首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
Repeated exposure to cocaine progressively increases drug-induced locomotor activity, which is termed behavioral sensitization. Previous studies have demonstrated that sensitization to cocaine is associated with a decrease in dopamine D? receptor function in the medial prefrontal cortex. The present report tested the hypothesis that reduced medial prefrontal cortex D? receptor function as a result of repeated cocaine exposure results in augmented excitatory transmission to the nucleus accumbens and ventral tegmental area, possibly as a partial result of enhanced inhibition of local dopamine release. Dual probe microdialysis experiments were conducted in male Sprague-Dawley rats 1, 7 or 30 days following the last of four daily injections of saline (1.0 mL/kg) or cocaine (15 mg/kg). Infusion of quinpirole (0.01, 1.0 and 100 μM), a D?-like receptor agonist, into the medial prefrontal cortex produced a dose-dependent decrease in cortical, nucleus accumbens and ventral tegmental area extracellular glutamate levels in control but not sensitized animals. Quinpirole also reduced basal dopamine levels in the medial prefrontal cortex in sensitized animals following 1 day of withdrawal from cocaine. Following 30 days of withdrawal, quinpirole also reduced dopamine levels in sensitized animals relative to saline controls, but not relative to baseline levels. These findings indicate that the expression of sensitization to cocaine is associated with altered modulation of mesocorticolimbic glutamatergic transmission at the level of the medial prefrontal cortex.  相似文献   

3.
The N-terminal substance P fragment SP1-7 is known to modulate hyperalgesia and opioid withdrawal in animal models. This study examined the effects of intraperitoneal (i.p.) injections of SP1-7 on chronic morphine tolerance and on the levels of dynorphin B (DYN B) and nociceptin/orphanin FQ (N/OFQ) in various brain areas of male Sprague-Dawley rats. Morphine tolerance was induced by subcutaneous injections of the opioid (10 mg/kg) twice daily for 7 days. SP1-7 injected i.p. (185 nmol/kg) 30 min prior to morphine reduced the development of morphine tolerance. Immunoreactive (ir) DYN B and N/OFQ peptide levels were measured in several areas of the central nervous system. Levels of ir DYN B in rats treated with SP1-7 and morphine were decreased in the nucleus accumbens, substantia nigra and ventral tegmental area and increased in the frontal cortex. The ir N/OFQ levels were increased in the periaqueductal gray and decreased in the nucleus accumbens. Since the concentration profiles of the two peptides were altered by SP1-7 in the areas that are implicated in the modulation of opioid tolerance and analgesia, it is suggested that DYN B and N/OFQ systems may be involved in the effects of SP1-7 on opioid tolerance.  相似文献   

4.
Results of numerous studies indicate that the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) modulates central dopamine systems, and that GABA(B) receptors may play a primary role in decreasing dopamine release. To determine if chronic cocaine administration alters the functional coupling of GABA(B) receptors to G-proteins in central dopamine systems, male F-344 rats received cocaine (15 mg/kg/injection) or saline three times a day at hourly intervals for fourteen consecutive days. Rats were decapitated one hour after the last injection and crude membrane preparations were made from the substantia nigra, caudate-putamen, ventral tegmental area, nucleus accumbens, and frontal cortex of individual rats. The ability of the specific GABA(B) receptor agonist baclofen to stimulate 35S-GTPgammaS binding in each of these regions was determined for individual animals. Additionally, baclofen-stimulated 35S-GTPgammaS binding in each of these regions in rats that received cocaine was compared to baclofen-stimulated 35S-GTPgammaS binding in rats that received control injections of saline. The EC50 of baclofen and maximal baclofen-stimulated 35S-GTPgammaS binding over basal levels were determined in each brain region in the saline group and in the cocaine group. Two-way ANOVA revealed a significant decrease in GABA(B) receptor-stimulated 35S-GTPgammaS binding in the ventral tegmental area of the cocaine group compared to the saline group. These data suggest that chronic exposure to cocaine decreases the functional coupling of GABA(B) receptors to G-proteins selectively in the ventral tegmental area. This finding may have implications in the augmented extracellular dopamine levels seen in the nucleus accumbens of rats that have been sensitized to cocaine.  相似文献   

