首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one-pot system for efficient enzymatic synthesis of curcumin glucosides is described. The method couples the activities of two recombinant enzymes, UDP-glucose: curcumin glucosyltransferase from Catharanthus roseus (CaUGT2) and sucrose synthase from Arabidopsis thaliana (AtSUS1). UDP, a product inhibitor of UDP-glucosyltransferase, was removed from the system and used for regeneration of UDP-glucose by the second enzyme, AtSUS1. The productivity was increased several-fold and UDP-glucose initially added to the reaction mixture could be reduced to one-tenth of the normal level. The concept of enhancing glucosylation efficiency by coupling a UDP-glucose regeneration system with glucosyltransferases should be applicable to enzymatic production of a wide range of glucosides.  相似文献   

2.
Catharanthus roseus cell suspension cultures converted exogenously supplied curcumin to a series of glucosides, none of which has been found in nature so far. The efficiency of glucosylation was dependent on culture stage of the cells and medium sucrose concentration. Methyl jasmonate and salicylic acid enhanced the glucoside formation only when they were added to the cultures prior to the addition of curcumin. The glucoside yield was 2.5 micromol/g fresh weight of the cells at an optimal culture condition. The water solubility of curcumin-4',4"-O-beta-D-digentiobioside was 0.65 mmol/ml, which was 20 million-fold higher than that of curcumin.  相似文献   

3.
Catharanthus roseus cell suspension cultures converted exogenously added curcumin to a series of curcumin glucosides that possessed drastically enhanced water solubility. A cDNA clone encoding a glucosyltransferase responsible for glucosylation of curcumin to form curcumin 4'-O-glucoside was previously isolated, and in the present study a novel sugar-sugar glycosyltransferase, UDP-glucose:curcumin glucoside glucosyltransferase (UCGGT), was purified approximately 900-fold to apparent homogeneity from cultured cells of C. roseus. The purified enzyme (0.2% activity yield) catalyzed 1,6-glucosylation of curcumin 4'-O-glucoside to yield curcumin 4'-O-gentiobioside. The molecular weight and isoelectric point were estimated to be about 50 kDa and 5.2, respectively. The enzyme showed a pH optimum between 7.5 and 7.8. Both flavonoid 3-O- and 7-O-glucosides were also preferred acceptor substrates of the enzyme, whereas little activity was shown toward simple phenolic glucosides such as arbutin and glucovanillin, cyanogenic glucoside (prunasin) or flavonoid galactoside. These results suggest that UCGGT may also function in the biosynthesis of flavonoid glycosides in planta.  相似文献   

4.
Masada S  Terasaka K  Mizukami H 《FEBS letters》2007,581(14):2605-2610
Curcumin glucosyltransferase (CaUGT2) isolated from cell cultures of Catharanthus roseus exhibits unique substrate specificity. To identify amino acids involved in substrate recognition and catalytic activity of CaUGT2, a combination of domain swapping and site-directed mutagenesis was carried out. Exchange of the PSPG-box of CaUGT2 with that of NtGT1b (a phenolic glucosyltransferase from tobacco) led to complete loss of enzyme activity in the resulting recombinant protein. However, replacement of Arg378 of the NtGT1b PSPG-box with cysteine, the corresponding amino acid in CaUGT2, restored the catalytic activity of the chimeric enzyme. Further site-directed mutagenesis revealed that the size of the amino acid side-chain in that particular site is critical to the catalytic activity of CaUGT2.  相似文献   

5.
Scopoletin is one of the phytoalexins in tobacco. Cells of the T-13 cell line (Nicotiana tabacum L. Bright Yellow) accumulate a large amount of scopoletin, also known as 7-hydroxy-6-methoxycoumarin, as a glucoconjugate, scopolin, in vacuoles. We report here the molecular cloning of glucosyltransferases that can catalyze the glucosylation of many kinds of secondary metabolites including scopoletin. Two cDNAs encoding glucosyltransferase (NtGT1a and NtGT1b) were isolated from a cDNA library derived from the tobacco T-13 cell line by screening with heterologous cDNAs as a probe. The deduced amino-acid sequences of NtGT1a and NtGT1b exhibited 92% identity with each other, approximately 20-50% identities with other reported glucosyltransferases. Heterologous expression of these genes in Escherichia coli showed that the recombinant enzymes had glucosylation activity against both flavonoids and coumarins. They also strongly reacted with 2-naphthol as a substrate. These recombinant enzymes can utilize UDP-glucose as the sugar donor, but they can also utilize UDP-xylose as a weak donor. RNA blot analysis showed that these genes are induced by salicylic acid and auxin, but the time course of the expression was different. This result is similar to the changes in scopoletin glucosylation activity in these tobacco cells after addition of these plant growth regulators. These results might suggest that one of the roles of the products of these genes is scopoletin glucosylation, in response to salicylic acid and/or auxin, together with the other glucosyltransferases in tobacco cells.  相似文献   

