首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the murine coronavirus mouse hepatitis virus, a single glycoprotein, E2, is required both for attachment to cells and for cell fusion. Cell fusion induced by infection with mouse hepatitis virus strain A59 was inhibited by the addition of monospecific anti-E2 antibody after virus adsorption and penetration. Adsorption of concentrated coronavirions to uninfected cells did not cause cell fusion in the presence of cycloheximide. Thus, cell fusion was induced by E2 on the plasma membrane of infected 17 Cl 1 cells but not by E2 on virions grown in these cells. Trypsin treatment of virions purified from 17 Cl 1 cells quantitatively cleaved 180K E2 to 90K E2 and activated cell-fusing activity of the virions. This proteolytic cleavage yielded two different 90K species which were separable by sodium dodecyl sulfate-hydroxyapatite chromatography. One of the trypsin cleavage products, 90A, was acylated and may be associated with the lipid bilayer. The other, 90B, was not acylated and yielded different peptides than did 90A upon limited digestion with thermolysin or staphylococcal V8 protease. Thus, the cell-fusing activity of a coronavirus required proteolytic cleavage of the E2 glycoprotein, either by the addition of a protease to virions or by cellular proteases acting on E2, which was transported to the plasma membrane during virus maturation. There is a striking functional similarity between the E2 glycoprotein of coronavirus, which is a positive-strand RNA virus, and the hemagglutinin glycoprotein of negative-strand orthomyxoviruses, in that a single glycoprotein has both attachment and protease-activated cell-fusing activities.  相似文献   

2.
In murine 17 Cl 1 cells persistently infected with murine coronavirus mouse hepatitis virus strain A59 (MHV-A59), expression of the virus receptor glycoprotein MHVR was markedly reduced (S. G. Sawicki, J. H. Lu, and K. V. Holmes, J. Virol. 69:5535-5543, 1995). Virus isolated from passage 600 of the persistently infected cells made smaller plaques on 17 Cl 1 cells than did MHV-A59. Unlike the parental MHV-A59, this variant virus also infected the BHK-21 (BHK) line of hamster cells. Virus plaque purified on BHK cells (MHV/BHK) grew more slowly in murine cells than did MHV-A59, and the rate of viral RNA synthesis was lower and the development of the viral nucleocapsid (N) protein was slower than those of MHV-A59. MHV/BHK was 100-fold more resistant to neutralization with the purified soluble recombinant MHV receptor glycoprotein (sMHVR) than was MHV-A59. Pretreatment of 17 Cl 1 cells with anti-MHVR monoclonal antibody CC1 protected the cells from infection with MHV-A59 but only partially protected them from infection with MHV/BHK. Thus, although MHV/BHK could still utilize MHVR as a receptor, its interactions with the receptor were significantly different from those of MHV-A59. To determine whether a hemagglutinin esterase (HE) glycoprotein that could bind the virions to 9-O-acetylated neuraminic acid moieties on the cell surface was expressed by MHV/BHK, an in situ esterase assay was used. No expression of HE activity was detected in 17 Cl 1 cells infected with MHV/BHK, suggesting that this virus, like MHV-A59, bound to cell membranes via its S glycoprotein. MHV/BHK was able to infect cell lines from many mammalian species, including murine (17 Cl 1), hamster (BHK), feline (Fcwf), bovine (MDBK), rat (RIE), monkey (Vero), and human (L132 and HeLa) cell lines. MHV/BHK could not infect dog kidney (MDCK I) or swine testis (ST) cell lines. Thus, in persistently infected murine cell lines that express very low levels of virus receptor MHVR and which also have and may express alternative virus receptors of lesser efficiency, there is a strong selective advantage for virus with altered interactions with receptor (D. S. Chen, M. Asanaka, F. S. Chen, J. E. Shively, and M. M. C. Lai, J. Virol. 71:1688-1691, 1997; D. S. Chen, M. Asanaka, K. Yokomori, F.-I. Wang, S. B. Hwang, H.-P. Li, and M. M. C. Lai, Proc. Natl. Acad. Sci. USA 92:12095-12099, 1995; P. Nedellec, G. S. Dveksler, E. Daniels, C. Turbide, B. Chow, A. A. Basile, K. V. Holmes, and N. Beauchemin, J. Virol. 68:4525-4537, 1994). Possibly, in coronavirus-infected animals, replication of the virus in tissues that express low levels of receptor might also select viruses with altered receptor recognition and extended host range.  相似文献   

