首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heat-stable polypeptide has been detected in Saccharomyces carlsbergensis which inhibits specifically proteinase B from yeast. This proteinase B inhibitor IB3 differs substantially in chemical, physical and antigenic properties from the earlier described proteinase B inhibitors IB1 and IB2 from yeast. The inhibitor IB3 has been purified from S. carlsbergensis and appears to be homogeneous by disc gel electrophoresis and sodium dodecyl sulfate gel electrophoresis. The molecular weight has been estimated at 11 500, with no evidence for the existence of subunits. The amino acid analysis shows the absence of tryptophan. No compounds other than amino acids could be detected. The isoelectric point is 4.6. The inhibitor is not affected by incubation with proteinase B but is inactivated by proteinase A and carboxypeptidase Y from yeast and by trypsin from bovine pancreas. The proteinase B inhibitor association constant was calculated to be 3.3 x 10(9) M-1 and the enzyme inhibitor complex is stable at 25 degrees C in the pH range 5--10. The inhibitor does not exhibit immunological cross-reactivity with IB1 and IB2. After centrifugal fractionation at 40 000 x g of a metabolic lysate from spheroplasts the inhibitor was found to be localized in the supernatant, i.e. the extravacuolar soluble fraction.  相似文献   

2.
The complete amino acid sequence of yeast proteinase B inhibitor 2 (IB2) was determined to be H3N+-Thr-Lys-Asn-Phe-Ile-Val-Thr-Leu-Lys-Lys-Asn-Thr-Pro-Asp-Val-Glu-Ala-Lys-Lys-Phe-Leu-Asp-Ser-Val-His-His-Ala-Gly-Gly-Ser-Ile-Leu-His-Glu-Phe-Asp-Ile-Ile-Lys-Gly-Tyr-Thr-Ile-Lys-Val-Pro-Asp-Val-Leu-His-Leu-Asn-Lys-Leu-Lys-Glu-Lys-His-Asn-Asp-Val-Ile-Glu-Asn-Val-Glu-Asp-Lys-Glu-Val-His-Thr-Asn-COO-. Elucidation of the primary structure was enabled by automated Edman degradation and COOH-terminal hydrolysis with carboxypeptidases A (bovine pancreas and Y (yeast). IB2 is the first proteinase inhibitor to be sequenced that possesses a structure devoid of disulfide bridges.  相似文献   

3.
In Saccharomyces cerevisiae harvested from early exponential growth on glucose-containing media, the specifc activities of proteinases A and B, carboxypeptidase Y, and the inhibitors IA, IB, IC of these three proteinases, respectively, are found to be 10-30% of the specific activities observed in media without glucose, containing acetate as a carbon source; the activities of two aminopeptidases in glucose-grown cells were 30-50% of those in acetate-grown cells. In contrast to fructose-biphosphatase, phosoenolpyruvate carboxykinase, and cytoplasmic malate dehydrogenase, which are inactivated after the addition of glucose to derepressed cells, the proteinases and inhibitors are not inactivated after glucose addition, but appear to be repressed. Growth of the yeast on poor nitrogen sources or starvation for nitrogen results in 2-3 fold increases in the levels of most proteinases and peptidases, but this effect is not observed with glucose as the carbon source.  相似文献   

4.
Data on the proteinase inhibitors IA, IB and IC from yeast and their possible intracellular interaction with the proteinases A and B and carboxypeptidase Y are presented. A role of proteolysis in "catabolite inactivation" is discussed.  相似文献   

5.
Schüle T  Rose M  Entian KD  Thumm M  Wolf DH 《The EMBO journal》2000,19(10):2161-2167
The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is synthesized when cells of the yeast Saccharomyces cerevisiae are grown on a non-fermentable carbon source. After shifting the cells to glucose-containing medium, in a process called catabolite degradation, FBPase is selectively and rapidly broken down. We have isolated gid mutants, which are defective in this glucose-induced degradation process. When complementing the defect in catabolite degradation of FBPase in gid3-1 mutant cells with a yeast genomic library, we identified the GID3 gene and found it to be identical to UBC8 encoding the ubiquitin-conjugating enzyme Ubc8p. The in vivo function of Ubc8p (Gid3p) has remained a mystery so far. Here we demonstrate the involvement of Ubc8p in the glucose-induced ubiquitylation of FBPase as a prerequisite for catabolite degradation of the enzyme via the proteasome. Like FBPase, Ubc8p is found in the cytoplasmic fraction of the cell. We demonstrate cytoplasmic degradation of FBPase.  相似文献   