6.
Isolate SS7 of Sclerotinia sclerotiorum was previously shown to produce and excrete into agar medium copious amounts of the melanin precursor 1,8-dihydroxynaphthalene. Much reduced quantities of this product were produced in the presence of tricyclazole, an inhibitor of pentaketide melanin biosynthesis. In this study, we demonstrate that young cultures of isolate SS7 produce 1,8-dihydroxynaphthalene monoglucoside, a new natural product not previously reported from fungi. When cultured in the presence of tricyclazole, such young cultures also accumulated two new monoglucosides of 1,3,8-trihydroxynaphthalene, which, as well as 1,8-dihydroxynaphthalene monoglucoside, were also obtained from cultures of two other isolates of S. sclerotiorum. It is proposed that rapid glucosylation of 1,3,8-trihydroxynaphthalene in young tricyclazole-inhibited S. sclerotiorum cultures accounts for the failure to observe 2-hydroxyjuglone or other metabolites usually associated with blockage of the pentaketide pathway to melanin in fungi.  相似文献   

7.
8.
Datura innoxia grown in suspension cultures can glucosylate simple phenols. Three isomers of dihydroxybenzene (hydroquinone, resorcinol and catechol) were readily converted into their corresponding mono-β-glucosides. Both salicyl alcohol and salicylaldehyde fed to the cells were transformed specifically to isosalicin instead of salicin. Furthermore, the analysis of the cells treated with salicylic acid suggested the formation of its glucose ester in addition to the corresponding monoglucoside. Feeding experiments showed that the cultured cells possess a remarkably high capacity for glucosylation of hydroquinone, which was totally converted into arbutin within 10 hr after administration. The in vitro glucosylation of hydroquinone carried out by the cell-free extract demonstrated that this enzymic reaction requires the presence of UDPG as a high energy donor of glucose.  相似文献   

9.
To isolate cDNAs expressed at a specific phase of the cell cycle in a higher plant, we performed differential screening of a cDNA library prepared from the S-phase cells of synchronized cultures of Catharanthus roseus. Sequence analysis shows that two of the identified cDNAs, cyc15 and cyc17, encode extensins that represent a family of cell wall hydroxyproline-rich glycoproteins. Protein sequences deduced from the two cDNAs contain the characteristic pentapeptide repeat sequence, Ser-Pro-Pro-Pro-Pro, which is commonly observed in extensins. The protein sequences also share several other extensin characteristics such as the presence of a N-terminal signal peptide and a high content of Tyr and Lys residues. When C. roseus cell suspension cultures were synchronized by phosphate starvation, the mRNAs of both cyc15 and cyc17 were transiently expressed during the S and G2 phases of the cell cycle. However, significant amounts of the mRNAs also accumulated in phosphate-starved cells arrested in the G1 phase. In asynchronous cultures, both genes were expressed during the stationary phase, when cell proliferation ceased. The observed patterns of expression suggest that the extensin genes, cyc15 and cyc17, are under two types of regulation: one that depends on the stage of the cell cycle and another that is induced during the growth arrest. Thus, the products of these genes may function both during the progression through the cell cycle and in the strengthening of the cell wall after cell division.  相似文献   

10.
The optimum growth stage for enhancing ajmalicine production in Catharanthus roseus cultures with methyl jasmonate (MJ) was after 6 d growth. MJ added at 10 or 100 microm on day 6 gave a maximum ajmalicine production of 10.2 mg l(-1), a 300% increase over that of non-elicited cultures.  相似文献   

11.
Plant-derived glucosides have attracted much attention due to their widespread applications. This class of products is difficult to isolate or to synthesize in pure form because of the resulting low yields. Thus, simple approaches for the generation of such glucosides would be highly beneficial. We purified and characterized a novel glucosyltransferase from plant cell suspension cultures of Rauvolfia serpentina, which showed rather low substrate specificity. We obtained its cDNA and expressed the active recombinant protein in bacteria (Escherichia coli) with excellent plant-specific glucosylation efficiencies. Compared with the plant system, the bacteria delivered the new enzyme, which was in the form of a soluble or matrix-bound enzyme, approximately 1800 times more efficiently for the synthesis of a wide range of glucosides. More importantly, the engineered E. coli strain allowed for in vivo glucosylation and release of the product into the culture medium, as shown by the formation of arbutin, which is a potent inhibitor of human melanin biosynthesis with commercial value.  相似文献   