3.
Mouse hepatitis virus strain A59 (MHV-A59) produces meningoencephalitis and severe hepatitis during acute infection. Infection of primary cells derived from the central nervous system (CNS) and liver was examined to analyze the interaction of virus with individual cell types derived from the two principal sites of viral replication in vivo. In glial cell cultures derived from C57BL/6 mice, MHV-A59 produces a productive but nonlytic infection, with no evidence of cell-to-cell fusion. In contrast, in continuously cultured cells, this virus produces a lytic infection with extensive formation of syncytia. The observation of few and delayed syncytia following MHV-A59 infection of hepatocytes more closely resembles infection of glial cells than that of continuously cultured cell lines. For MHV-A59, lack of syncytium formation correlates with lack of cleavage of the fusion glycoprotein, or spike (S) protein. The absence of cell-to-cell fusion following infection of both primary cell types prompted us to examine the cleavage of the spike protein. Cleavage of S protein was below the level of detection by Western blot analysis in MHV-A59-infected hepatocytes and glial cells. Furthermore, no cleavage of this protein was detected in liver homogenates from C57BL/6 mice infected with MHV-A59. Thus, cleavage of the spike protein does not seem to be essential for entry and spread of the virus in vivo, as well as for replication in vitro.  相似文献   

4.
We have obtained biochemical and electron microscopic evidence of conformational changes at pH 8.0 and 37 degrees C in the coronavirus spike glycoprotein E2 (S). The importance of these changes is reflected in the loss of virus infectivity, the aggregation of virions, and increased virus-induced cell fusion at the same pH. Coronavirus (MHV-A59) infectivity is exquisitely sensitive to pH. The virus was quite stable at pH 6.0 and 37 degrees C (half-life, approximately 24 h) but was rapidly and irreversibly inactivated by brief treatment at pH 8.0 and 37 degrees C (half-life, approximately 30 min). Virions treated at pH 8.0 and 37 degrees C formed clumps and large aggregates. With virions treated at pH 8.0 and 37 degrees C, the amino-terminal peptide E2N (or S1) was released from virions and the remaining peptide, E2C (S2), was aggregated. Viral spikes isolated from detergent-treated virions also aggregated at pH 8.0 and 37 degrees C. Loss of virus infectivity and E2 (S) aggregation at pH 8.0 and 37 degrees C were markedly enhanced in the presence of dithiothreitol. On the basis of the effects of dithiothreitol on the reactions of the peplomer, we propose that release of E2N (S1) and aggregation of E2C (S2) may be triggered by rearrangement of intramolecular disulfide bonds. The aggregation of virions and the isolated E2 (S) glycoprotein at pH 8.0 and 37 degrees C or following treatment with guanidine and urea at pH 6.0 and 37 degrees C indicate that an irreversible conformational change has been induced in the peplomer glycoprotein by these conditions. It is interesting that coronavirus-induced cell fusion also occurred under mildly alkaline conditions and at 37 degrees C. Some enveloped viruses, including influenza viruses and alphaviruses, show conformational changes of spike glycoproteins at a low pH, which correlates with fusion and penetration of those viruses in acidified endocytic vesicles. For coronavirus MHV-A59, comparable conformational change of the spike glycoprotein E2 (S) and cell fusion occurred at a mildly alkaline condition, suggesting that coronavirus infection-penetration, like that of paramyxoviruses and lentiviruses, may occur at the plasma membrane, rather than within endocytic vesicles.  相似文献   