6.
The mechanism of the regulatory degradation of ornithine decarboxylase (ODC) by polyamines was studied in fission yeast, Schizosaccharomyces pombe. To regulate cellular spermidine experimentally, we cloned and disrupted S-adenosylmethionine decarboxylase gene (spe2) in S. pombe. The null mutant of spe2 was devoid of spermidine and spermine, accumulated putrescine, and contained a high level of ODC. Addition of spermidine to the culture medium resulted in rapid decrease in the ODC activity caused by the acceleration of ODC degradation, which was dependent on de novo protein synthesis. A fraction of ODC forming an inactive complex concomitantly increased. The accelerated ODC degradation was prevented either by knockout of antizyme gene or by selective inhibitors of proteasome. Thus, unlike budding yeast, mammalian type antizyme-mediated ODC degradation by proteasome is operating in S. pombe.  相似文献   

7.
In the yeast Saccharomyces cerevisiae, pre-mRNA 3'-end processing requires six factors: cleavage factor IA (CF IA), cleavage factor IB (CF IB), cleavage factor II (CF II), polyadenylation factor I (PF I), poly(A) polymerase (Pap1p) and poly(A)-binding protein I (Pab1p). We report the characterization of Pfs2p, a WD-repeat protein previously identified in a multiprotein complex carrying PF I-Pap1p activity. The 3'-end-processing defects of pfs2 mutant strains and the results of immunodepletion and immunoinactivation experiments indicate an essential function for Pfs2p in cleavage and polyadenylation. With a one-step affinity purification method that exploits protein A-tagged Pfs2p, we showed that this protein is part of a CF II-PF I complex. Pull-down experiments with GST fusion proteins revealed direct interactions of Pfs2p with subunits of CF II-PF I and CF IA. These results show that Pfs2p plays an essential role in 3'-end formation by bridging different processing factors and thereby promoting the assembly of the processing complex.  相似文献   

8.
The yeast Saccharomyces cerevisiae has four genes, MCK1, MDS1 (RIM11), MRK1, and YOL128c, that encode glycogen synthase kinase 3 (GSK-3) homologs. The gsk-3 null mutant, in which these four genes are disrupted, shows temperature sensitivity, which is suppressed by the expression of mammalian GSK-3beta and by an osmotic stabilizer. Suppression of temperature sensitivity by an osmotic stabilizer is also observed in the bul1 bul2 double null mutant, and the temperature sensitivity of the bul1 bul2 double null mutant is suppressed by multiple copies of MCK1. We have screened rog mutants (revertants of gsk-3) which suppress the temperature sensitivity of the mck1 mds1 double null mutant and found that two of them, rog1 and rog2, also suppress the temperature sensitivity of the bul1 bul2 double null mutant. Bul1 and Bul2 have been reported to bind to Rsp5, a hect (for homologous to E6-associated-protein carboxyl terminus)-type ubiquitin ligase, but involvement of Bul1 and Bul2 in protein degradation has not been demonstrated. We find that Rog1, but not Rog2, is stabilized in the gsk-3 null and the bul1 bul2 double null mutants. Rog1 binds directly to Rsp5, and their interaction is dependent on GSK-3. Furthermore, Rog1 is stabilized in the npi1 mutant, in which RSP5 expression levels are reduced. These results suggest that yeast GSK-3 regulates the stability of Rog1 in cooperation with Bul1, Bul2, and Rsp5.  相似文献   

9.
Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2.2 and 1.8 A, respectively, for complexes of proteinase A with full-length IA3 and with a truncated form consisting only of residues 2-34, reveal an unprecedented mode of inhibitor-enzyme interactions. Neither form of the free inhibitor has detectable intrinsic secondary structure in solution. However, upon contact with the enzyme, residues 2-32 become ordered and adopt a near-perfect alpha-helical conformation. Thus, the proteinase acts as a folding template, stabilizing the helical conformation in the inhibitor, which results in the potent and specific blockage of the proteolytic activity.  相似文献   