5.
Twenty male Sprague-Dawley rats were injected intraperitoneally with either 20 micrograms of dexamethasone or an equivalent volume of saline. The rats were then sacrificed at either one or four hours after the injections and their brains analyzed for monoamine and metabolite content using High Performance Liquid Chromatography with Electrochemical Detection. Significant effects were seen in dopaminergic and serotonergic systems, but these effects varied depending on the area of rat brain studied. Significant increases in dopamine (DA) levels were seen in the hypothalamus and nucleus accumbens of the dexamethasone treated rats when compared with saline treated rats. There was no significant effect of dexamethasone on DA levels in frontal or striatal brain areas. In the dexamethasone treated rats a significant increase in serotonin (5-HT) was observed in the hypothalamus; a significant decrease in 5-HT was observed in the frontal cortex. Biological and clinical implications of these findings are discussed.  相似文献   

6.
The present study was aimed to investigate the effects of a chronic treatment with the dopamine uptake blocker nomifensine on the in vivo extracellular concentrations of dopamine, acetylcholine, glutamate and GABA in the prefrontal cortex, striatum and nucleus accumbens. Male Wistar rats received intraperitoneal (i.p.) daily injections of nomifensine (10 mg/kg) or saline for 22 days. Microdialysis experiments were performed on days 1, 8, 15 and 22 of treatment to evaluate the effects of the injection of nomifensine or saline. Motor activity of the animals was monitored during microdialysis experiments. Injections of nomifensine increased extracellular concentration of dopamine in striatum and nucleus accumbens, but not in prefrontal cortex. Acetylcholine concentrations in striatum but not in nucleus accumbens were increased by nomifensine on days 15 and 22 of treatment. In prefrontal cortex, nomifensine increased acetylcholine levels without differences among days. No changes were found on glutamate and GABA concentrations in the three areas studied. Injections of nomifensine also increased spontaneous motor activity and stereotyped behaviour without differences among days. These results show that systemic chronic treatment with a dopamine uptake blocker produces differential effects on extracellular concentrations of dopamine and acetylcholine, but not glutamate and GABA, in different areas of the brain.  相似文献   

7.
Abstract: Systemic administration of the anxiogenic benzodiazepine inverse agonist FG 7142 has been shown to increase selectively dopamine utilization in the medial prefrontal cortex and the shell, but not core, subregion of the nucleus accumbens. In the present study, we examined the functional interaction between benzodiazepine and N -methyl- d -aspartate receptor influences on dopamine utilization in these areas. Male Sprague-Dawley rats were pretreated with the glycine receptor antagonist (+)-HA 966 (15 mg/kg, i.p.) or saline 15 min before FG 7142 (20 mg/kg, i.p.) or vehicle administration. Subjects were killed 30 min later and assayed for tissue concentrations of dopamine and its major metabolite 3,4-dihydroxyphenylacetic acid in the core and shell subdivisions of the nucleus accumbens and the medial prefrontal cortex. (+)-HA 966 administration blocked FG 7142-induced increased dopamine utilization in both the medial prefrontal cortex and the shell subdivision of the nucleus accumbens. Results are discussed in terms of N -methyl- d -aspartate receptor influences on the response of mesoaccumbal dopamine neurons to stress.  相似文献   

8.
This study examined how perinatal phencyclidine (PCP) treatment would affect dopamine D2 receptor and dopamine transporter (DAT) binding at different stages after treatment cessation. Female rat pups received injections of PCP (10 mg/kg, s.c.) or saline on postnatal day (PN)7, 9 and 11. D2 receptor and transporter binding was examined at four time-points (PN12, 18, 32 and 96) following injections. PCP treatment altered D2 receptor binding throughout development, with a final end-point of 22-33% decreased binding at adulthood in the nucleus accumbens and caudate putamen (P < 0.01), accompanied by a small but significant increase in DAT binding in the caudate putamen. Tyrosine hydroxylase mRNA expression was also significantly increased by 25% (P < 0.05) in the ventral tegmental area of adult rats, suggesting that this model may produce a long-term increase in dopamine output. This study demonstrates that early insult to the brain from NMDA receptor hypofunction alters the dopaminergic system at different stages of development.  相似文献   