5.
The spike glycoprotein (S) of the murine coronavirus mouse hepatitis virus (MHV) binds to viral murine CEACAM receptor glycoproteins and causes membrane fusion. On virions, the 180-kDa S glycoprotein of the MHV-A59 strain can be cleaved by trypsin to form the 90-kDa N-terminal receptor-binding subunit (S1) and the 90-kDa membrane-anchored fusion subunit (S2). Incubation of virions with purified, soluble CEACAM1a receptor proteins at 37 degrees C and pH 6.5 neutralizes virus infectivity (B. D. Zelus, D. R. Wessner, R. K. Williams, M. N. Pensiero, F. T. Phibbs, M. deSouza, G. S. Dveksler, and K. V. Holmes, J. Virol. 72:7237-7244, 1998). We used liposome flotation and protease sensitivity assays to investigate the mechanism of receptor-induced, temperature-dependent virus neutralization. After incubation with soluble receptor at 37 degrees C and pH 6.5, virions became hydrophobic and bound to liposomes. Receptor binding induced a profound, apparently irreversible conformational change in S on the viral envelope that allowed S2, but not S1, to be degraded by trypsin at 4 degrees C. Various murine CEACAM proteins triggered conformational changes in S on recombinant MHV strains expressing S glycoproteins of MHV-A59 or MHV-4 (MHV-JHM) with the same specificities as seen for virus neutralization and virus-receptor activities. Increased hydrophobicity of virions and conformational change in S2 of MHV-A59 could also be induced by incubating virions at pH 8 and 37 degrees C, without soluble receptor. Surprisingly, the S protein of recombinant MHV-A59 virions with a mutation, H716D, that precluded cleavage between S1 and S2 could also be triggered to undergo a conformational change at 37 degrees C by soluble receptor at neutral pH or by pH 8 alone. A novel 120-kDa subunit was formed following incubation of the receptor-triggered S(A59)H716D virions with trypsin at 4 degrees C. The data show that unlike class 1 fusion glycoproteins of other enveloped viruses, the murine coronavirus S protein can be triggered to a membrane-binding conformation at 37 degrees C either by soluble receptor at neutral pH or by alkaline pH alone, without requiring previous activation by cleavage between S1 and S2.  相似文献   

6.
Like most coronaviruses, the coronavirus mouse hepatitis virus (MHV) exhibits strong species specificity, causing natural infection only in mice. MHV-A59 virions use as a receptor a 110- to 120-kDa glycoprotein (MHVR) in the carcinoembryonic antigen (CEA) family of glycoproteins (G. S. Dveksler, M. N. Pensiero, C. B. Cardellichio, R. K. Williams, G. S. Jiang, K. V. Holmes, and C. W. Dieffenbach, J. Virol. 65:6881-6891, 1991; and R. K. Williams, G. S. Jiang, and K. V. Holmes, Proc. Natl. Acad. Sci. USA 88:5533-5536, 1991). The role of virus-receptor interactions in determining the species specificity of MHV-A59 was examined by comparing the binding of virus and antireceptor antibodies to cell lines and intestinal brush border membranes (BBM) from many species. Polyclonal antireceptor antiserum (anti-MHVR) raised by immunization of SJL/J mice with BALB/c BBM recognized MHVR specifically in immunoblots of BALB/c BBM but not in BBM from adult SJL/J mice that are resistant to infection with MHV-A59, indicating a major difference in epitopes between MHVR and its SJL/J homolog which does not bind MHV (7). Anti-MHVR bound to plasma membranes of MHV-susceptible murine cell lines but not to membranes of human, cat, dog, monkey, or hamster cell lines. Cell lines from these species were resistant to MHV-A59 infection, and only the murine cell lines tested were susceptible. Pretreatment of murine fibroblasts with anti-MHVR prevented binding of radiolabeled virions to murine cells and prevented virus infection. Solid-phase virus-binding assays and virus overlay protein blot assays showed that MHV-A59 virions bound to MHVR on intestinal BBM from MHV-susceptible mouse strains but not to proteins on intestinal BBM from humans, cats, dogs, pigs, cows, rabbits, rats, cotton rats, or chickens. In immunoblots of BBM from these species, both polyclonal and monoclonal antireceptor antibodies that block MHV-A59 infection of murine cells recognized only the murine CEA-related glycoprotein and not homologous CEA-related glycoproteins of other species. These results suggest that MHV-A59 binds to a mouse-specific epitope of MHVR, and they support the hypothesis that the species specificity of MHV-A59 infection may be due to the specificity of the virus-receptor interaction.  相似文献   