12.
Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase.  相似文献   

13.
Suspension grown cells of Datura innoxia and Scopolia carniolica were tested for their glucosylation capacity and some factors affecting the efficiency of the reaction were studied.Cells at the end of the exponential growth phase showed a high glucosylation capacity. Light conditions had little effect on the bioconversion reaction. For the substrates hydroquinone and p-hydroxybenzoic acid the bioconversions were concentration-dependent. Permeabilization with propanol diminished the bioconversion capacity. Depending on the substrate used, relatively large amounts of substrate and product could not be recovered. Tannic acid could partly prevent decomposition of the compounds. The bioconversion capacity of cultures with a low glucosylation capacity could be enhanced by addition of uridine diphosphate-glucose, indicating that the sugar donor is a critical factor. From six substrates the natural compounds hydroquinone, p-hydroxybenzoic acid and vanillin were glucosylated. No glucosides were detected from tyramin and two synthetic aminotetralines.Abbreviations 5HAT 5-hydroxyaminotetralin - NO437 2-(N-propyl-N-2-thienylamino)-5-hydroxytetraline - pHBA p-hydroxybenzoic acid - UDP-glucose uridine diphosphate-glucose  相似文献   

14.
Abstract

Curcumin (1) is a potent antioxidant and antitumor natural product. In spite of its efficacy and safety, its clinical use is hindered mainly by poor water solubility and bioavailability. Structural modification to introduce hydrophilic functions is a promising approach to resolve this problem. In the present study we first found that curcumin could be efficiently converted into glucosides by filamentous fungi including Rhizopus chinensis IFFI 03043, Absidia coerulea AS 3.3389 and Cunninghamella elegans AS 3.1207. Curcumin 4′-O-β-d-glucoside (2), together with hexahydrocurcumin (3), was isolated from a preparative-scale biotransformation with R. chinensis IFFI 03043 and characterized fully by NMR and MS. A time-course study revealed that curcumin could be efficiently converted into curcumin 4′-O-β-d-glucoside within 8 h when administered at 0.05 mmol L?1 and the productivity was 57%. Additionally, the biotransformation products of curcumin by different fungal strains were analyzed by LC/MS. At least 15 metabolites were detected, and the predominant biotransformation reaction was glucosylation. This study provides a simple, efficient and less expensive approach for the preparation of curcumin glucosides. The introduction of the glucosyl function might be able to enhance the bioavailability of curcumin.  相似文献   

15.
Sucrose phosphorylase from Leuconostoc mesenteroides catalyzed transglucosylation from sucrose to 4-hydroxy-3(2H)-furanone derivatives. When 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) and 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone or 5-ethyl-4-hydroxy-2-methyl-3(2H)-furanone (EHMF) were used as acceptors, their transfer ratios were more than 45%. In the case of glucosylation of HDMF, the major transfer product was identified as 2,5-dimethyl-3(2H)-furanone 4-O-alpha-D-glucopyranoside (DMF-G). In the case of glucosylation of EHMF, two major transfer products were obtained, and their structures were identified as 2-ethyl-5-methyl-3(2H)-furanone 4-O-alpha-D-glucopyranoside (2E5MF-G) and 5-ethyl-2-methyl-3(2H)-furanone 4-O-alpha-D-glucopyranoside (5E2MF-G) on the bases of spectrometric investigations. These glucosides were more stable than each aglycone. The glucosylated HDMF, DMF-G, was an odorless chemical, on the other hand, HDMF had a pineapple flavor. The glucosylated EHMF (EMF-G) were white odorless powders, though aglycone EHMF was a pale yellow syrup like a caramel with an intense sweet odor. Although DMF-G and EMF-G showed little radical-scavenging activity, hydrolyzates of these glucosides by an intestinal acetone powder from pigs had antioxidative activity as well as their aglycones. It was suggested that these glucosides improved some physical properties and may become prodrugs by glucosylation.  相似文献   