9.
Microdialysis was used to assess extracellular dopamine in striatum, nucleus accumbens, and medial frontal cortex of unanesthetized rats both under resting conditions and in response to intermittent tail-shock stress. The dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid also were measured. The resting extracellular concentration of dopamine was estimated to be approximately 10 nM in striatum, 11 nM in nucleus accumbens, and 3 nM in medial frontal cortex. In contrast, the resting extracellular levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid were in the low micromolar range. Intermittent tail-shock stress increased extracellular dopamine relative to baseline by 25% in striatum, 39% in nucleus accumbens, and 95% in medial frontal cortex. 3,4-Dihydroxyphenylacetic acid and homovanillic acid also were generally increased by stress, although there was a great deal of variability in these responses. These data provide direct in vivo evidence for the global activation of dopaminergic systems by stress and support the concept that there exist regional variations in the regulation of dopamine release.  相似文献   

10.
Repeated intermittent exposure to psychostimulants and morphine leads to progressive augmentation of its locomotor activating effects in rodents. Accumulating evidence suggests the critical involvement of the mesocorticolimbic dopaminergic neurons, which project from the ventral tegmental area to the nucleus accumbens and the medial prefrontal cortex, in the behavioral sensitization. Here, we examined the acute and chronic effects of psychostimulants and morphine on dopamine release in a reconstructed mesocorticolimbic system comprised of a rat triple organotypic slice co-culture of the ventral tegmental area, nucleus accumbens and medial prefrontal cortex regions. Tyrosine hydroxylase-positive cell bodies were localized in the ventral tegmental area, and their neurites projected to the nucleus accumbens and medial prefrontal cortex regions. Acute treatment with methamphetamine (0.1-1000 μM), cocaine (0.1-300 μM) or morphine (0.1-100 μM) for 30 min increased extracellular dopamine levels in a concentration-dependent manner, while 3,4-methylenedioxyamphetamine (0.1-1000 μM) had little effect. Following repeated exposure to methamphetamine (10 μM) for 30 min every day for 6 days, the dopamine release gradually increased during the 30-min treatment. The augmentation of dopamine release was maintained even after the withdrawal of methamphetamine for 7 days. Similar augmentation was observed by repeated exposure to cocaine (1-300 μM) or morphine (10 and 100 μM). Furthermore, methamphetamine-induced augmentation of dopamine release was prevented by an NMDA receptor antagonist, MK-801 (10 μM), and was not observed in double slice co-cultures that excluded the medial prefrontal cortex slice. These results suggest that repeated psychostimulant- or morphine-induced augmentation of dopamine release, i.e. dopaminergic sensitization, was reproduced in a rat triple organotypic slice co-cultures. In addition, the slice co-culture system revealed that the NMDA receptors and the medial prefrontal cortex play an essential role in the dopaminergic sensitization. This in vitro sensitization model provides a unique approach for studying mechanisms underlying behavioral sensitization to drugs of abuse.  相似文献   

11.
Addiction to psychostimulants elicits behavioral and biochemical changes that are assumed to be mediated by alterations of gene expression in the brain. The changes in gene expression after 3 weeks of withdrawal from chronic cocaine treatment were evaluated in the nucleus accumbens core and shell, dorsal prefrontal cortex and caudate using a complementary DNA (cDNA) array. The level of mRNA encoded by several genes was identified as being up- or down-regulated in repeated cocaine versus saline subjects. The results from the cDNA array were subsequently confirmed at the protein level with immunoblotting. Of particular interest, parallel up-regulation in protein and mRNA was found for the adenosine A1 receptor in the accumbens core, neuroglycan C in the accumbens shell, and the GluR5 glutamate receptor subtype in dorsal prefrontal cortex. However, there was an increase in TrkB protein in the nucleus accumbens core of cocaine-treated rats without a corresponding alteration in mRNA. These changes of gene expression in corticolimbic circuitry may contribute to the psychostimulant-induced behavioral changes associated with addiction.  相似文献   