10.
Studies on a proteinase B mutant of yeast.   总被引:1,自引:0,他引:1  
Yeast mutant lacking proteinase B activity have been isolated [Wolf, D. H. and Ehmann, C. (1978) FEBS Lett. 92, 121--124]. One of these mutants (HP232) is characterized in detail. Absence of the vacuolar localized enzyme is confirmed by checking for proteinase B activity in isolated mutant vacuoles. Defective proteinase B activity segregates 2:2 in meiotic tetrads. The mutation is shown to be recessive. Mutant proteinase B activity is not only absent against the synthetic substrate. Azocoll, but also against the physiological substrate pre-chitin synthetase, cytoplasmic malate dehydrogenase and fructose-1,6-bisphosphatase. The mutant shows normal vegetative growth, a phenomenon not consistent with the idea that proteinase B might be the activating principle of chitin synthetase zymogen in vivo. Fluorescence microscopy shows normal chitin insertion. Enzymes underlying carbon-catabolite inactivation in wild-type cells (a mechanism proposed to be possibly triggered by proteinase B) such as cytoplasmic malate dehydrogenase, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase and isocitrate lyase, are inactivated also in the mutant. NADP-dependent glutamate dehydrogenase, which is found to be inactivated in glucose-starved wild-type cells, proceeds normally in the mutant. Mutant cells show more than 40% reduced protein degradation under starvation conditions. Sporulating diploids, homozygous for proteinase B absence, also exhibit an approximately 40% reduced protein degradation as compared to homozygous wild-type diploids or diploids heterozygous for the mutant gene. The time of the appearance of the first ascospores of diploid cells, homozygous for proteinase B deficiency, is delayed about 50% and sporulation frequency is reduced to about the same extent as compared to homozygous wild-type diploids or diploids heterozygous for the mutant gene.  相似文献   

11.
The gene for proteinase yscB inhibitor I2B (PBI2) from Saccharomyces cerevisiae was isolated by oligonucleotide screening of a genomic DNA library, and was sequenced. The gene codes for a single protein of 75 amino acids. In contrast to the published amino acid sequence [Maier, K., Müller, H., Tesch, R., Trolp, T., Witt, I. & Holzer, H. (1979) J. Biol. Chem. 254, 12,555-12,561] the DNA sequence revealed a valine instead of a leucine at position 33 (32 of the mature protein). Therefore the primary sequences of the isoinhibitors I2B of S. cerevisiae and I1B of Saccharomyces carlsbergensis differ only at position 34 (glutamic acid/lysine). The open reading frame of PBI2 was replaced in vitro by the URA3 gene and a I2B null mutant of S. cerevisiae was constructed by gene replacement. The mutation resulted in an elevation of the protein degradation rate by 50% when grown under nutritional stress compared to the isogenic wild type. Growth and viability of the cells was not significantly affected by the absence of I2B.  相似文献   

12.
Terminally misfolded or unassembled proteins are degraded by the cytoplasmic ubiquitin-proteasome pathway in a process known as ERAD (endoplasmic reticulum-associated protein degradation). Overexpression of ER alpha1,2-mannosidase I and EDEMs target misfolded glycoproteins for ERAD, most likely due to trimming of N-glycans. Here we demonstrate that overexpression of Golgi alpha1,2-mannosidase IA, IB, and IC also accelerates ERAD of terminally misfolded human alpha1-antitrypsin variant null (Hong Kong) (NHK), and mannose trimming from the N-glycans on NHK in 293 cells. Although transfected NHK is primarily localized in the ER, some NHK also co-localizes with Golgi markers, suggesting that mannose trimming by Golgi alpha1,2-mannosidases can also contribute to NHK degradation.  相似文献   