7.
Monoclonal antibodies (MAbs) directed against the E2 glycoprotein of mouse hepatitis virus (MHV) have been classified according to their ability to bind to either of the two purified 90,000-molecular-weight subunits (90K subunits) of the 180K peplomeric glycoprotein E2. Correlation with previously reported information about these MAbs suggest that both of the subunits of E2 are important for viral infectivity and cell fusion. Incubation of trypsin-treated virions at pH 8.0 and 37 degrees C released only the E2N subunit from virions. The pattern of MAb reactions suggested that a conformational change occurred in the E2N subunit in association with its release from virions under mildly alkaline conditions at 37 degrees C, the same conditions which are optimal for coronavirus-induced cell fusion.  相似文献   

8.
9.
R S Baric  B Yount  L Hensley  S A Peel    W Chen 《Journal of virology》1997,71(3):1946-1955
Molecular mechanisms permitting the establishment and dissemination of a virus within a newly adopted host species are poorly understood. Mouse hepatitis virus (MHV) strains (MHV-A59, MHV-JHM, and MHV-A59/MHV-JHM) were passaged in mixed cultures containing progressively increasing concentrations of nonpermissive Syrian baby hamster kidney (BHK) cells and decreasing concentrations of permissive murine DBT cells. From MHV-A59/MHV-JHM mixed infection, variant viruses (MHV-H1 and MHV-H2) which replicated efficiently in BHK cells were isolated. Under identical treatment conditions, the parental MHV-A59 or MHV-JHM strains failed to produce infectious virus or transcribe detectable levels of viral RNA or protein. The MHV-H isolates were polytrophic, replicating efficiently in normally nonpermissive Syrian hamster smooth muscle (DDT-1), Chinese hamster ovary (CHO), human adenocarcinoma (HRT), primate kidney (Vero), and murine 17Cl-1 cell lines. Little if any virus replication was detected in feline kidney (CRFK) and porcine testicular (ST) cell lines. The variant virus, MHV-H2, transcribed seven mRNAs equivalent in relative abundance and size to those synthesized by the parental virus strains. MHV-H2 was an RNA recombinant virus containing a crossover site in the S glycoprotein gene. At the molecular level, episodic evolution and positive Darwinian natural selection were apparent within the MHV-H2 S and HE glycoprotein genes. These findings differ from the hypothesis that neutral changes are the predominant feature of molecular evolution and argue that changing ecologies actuate episodic evolution in the MHV spike glycoprotein genes that govern interspecies transfer and spread into alternative hosts.  相似文献   