12.
Effects of methamphetamine (15 mg/kg, s.c.) on fluorescence histochemistry of dopamine nerve fibers in neostriatum, nucleus accumbens, tuberculum olfactorium and medial frontal cortex were investigated in rats treated every 6 hours for 24 hours and killed 6 and 11 days after treatment. In control rats occasional nerve fibers (probably nerve terminals) in the neostriatum showed some distortion and a strong formaldehyde-glyoxylic acid induced catecholamine fluorescence ; 6 and 11 days after methamphetamine, the number of swollen nerve fibers showing strong fluorescence in this region was significantly increased. In contrast, in nucleus accumbens, tuberculum olfactorium and medial frontal cortex, such fiber swellings were virtually absent in both controls and methamphetamine-treated rats. These findings indicated that multiple doses of methamphetamine might be toxic to neostriatal dopamine nerve fibers.  相似文献   

13.
Abstract: The mechanism by which two D3 receptor-preferring agonists, 7-hydroxydipropylaminotetralin (7-OH-DPAT) and quinelorane, modulate cocaine reinforcement was examined by monitoring nucleus accumbens dopamine levels with in vivo microdialysis while rats intravenously self-administered the following four different drug solutions consecutively: (1) cocaine; (2) a combination of cocaine plus a low dose of either agonist; (3) either agonist alone; and finally, (4) a physiological saline solution. Both 7-OH-DPAT (4 µg/infusion) and quinelorane (0.25 µg/infusion) decreased cocaine (0.25 mg/infusion) intake in a manner indicating an enhancement of cocaine reinforcement and simultaneously decreased the cocaine-induced elevations in nucleus accumbens dopamine levels by >50%. Subsequent self-administration of either 7-OH-DPAT (4 µg/infusion) or quinelorane (0.25 µg/infusion) alone resulted in significant, but stable, increases in drug intake, with a concurrent decrease in nucleus accumbens dopamine levels to ∼50% below nondrug baseline levels. These findings indicate that postsynaptic D3 receptor stimulation in the nucleus accumbens enhances the reinforcing properties of cocaine. In a second experiment, local application of 7-OH-DPAT via reverse dialysis (30 and 100 n M perfusate concentrations) dose-dependently decreased nucleus accumbens dopamine efflux to 76 ± 3.9 and 61 ± 6.3% of baseline, respectively, whereas there was no effect of this agonist on dopamine efflux in the ipsilateral striatum of these same animals. Coperfusion with the D3 receptor-preferring antagonist nafadotride dose-dependently blocked the effect of 7-OH-DPAT on nucleus accumbens dopamine efflux. These results suggest that, at low concentrations, 7-OH-DPAT selectively activates D3 receptors in vivo.  相似文献   

14.
Abstract: The specific opioid receptor antagonist naloxone attenuates the behavioral and neurochemical effects of amphetamine. Furthermore, the amphetamine-induced increase in locomotor activity is attenuated by intracisternally administered naltrindole, a selective δ-opioid receptor antagonist, but not by the irreversible μ-opioid receptor antagonist β-funaltrexamine. Therefore, this research was designed to determine if naltrindole would attenuate the neurochemical response to amphetamine as it did the behavioral response. In vivo microdialysis was used to monitor the change in extracellular concentrations of dopamine in awake rats. Naltrindole (3.0, 10, or 30 µg) or vehicle was given 15 min before and β-funaltrexamine (10 µg) or vehicle 24 h before the start of cumulative dosing, intracisternally in a 10-µl volume, while the rats were lightly anesthetized with methoxyflurane. Cumulative doses of subcutaneous d-amphetamine (0.0, 0.1, 0.4, 1.6, and 6.4 mg/kg) followed pretreatment injections at 30-min intervals. Dialysate samples were collected every 10 min from either the striatum or nucleus accumbens and analyzed for dopamine content by HPLC. Amphetamine dose-dependently increased dopamine content in both the striatum and nucleus accumbens, as reported previously. Naltrindole (3.0, 10, and 30 µg) significantly reduced the dopamine response to amphetamine in the striatum. In contrast, 30 µg of naltrindole did not modify the dopamine response to amphetamine in the nucleus accumbens. On the other hand, β-funaltrexamine (10 µg) had no effect in the striatum but significantly attenuated the amphetamine-induced increase in extracellular dopamine content in the nucleus accumbens. These data suggest that δ-opioid receptors play a relatively larger role than μ-opioid receptors in mediating the amphetamine-induced increase in extracellular dopamine content in the striatum, whereas μ-opioid receptors play a larger role in mediating these effects in the nucleus accumbens.  相似文献   