13.
Antiserum against a major cytochrome b peptide isolated from yeast mitochondria as described previously (Lin, L.-F.H., and Beattie, D.S., J. Biol. Chem. 1978, 253, 2412--2418) was raised in rabbits and shown to be monospecific against the pure antigen. Mitochondria were isolated from yeast cells grown in [3H]leucine, extracted with Lubrol and treated with antiserum to cytochrome b. Analysis of the immunoprecipitates by sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of a single major band of molecular weight 31 000 corresponding to cytochrome b. In order to determine the intracellular site of translation of cytochrome b, yeast cells were labeled in vivo under non-growing conditions with [3H]leucine in the absence or presence of inhibitors of cytoplasmic and mitochondrial protein synthesis. The incorporation of radioactive leucine into the apoprotein of cytochrome b isolated by immunoprecipitation followed by gel electrophoresis was insensitive to cycloheximide (an inhibitor of cytoplasmic protein synthesis) and sensitive to acriflavin, erythromycin, and chloramphenicol (inhibitors of mitochondrial protein synthesis). Furthermore, no cytochrome b apoprotein was present in a cytoplasmic petite mutant which lacked mitochondrial protein synthesis. Cytochrome b is thus a product of protein synthesis on mitochondrial ribosomes.  相似文献   

14.
FK-506 is a novel and potent antagonist of T-cell activation and an inhibitor of fungal growth. Its immunosuppressive activity can be antagonized by the structurally related antibiotic rapamycin, and both compounds interact with cytoplasmic FK-506-binding proteins (FKBPs) in T cells and yeast cells. In this paper, we show that FK-506 and two analogs inhibit vegetative growth of Saccharomyces cerevisiae in a fashion that parallels the immunosuppressive activity of these compounds. Yeast mutants resistant to FK-506 were isolated, and at least three complementation groups (fkr1, fkr2, and fkr3) were defined. These fkr mutants show no alteration in their levels of FK-506-binding activity. Likewise, strains carrying null alleles of FKB1 (the yeast gene coding for the FKBP) remain FK-506 sensitive, indicating that depletion of yeast FKBP is not sufficient to confer an FK-506 resistance phenotype, although fkb1 null mutants are resistant to rapamycin. FKB1 does not map to the three fkr loci defined here. These results suggest that yeast FKBP mediates the inhibitory effect of rapamycin but that at least one other protein is directly involved in mediating the activity of FK-506. Interestingly, the ability of FK-506 to rescue a temperature-sensitive growth defect of the fkr3 mutant suggests that the FKR3 gene may define such a protein.  相似文献   

15.
The activation of yeast proteinase B at pH 5 has been suggested to be due to the degradation of a specific inhibitor for the enzyme, IB, by proteinase A. However, we found that when pepstatin, which completely inhibits proteinase A, was included in the pH 5 activation mixture, the same time-dependent activation of proteinase B was observed. Furthermore, proteinase B preparations that were void of proteinase A activity were still activated by incubation at pH 5. We found that the activation of proteinase B at pH 5 was due primarily to the irreversible loss of inhibitory effect of IB, which can be resolved by isoelectrofocusing into four distinct bands with isoelectric points of 4.6, 6.1, 6.8 and 7.6. These four forms of IB showed varying degrees of stability at pH 5, which may explain some of the differing observations reported in the past.  相似文献   

16.
IA(3) is a highly specific and potent 68-amino acid endogenous inhibitor of yeast proteinase A (YprA), and X-ray crystallographic studies have shown that IA(3) binds to YprA as an alpha-helix [Li, M., Phylip, L. H., Lees, W. E., Winther, J. R., Dunn, B. M., Wlodawer, A., Kay, J., and Gustchina, A. (2000) Nat. Struct. Biol. 7, 113-117]. Surprisingly, only residues 2-32 of IA(3) are seen in the X-ray structure, and the remaining residues are believed to be disordered in the complex. We have used circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy to show that IA(3) is unstructured in the absence of YprA. Specifically, IA(3) produced a CD spectrum characteristic of an unstructured peptide, and the (15)N HSQC NMR spectra of IA(3) were characteristic of a polypeptide lacking intrinsic structure. We characterized the unstructured state of IA(3) by using singular-value decomposition (SVD) to analyze the CD data in the presence of TFE, by fully assigning the unbound IA(3) protein by NMR and comparing the chemical shifts to published random-coil values, and by measuring (1)H-(15)N heteronuclear NOEs, which are all consistent with an unfolded protein. The IA(3) samples used for NMR analyses were active and inhibited YprA with an inhibition constant (K(i)) of 1.7 nM, and the addition of YprA led to a large spectral transition in IA(3). Calorimetric (ITC) data also show that the overall enthalpy of the interaction between IA(3) and YprA is exothermic.  相似文献   