10.
ABSTRACT: BACKGROUND: It is thought that foamy viruses (FVs) enter host cells via endocytosis because all FV glycoproteins examined display pH-dependent fusion activities. Only the prototype FV (PFV) glycoprotein has also significant fusion activity at neutral pH, suggesting that its uptake mechanism may deviate from other FVs. To gain new insights into the uptake processes of FV in individual live host cells, we developed fluorescently labeled infectious FVs. RESULTS: N-terminal tagging of the FV envelope leader peptide domain with a fluorescent protein resulted in efficient incorporation of the fluorescently labeled glycoprotein into secreted virions without interfering with their infectivity. Double-tagged viruses consisting of an eGFP-tagged PFV capsid (Gag-eGFP) and mCherry-tagged Env (Ch-Env) from either PFV or macaque simian FV (SFVmac) were observed during early stages of the infection pathway. PFV Env, but not SFVmac Env, containing particles induced strong syncytia formation on target cells. Both virus types showed trafficking of double-tagged virions towards the cell center. Upon fusion and subsequent capsid release into the cytosol, accumulation of naked capsid proteins was observed within four hours in the perinuclear region, presumably representing the centrosomes. Interestingly, virions harboring fusion-defective glycoproteins still promoted virus attachment and uptake, but failed to show syncytia formation and perinuclear capsid accumulation. Non-fused or non-fusogenic viruses are rapidly cleared from the cells by putative lysosomal degradation. Monitoring the fraction of viruses containing both Env and capsid signals as a function of time demonstrated that PFV virions fused within the first few minutes, whereas fusion of SFVmac virions was less pronounced and observed over the entire 90 minutes measured. CONCLUSIONS: The characterized double-labeled FVs described here provide new mechanistic insights into FV early entry steps, demonstrating that productive viral fusion occurs early after target cell attachment and uptake. The analysis highlights apparent differences in the uptake pathways of individual FV species. Furthermore, the infectious double-labeled FVs promise to provide important tools for future detailed analyses on individual FV fusion events in real time using advanced imaging techniques.  相似文献   

11.
Wagenaar TR  Moss B 《Journal of virology》2007,81(12):6286-6293
The proteins encoded by the A56R and K2L genes of vaccinia virus form a heterodimer (A56/K2) and have a fusion regulatory role as deletion or mutation of either causes infected cells to form large syncytia spontaneously. Here, we showed that syncytia formation is dependent on proteins of the recently described entry fusion complex (EFC), which are also required for virus-cell fusion and low-pH-triggered cell-cell fusion. This finding led us to consider that A56/K2 might prevent fusion by direct or indirect interaction with the EFC. To test this hypothesis, we made a panel of recombinant vaccinia viruses that have a tandem affinity purification tag attached to A56, K2, or the A28 EFC protein. Interaction between A56/K2 and the EFC was demonstrated by their copurification from detergent-treated lysates of infected cells and identification by mass spectrometry or Western blotting. In addition, a purified soluble transmembrane-deleted form of A56/K2 was shown to interact with the EFC. Tagged A56 did not interact with the EFC in the absence of K2, nor did tagged K2 interact with the EFC in the absence of A56. The finding that both A56 and K2 are required for efficient binding to the EFC fits well with prior experiments showing that mutation of either A56 or K2 results in spontaneous fusion of infected cells. Because A56 and K2 are located on the surface of infected cells, they are in position to interact with the EFC of released progeny virions and prevent back-fusion and syncytia formation.  相似文献   

12.
An adenovirus type 2 early glycoprotein with an apparent molecular weight of 19,000 (E19K) in sodium dodecyl sulfate-polyacrylamide gels has been extensively purified. Purification involved detergent solubilization of membrane fractions from infected cells, followed by affinity chromatography on a lectin column and DEAE-Sephadex chromatography. The purified material contained three polypeptides (E40K, E19K, E17.5K), with approximately 90% of the material in the E19K moiety. All three polypeptides yielded identical tryptic peptide maps. The E19K polypeptide contained glucosamine as revealed by [3H]glucosamine labeling of infected cells and amino acid analysis of the purified protein. Immunoprecipitation with a monospecific antiserum showed that the E19K polypeptide started to be synthesized at 2 h, with a maximal rate at 4 h after infection. It was also synthesized at a low rate late in the infectious cycle (12 to 24 h postinfection). Immunoprecipitation from three adenovirus type 2-transformed hamster embryo cell lines and two adenovirus type 2-transformed rat cell lines revealed that one of the hamster cell lines (ad2HE4) and one of the rat cell lines (A2T2C4) expressed this protein.  相似文献   