15.
1. The goal of this work was to determine the effects of typical and atypical neuroleptics on the level of preprosomatostatin messenger RNA (mRNA) in regions of the rat brain innervated by dopaminergic neurons. 2. Quantitative in situ hybridization histochemistry was used to measure the levels of mRNA encoding preprosomatostatin in neurons of the striatum, the nucleus accumbens, and the medial and lateral agranular areas of the frontal cortex in adult rats treated with either haloperidol or clozapine. 3. In untreated animals, the density of neurons containing preprosomatostatin mRNA was higher in the nucleus accumbens than in the striatum and frontal cortex. The intensity of labeling per neuron, however, was higher in the striatum than in the two other areas examined, suggesting that the expression of preprosomatostatin mRNA is differentially regulated in these brain regions. Chronic administration of haloperidol (1 mg/kg for 28 days) induced a significant decrease in the labeling for preprosomatostatin mRNA in neurons of the nucleus accumbens, frontal cortex, and medial but not lateral striatum. Treatment with clozapine (20 mg/kg for 28 days) increased the levels of preprosomatostatin mRNA in the nucleus accumbens but not in the striatum or the frontal cortex. 4. These results support a role for dopamine in the regulation of central somatostatinergic neurons. The differences in the effects of haloperidol, a neuroleptic which induces extrapyramidal side effects, and clozapine, which does not, suggest that somatostatinergic neurons may play an important role in the regulation of motor behavior.  相似文献   

16.
Regional differences in the onset and persistence of increased dopamine D2 receptor density in rat brain were studied following daily injections of haloperidol for 3, 7, 14, or 28 days. Striatal [3H]-spiroperidol Bmax values were significantly increased following 3-28 days of haloperidol treatment, as compared to saline controls. Olfactory tubercle Bmax values were significantly increased only after 14 or 28 days of haloperidol treatment. Nucleus accumbens Bmax values were significantly increased only in the 14-day drug treatment group, suggesting that dopamine D2 receptor up-regulation in nucleus accumbens may reverse during ongoing neuroleptic treatment. These findings suggest that important differences in adaptive responses to chronic dopamine blockade may exist between dopaminergic synapses located in various rat brain regions.  相似文献   

17.
Abstract: In radioligand binding studies, BIMG 80, a new putative antipsychotic, displayed good affinity at certain serotonin (5-HT1A, 5-HT2A, 5-HT6), dopamine (D1, D2L, D4), and noradrenergic (α1) receptors. The effect of acute subcutaneous BIMG 80, clozapine, haloperidol, risperidone, amperozide, olanzapine, and Seroquel was then investigated on dopamine release in medial prefrontal cortex, nucleus accumbens, and striatum in freely moving rats using the microdialysis technique. Four different neurochemical profiles resulted from the studies: (a) Systemic administration of BIMG 80, clozapine, and amperozide produced greater percent increases in dopamine efflux in medial prefrontal cortex than in the striatum or the nucleus accumbens. (b) Haloperidol induced a similar increase in dopamine concentrations in the striatum and nucleus accumbens with no effect in the medial prefrontal cortex. (c) Risperidone and olanzapine stimulated dopamine release to a similar extent in all brain regions investigated. (d) Seroquel failed to change significantly dopamine output both in the medial prefrontal cortex and in the striatum. Because an increase in dopamine release in the medial prefrontal cortex may be predictive of effectiveness in treating negative symptoms and in the striatum may be predictive of induction of extrapyramidal side effects, BIMG 80 appears to be a potential antipsychotic compound active on negative symptoms of schizophrenia with a low incidence of extrapyramidal side effects.  相似文献   