16.
Protein extracts from dark-grown cell suspension cultures of Catharanthus roseus (Madagascar periwinkle) contained several O-methyltransferase (OMT) activities, including the 16-hydroxytabersonine O-methyltransferase (16HT-OMT) in indole alkaloid biosynthesis. This enzyme was enriched through several purification steps, including affinity chromatography on adenosine agarose. SDS-PAGE of the purified protein preparation revealed a protein band at the size expected for plant OMTs (38-43 kDa). Mass spectrometry indicated two dominant protein species of similar mass in this band, and sequences of tryptic peptides showed similarities to known OMTs. Homology-based RT-PCR identified cDNAs for four new OMTs. Two of these cDNAs (CrOMT2 and CrOMT4) encoded the proteins dominant in the preparation enriched for 16HT-OMT. The proteins were closely related (73% identity), but both shared only 48-53% identity with the closest relatives found in the public databases. The enzyme functions were investigated with purified recombinant proteins after cDNA expression in Escherichia coli. Unexpectedly, both proteins had no detectable 16HT-OMT activity, and CrOMT4 was inactive with all substrates investigated. CrOMT2 was identified as a flavonoid OMT that was expressed in dark-grown cell cultures and copurified with 16HT-OMT. It represented a new type of OMT that performs two sequential methylations at the 3'- and 5'-positions of the B-ring in myricetin (flavonol) and dihydromyricetin (dihydroflavonol). The resulting methylation pattern is characteristic for C. roseus flavonol glycosides and anthocyanins, and it is proposed that CrOMT2 is involved in their biosynthesis.  相似文献   

17.
Surface-immobilized C. roseus cell cultures were grown in a 20-l modified airlift bioreactor operated at 0.51 vvm (kLa approximately 8 h-1) under various gassing regimes [air, 2% (v/v) and 5% CO2]. Extracellular ammonium, phosphate, and nitrate ions as well as carbohydrate uptake and pH value of the medium were monitored together with on-line dissolved oxygen concentration, conductivity of the medium, and carbon dioxide production rate (CPR) of the cultures. Cultures supplemented with 2% CO2 showed higher nitrate (5.0-7.0 mM d-1) and carbohydrate (3.3 g l-1 d-1) uptake rates and biomass production (mu approximately 0.24 d-1, yield approximately 0.33 g dw g CHO-1 and 7.4 g dw L-1) as compared to air (3.6 mM d-1, 2.1 g l-1 d-1; 0.20 d-1, 0.25 g dw g CHO-1 and 5 g dw l-1) and 5% CO2 (2.0-3.6 mM d-1, 2.0 g l-1 d-1; 0.11 d-1, 0.20 g dw g CHO-1 and 5 g dw l-1) cultures and as reported previously for suspension cultures. In addition, air and 5% CO2 cultures displayed incomplete carbohydrate uptake and, more important, phosphate and ammonium ion release into the medium at the end, which was ascribed to loss of viability. This was not observed for 2% CO2 immobilized bioreactor as well as shake flask control suspension cultures, which suggests that sparged C. roseus surface-immobilized cell cultures require 2% CO2 supplementation of the gas phase for both maximum growth and retained viability. The maximum CPRs of all cultures were in the same range (2.1-2.8 mM CO2 l-1 h-1). However, the estimated maximum specific CO2 production rates of 2% CO2 and 5% CO2 immobilized cultures (0.6 mM g dw-1 h-1) were lower than those found for air-sparged immobilized cultures (1.0-1.3 mM g dw-1 h-1). These rates are significantly higher than those reported in the literature for C. roseus cell suspension cultures performed in bioreactors gassed with air (approximately 0.2-0.55 mM g dw-1 h-1).  相似文献   

18.
19.
20.
Apigenin, a member of the flavone subclass of flavonoids, has long been considered to have various biological activities. Its glucosides, in particular, have been reported to have higher water solubility, increased chemical stability, and enhanced biological activities. Here, the synthesis of apigenin glucosides by the in vitro glucosylation reaction was successfully performed using a UDP-glucosyltransferase YjiC, from Bacillus licheniformis DSM 13. The glucosylation has been confirmed at the phenolic groups of C-4′ and C-7 positions ensuing apigenin 4′-O-glucoside, apigenin 7-O-glucoside and apigenin 4′,7-O-diglucoside as the products leaving the C-5 position unglucosylated. The position of glucosylation and the chemical structures of glucosides were elucidated by liquid chromatography/mass spectroscopy and nuclear magnetic resonance spectroscopy. The parameters such as pH, UDP glucose concentration and time of incubation were also analyzed during this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号