13.
fu-1 cells, a line of rat myoblasts defective in differentiation, can be fused into multinucleate syncytia by Moloney murine leukemia virus. The effects of treating the virus with specific antibody, UV irradiation, and elevated temperature and the requirements for cellular RNA and protein synthesis have been studied as they relate to this virus-induced fusion. The results indicate that intact, but not necessarily infectious, virions are required to promote fusion of fu-1 cells. Neither actinomycin D nor cycloheximide altered the formation of syncytia; thus, neither viral nor cellular RNA or protein synthesis is required for fusion. fu-1 cells infected with the ts3 temperature-sensitive mutant of Moloney murine leukemia virus accumlate large amounts of budding virus on their cell membrane; however, this membrane-associated virus failed to induce syncytia. Upon release of the virus at the permissive temperature, fusion did occur. We conclude that contact or attachment of the immature virus to the cell membrane is not sufficient to promote murine leukemia virus-induced cell fusion; complete virions are required. From these data, we propose that adsorption and penetration of the virus may induce a change in the cell membrane that subsequently promotes the fusion of susceptible cells.  相似文献   

14.
We generated Chinese hamster ovary cell lines that stably express wild-type, secreted, and glycosylphosphatidylinositol (GPI)-anchored envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1). The cells expressing wild-type Env (WT cells) express both the precursor gp160 and the mature gp120/gp41 and readily form large syncytia when cocultivated with CD4+ human cells. The cells expressing secreted Env (SEC cells) release 140-kDa precursor and mature 120-kDa envelope glycoproteins into the supernatants. The cells expressing GPI-anchored Env (PI cells) express both 140-kDa precursor and mature gp120/gp41 envelope glycoproteins, which can be released from the cell surface by treatment with phosphatidylinositol-specific phospholipase C (PI-PLC). Both the secreted and PI-PLC-released envelope glycoproteins form oligomers that can be detected on nonreducing sodium dodecyl sulfate-polyacrylamide gels. In contrast to the WT cells, the SEC and PI cells do not form syncytia when cocultivated with CD4+ human cells. The availability of cells producing water-soluble oligomers of HIV-1 Env should facilitate studies of envelope glycoprotein structure and function. The WT cells, which readily induce syncytia with CD4+ cells, provide a convenient system for assessing potential fusion inhibitors and for studying the fusion mechanism of the HIV Env glycoprotein.  相似文献   

15.
The infection of murine fibroblasts of the sac- line with a coronavirus, mouse hepatitis virus strain A59 (MHV-A59), results in a novel modification to some cisternae of the rough endoplasmic reticulum (RER). From 8 hours post infection (h.p.i.) we see in thin sections pairs of cisternae closely, stably and uniformly aligned. Serial sectioning shows that the regions of pairing or lamination extend for many thousands of nm in two dimensions, with the spacing between the juxtaposed membranes remaining very uniform at about 18 nm. These structures appear coincident with the onset of accumulation of the viral glycoprotein E1 in the RER membrane but 2 hours after the viral glycoprotein E2 can first be detected there. Ribosomes are excluded from the paired cisternal surfaces, while budding of progeny virions has never been seen at the cisternal membranes facing the cytosol, although ribosomes bind there. The lumina of paired cixternae are usually devoid of virions which, however, accumulate in areas where the paired cisternae diverge. Electron immunocytochemistry shows that both E1 and E2 glycoproteins are abundant in the paired cisternae. Following labelling for the E1 glycoprotein we see a periodic fine structure, rows of "beads" with a centre to centre spacing of about 7.5 nm, in the region between the paired membranes. In oblique sections of this region in cells fixed as if for the immunoperoxidase labelling, but omitting all its steps we see parallel rows of "beads" separated by about 7 nm. We suggest that the membrane spanning viral glycoprotein E1 together with viral nucleocapsids may be involved in laminating cisternae of the RER.  相似文献   