18.
Daily injections of cocaine or morphine into rodents produces behavioral sensitization such that the last daily injection results in a greater motor stimulant effect than the first injection. To evaluate a role for brain dopamine in behavioral sensitization to cocaine and morphine, tissue slices from the ventromedial mesencephalon (containing dopamine cell bodies), the nucleus accumbens, and striatum (dopamine terminal fields) were obtained from rats pretreated with daily cocaine, morphine, or saline 2-3 weeks earlier. When the tissue slices were depolarized by increasing potassium concentration in the superfusate, the release of endogenous dopamine from the ventromedial mesencephalon of cocaine- and morphine-pretreated rats was significantly decreased. In contrast, the release of dopamine from the nucleus accumbens and striatum was either unaltered or slightly enhanced in rats pretreated with cocaine and morphine. When dopamine was released by amphetamine, a significant decrease in dopamine release from the ventromedial mesencephalon of cocaine-pretreated rats was measured. No other significant changes were measured after amphetamine-induced release. It is postulated that the decrease in dopamine release from the ventromedial mesencephalon of cocaine- and morphine-sensitized rats results in less somatodendritic autoreceptor stimulation, and thereby produces an increase in dopamine neuronal activity.  相似文献   

19.
Endomorphin-1 (EM-1) and endomorphin-2 (EM-2) represent two opioid active tetrapeptides with high affinity and selectivity for the mu-opioid (MOP) receptor. Both EM-1 and EM-2 exhibit strong inhibition of pain signals in the central nervous system (CNS). In contrast to these compounds, the undecapeptide substance P (SP) facilitates pain influx in the CNS. SP has been implicated in a number of functions in the central nervous system, including pain processing and reward. Its aminoterminal fragment SP1-7 has been shown to modulate several actions of SP in the CNS, the nociceptive effect included. Although the actions of SP1-7 have been known for long no specific receptor for the SP fragment has yet been cloned. In this study, we demonstrate the presence of specific binding sites for the heptapeptide in the rat spinal cord. The binding affinity for unlabeled SP1-7 to the specific sites for the labeled heptapeptide highly exceeded those of SP and other C- or N-terminal fragments thereof. The NK-1, NK-2 and NK-3 receptor ligands [Sar9, Met(O2)11]SP, R396 and senktide, respectively, showed no or negligible binding. Moreover, both EM-1 and EM-2 were found to interact with SP1-7 binding. However, a significant difference in binding affinity between the two opioid active tetrapeptides was observed. As recorded from replacement curves the affinity of EM-2 was 10 times weaker than that for SP1-7 but about 100 times higher than that of EM-1. Among other Tyr-Pro-containing peptides Tyr-MIF-1 but not Tyr-W-MIF-1 exhibited affinity of similar potency as EM-2. These results strengthen the previously observed differences between EM-1 and EM-2 in various functional studies. Moreover, using a cell line (C6) expressing the MOP receptor it was shown that the labeled SP1-7 did not interact with binding to this receptor and no functional response was seen for the SP heptapeptide on the MOP receptor by means of stimulation in the GTPgammaS assay. This suggests that the identified SP1-7 binding sites, with high affinity also for EM-2, are not identical to the MOP receptor and apparently not to any of the known tachykinin receptors.  相似文献   

20.
Adenosine A1 receptor (A1) protein and mRNA is increased in the nucleus accumbens following repeated cocaine treatment. In spite of this protein up-regulation, A1 agonist-stimulated [35S]GTPgammaS binding was attenuated in accumbens homogenates of rats withdrawn for 3 weeks from 1 week of daily cocaine injections. Cellular subfractionation revealed that the discrepancy between total A1 protein and G protein coupling resulted from a smaller proportion of receptors in the plasma membrane. The decrease in functional receptor in the plasma membrane was further indicated by diminished formation of heteromeric receptor complex consisting of A1 and dopamine D1A receptors. To explore the functional significance of the altered distribution of A1 receptors, at 3 weeks after discontinuing repeated cocaine or saline, animals were injected with cocaine and 45 min later the subcellular distribution of A1 receptors quantified. Whereas a cocaine challenge in repeated saline-treated animals induced a marked increase in membrane localization of the A1 receptor, the relative distribution of receptors in repeated cocaine rats was not affected by acute cocaine. These data suggest that the sorting and recycling of A1 receptors is dysregulated in the nucleus accumbens as the consequence of repeated cocaine administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号