates. Histologically, both white and brown adipose tissues in HSL?/? mice show marked heterogeneity in cell size, with markedly enlarged adipocytes juxtaposed to cells of normal morphology. In isolated HSL?/? adipocytes, lipolysis is not significantly increased by β3‐adrenergic stimulation, but under basal conditions in the absence of added catecholamines, the lipolytic rate of isolated HSL?/? adipocytes is at least as high as that of cells from normal controls. Cold tolerance during a 48‐hour period at 4 °C was similar in HSL?/? mice and controls. Overnight fasting was well‐tolerated clinically by HSL?/? mice, but after fasting, liver triglyceride content was significantly lower in HSL?/? mice compared with wild‐type controls. Conclusions: In isolated fat cells, the lipolytic rate after β‐adrenergic stimulation is mainly dependent on HSL. However, the observation of a normal rate of lipolysis in unstimulated HSL?/? adipocytes suggests that HSL‐independent lipolytic pathway(s) exist in fat. Physiologically, HSL deficiency in mice has a modest effect under normal fed conditions and is compatible with normal maintenance of core body temperature during cold stress. However, the lipolytic response to overnight fasting is subnormal.  相似文献   

20.
Chronic adrenergic activation leads to the emergence of beige adipocytes in some depots of white adipose tissue in mice. Despite their morphological similarities to brown adipocytes and their expression of uncoupling protein 1 (UCP1), a thermogenic protein exclusively expressed in brown adipocytes, the beige adipocytes have a gene expression pattern distinct from that of brown adipocytes. However, it is unclear whether the thermogenic function of beige adipocytes is different from that of classical brown adipocytes existing in brown adipose tissue. To examine the thermogenic ability of UCP1 expressed in beige and brown adipocytes, the adipocytes were isolated from the fat depots of C57BL/6J mice housed at 24°C (control group) or 10°C (cold-acclimated group) for 3 weeks. Morphological and gene expression analyses revealed that the adipocytes isolated from brown adipose tissue of both the control and cold-acclimated groups consisted mainly of brown adipocytes. These brown adipocytes contained large amounts of UCP1 and increased their oxygen consumption when stimulated with norepinephirine. Adipocytes isolated from the perigonadal white adipose tissues of both groups and the inguinal white adipose tissue of the control group were white adipocytes that showed no increase in oxygen consumption after norepinephrine stimulation. Adipocytes isolated from the inguinal white adipose tissue of the cold-acclimated group were a mixture of white and beige adipocytes, which expressed UCP1 and increased their oxygen consumption in response to norepinephrine. The UCP1 content and thermogenic ability of beige adipocytes estimated on the basis of their abundance in the cell mixture were similar to those of brown adipocytes. These results revealed that the inducible beige adipocytes have potent thermogenic ability comparable to classical brown adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号