16.
E C Bos  W Luytjes    W J Spaan 《Journal of virology》1997,71(12):9427-9433
The spike protein (S) of the murine coronavirus mouse hepatitis virus strain A59 (MHV-A59) induces both virus-to-cell fusion during infection and syncytium formation. Thus far, only syncytium formation could be studied after transient expression of S. We have recently described a system in which viral infectivity is mimicked by using virus-like particles (VLPs) and reporter defective-interfering (DI) RNAs (E. C. W. Bos, W. Luytjes, H. Van der Meulen, H. K. Koerten, and W. J. M. Spaan, Virology 218:52-60, 1996). Production of VLPs of MHV-A59 was shown to be dependent on the expression of M and E. We now show in several ways that the infectivity of VLPs is dependent on S. Infectivity was lost when spikeless VLPs were produced. Infectivity was blocked upon treatment of the VLPs with MHV-A59-neutralizing anti-S monoclonal antibody (MAb) A2.3 but not with nonneutralizing anti-S MAb A1.4. When the target cells were incubated with antireceptor MAb CC1, which blocks MHV-A59 infection, VLPs did not infect the target cells. Thus, S-mediated VLP infectivity resembles MHV-A59 infectivity. The system can be used to identify domains in S that are essential for infectivity. As a first application, we investigated the requirements of cleavage of S for the infectivity of MHV-A59. We inserted three mutant S proteins that were previously shown to be uncleaved (E. C. W. Bos, L. Heijnen, W. Luytjes, and W. J. M. Spaan, Virology 214:453-463, 1995) into the VLPs. Here we show that cleavage of the spike protein of MHV-A59 is not required for infectivity.  相似文献   

17.
In human immunodeficiency virus-1 (HIV-1)-infected cell cultures, cell-to-cell fusion and the formation of multinucleated giant cells (syncytia) are induced as a consequence of interactions between the viral envelope glycoprotein on infected cells and cell surface CD4 molecules on uninfected cells. Although activated CD4+ T cells rapidly form syncytia when cultured with HIV-1 envelope glycoprotein expressing (env+) cells, freshly isolated, unstimulated CD4+ T cells do so more slowly. In these studies, we sought to explore the role of T cell activation in rendering CD4+ T cells susceptible to HIV-1-mediated syncytia formation. Our results indicate that within 2 h of exposure to immunologic stimuli, CD4+ T cells acquire the ability to form syncytia with HIV-1 env+ cells. Both cholera toxin, an inhibitor of protein kinase C (PKC) through its effects on inositol triphosphate and diacylglycerol production, and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride, a noncompetitive inhibitor (with respect to ATP) of PKC, prevented unstimulated but not previously stimulated CD4+ T cells from forming syncytia with HIV-1 env+ cells. 1-Oleoyl-2-acetyl glycerol, an analog of the PKC activator, diacylglycerol, enhanced syncytia formation whereas ionomycin, a calcium ionophore, had no effect. These results suggest that activation of PKC is essential for previously unstimulated CD4+ T cells to become fusogenic.  相似文献   

18.

Background

Herpes simplex virus (HSV) can utilize multiple pathways to enter host cells. The factors that determine which route is taken are not clear. Chinese hamster ovary (CHO) cells that express glycoprotein D (gD)-binding receptors are model cells that support a pH-dependent, endocytic entry pathway for all HSV strains tested to date. Fusion-from-without (FFWO) is the induction of target cell fusion by addition of intact virions to cell monolayers in the absence of viral protein expression. The receptor requirements for HSV-induced FFWO are not known. We used the syncytial HSV-1 strain ANG path as a tool to evaluate the complex interplay between receptor usage, membrane fusion, and selection of entry pathway.

Results

Inhibitors of endocytosis and endosome acidification blocked ANG path entry into CHO cells expressing nectin-1 receptors, but not CHO-nectin-2 cells. Thus, under these conditions, nectin-2 mediates pH-independent entry at the plasma membrane. In addition, CHO-nectin-2 cells supported pH-dependent, endocytic entry of different strains of HSV-1, including rid1 and HFEM. The kinetics of ANG path entry was rapid (t1/2 of 5–10 min) regardless of entry route. However, HSV-1 ANG path entry by fusion with the CHO-nectin-2 cell plasma membrane was more efficient and resulted in larger syncytia. ANG path virions added to the surface of CHO-nectin-2 cells, but not receptor-negative CHO cells or CHO-nectin-1 cells, induced rapid FFWO.