17.
Inter-alpha-trypsin inhibitor was purified by a modification of published procedures which involved fewer steps and resulted in higher yields. The preparation was used to study the clearance of the inhibitor and its complex with trypsin from the plasma of mice and to examine degradation of the inhibitor in vivo. Unlike other plasma proteinase inhibitor-proteinase complexes, inter-alpha-trypsin inhibitor reacted with trypsin did not clear faster than the unreacted inhibitor. Studies using 125I-trypsin provided evidence for the dissociation of complexes of proteinase and inter-alpha-trypsin inhibitor in vivo, followed by rapid removal of proteinase by other plasma proteinase inhibitors, particularly alpha 2-macroglobulin and alpha 1-proteinase inhibitor. Studies in vitro also demonstrated the transfer of trypsin from inter-alpha-trypsin inhibitor to alpha 2-macroglobulin and alpha 1-proteinase inhibitor but at a much slower rate. The clearance of unreacted 125I-inter-alpha-trypsin inhibitor was characterized by a half-life ranging from 30 min to more than 1 h. Murine and human inhibitors exhibited identical behavior. Multiphasic clearance of the inhibitor was not due to degradation, aggregation, or carbohydrate heterogeneity, as shown by competition studies with asialoorosomucoid and macroalbumin, but was probably a result of extravascular distribution or endothelial binding. 125I-inter-alpha-trypsin inhibitor cleared primarily in the liver. Analysis of liver and kidney tissue by gel filtration chromatography and sodium dodecyl sulfate gel electrophoresis showed internalization and limited degradation of 125I-inter-alpha-trypsin inhibitor in these tissues. No evidence for the production of smaller proteinase inhibitors from 125I-inter-alpha-trypsin inhibitor injected intravenously or intraperitoneally was detected, even in casein-induced peritoneal inflammation. No species of molecular weight similar to that of urinary proteinase inhibitors, 19,000-70,000, appeared in plasma, liver, kidney, or urine following injection of inter-alpha-trypsin inhibitor.  相似文献   

18.
19.
Malagnac F  Bartee L  Bender J 《The EMBO journal》2002,21(24):6842-6852
Cytosine methylation is critical for correct development and genome stability in mammals and plants. In order to elucidate the factors that control genomic DNA methylation patterning, a genetic screen for mutations that disrupt methylation-correlated silencing of the endogenous gene PAI2 was conducted in Arabidopsis: This screen yielded seven loss-of-function alleles in a SET domain protein with histone H3 Lys9 methyltransferase activity, SUVH4. The mutations conferred reduced cytosine methylation on PAI2, especially in non-CG sequence contexts, but did not affect methylation on another PAI locus carrying two genes arranged as an inverted repeat. Moreover, an unmethylated PAI2 gene could be methylated de novo in the suvh4 mutant background. These results suggest that SUVH4 is involved in maintenance but not establishment of methylation at particular genomic regions. In contrast, a heterochromatin protein 1 homolog, LHP1, had no effect on PAI methylation.  相似文献   

20.
Respiratory-deficient mutants of Saccharomyces cerevisiae assigned to pet complementation group G72 are impaired in mitochondrial protein synthesis. The loss of this activity has been correlated with the inability of the mutants to acylate the two methionyl-tRNAs of yeast mitochondria. A nuclear gene (MSM1) capable of complementing the respiratory deficiency has been cloned by transformation of the G72 mutant C122/U3 with a yeast genomic library. In situ disruption of the MSM1 gene in a wild-type haploid strain of yeast induces a respiratory-deficient phenotype but does not affect the ability of the mutant to grow on fermentable substrates indicating that the product of MSM1 functions only in mitochondrial protein synthesis. Mitochondrial extracts prepared from the mutant with the disrupted copy of MSM1 were found to be defective in acylation of the two mitochondrial methionyl-tRNAs thereby confirming the identity of MSM1 as the structural gene for the mitochondrial methionyl-tRNA synthetase. The sequence of the protein encoded by MSM1 is similar to the Escherichia coli and yeast cytoplasmic methionyl-tRNA synthetases. Based on the primary-sequence similarities of the three proteins, the mitochondrial enzyme appears to be more related to the bacterial than to the yeast cytoplasmic methionyl-tRNA synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号