Conclusion

HSV-1 ANG path can enter CHO cells by either endocytic or non-endocytic pathways depending on whether nectin-1 or nectin-2 is present. In addition to these cellular receptors, one or more viral determinants is important for the selection of entry pathway. HSV-induced FFWO depends on the presence of an appropriate gD-receptor in the target membrane. Nectin-1 and nectin-2 target ANG path to divergent cellular pathways, and these receptors may have different roles in triggering viral membrane fusion.  相似文献   

19.
Virus-induced cell fusion has been studied after infection of Vero cells with measles virus. Scanning and transmission electron microscopy were combined with immunoperoxidase labeling of measles antigens to correlate viral production and distribution of virus-induced erythrocyte binding sites with progress of fusion. Release of infectious virus started before syncytia were detected and decreased while the number and size of syncytia were increasing. Most virions were seen budding from mononucleated cells or from the periphery of syncytia where cells were being recruited. Moving inward, the surfaces of syncytia where cells were being recruited. Moving inward, the surfaces of syncytia were covered with numerous ridges containing viral antigen, but few viral buds were seen, suggesting that syncytia might be sites of defective viral formation. Hemadsorption occurred predominantly within the confines of syncytia. Erythrocytes were scattered sparsely over immature syncytia but were densely packed in the center of mature syncytia. Active binding sites for erythrocytes were located on cell villi and ridges covered with measles antigens. Hemadsorption was completely inhibited in measles virus-infected cultures pretreated with virus-specific immunoglobulin G for 1 h at 4 degrees C. However, when these cultures were shifted to 37 degrees C, hemadsorbing sites were recovered at the periphery of enlarging syncytia. Virus-induced sites for erythrocyte adsorption were found to move centripetally on syncytium membranes as fusion progressed.  相似文献   

20.
We investigated cell-cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type 1 strain IIIB expressed on the surface of CHO cells. These cells formed syncytia when incubated together with CD4-positive human lymphoblastoid SupT1 cells or HeLa-CD4 cells but not when incubated with CD4-negative cell lines. A new assay for binding and fusion was developed by using fluorescent phospholipid analogs that were produced in SupT1 cells by metabolic incorporation of BODIPY-labeled fatty acids. Fusion occurred as early as 10 min after mixing of labeled SupT1 cells with unlabeled CHO-gp160 cells at 37 degrees C. When both the fluorescence assay and formation of syncytia were used, fusion of SupT1 and HeLa-CD4 cells with CHO-gp160 cells was observed only at temperatures above 25 degrees C, confirming recent observations (Y.-K. Fu, T.K. Hart, Z.L. Jonak, and P.J. Bugelski, J. Virol. 67:3818-3825, 1993). This temperature dependence was not observed with influenza virus-induced cell-cell fusion, which was quantitatively similar at both 20 and 37 degrees C, indicating that cell-cell fusion in general is not temperature dependent in this range. gp120-CD4-specific cell-cell binding was found over the entire 0 to 37 degrees C range but increased markedly above 25 degrees C. The enhanced binding and fusion were reduced by cytochalasins B and D. Binding of soluble gp120 to CD4-expressing cells was equivalent at 37 and 16 degrees C. Together, these data indicate that during gp120-gp41-induced syncytium formation, initial cell-cell binding is followed by a cytoskeleton-dependent increase in the number of gp120-CD4 complexes, leading to an increase in the avidity of cell-cell binding. The increased number of gp120-CD4 complexes is required for fusion, which suggests that the formation of a fusion complex consisting of multiple CD4 and gp120-gp41 molecules is a step in the fusion mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号