首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Miranda A  Kuzminov A 《Genetics》2003,163(4):1255-1271
RecBCD is a DNA helicase/exonuclease implicated in degradation of foreign linear DNA and in RecA-dependent recombinational repair of chromosomal lesions in E. coli. The low viability of recA recBC mutants vs. recA mutants indicates the existence of RecA-independent roles for RecBCD. To distinguish among possible RecA-independent roles of the RecBCD enzyme in replication, repair, and DNA degradation, we introduced wild-type and mutant combinations of the recBCD chromosomal region on a low-copy-number plasmid into a DeltarecA DeltarecBCD mutant and determined the viability of resulting strains. Our results argue against ideas that RecBCD is a structural element in the replication factory or is involved in RecA-independent repair of chromosomal lesions. We found that RecBCD-catalyzed DNA degradation is the only activity important for the recA-independent viability, suggesting that degradation of linear tails of sigma-replicating chromosomes could be one of the RecBCD's roles. However, since the weaker DNA degradation capacity due a combination of the RecBC helicase and ssDNA-specific exonucleases restores viability of the DeltarecA DeltarecBCD mutant to a significant extent, we favor suppression of chromosomal lesions via linear DNA degradation at reversed replication forks as the major RecA-independent role of the RecBCD enzyme.  相似文献   

2.
Recent findings suggest that DNA nicks stimulate homologous recombination by being converted into double-strand breaks, which are mended by RecA-catalysed recombinational repair and are lethal if not repaired. Hyper-rec mutants, in which DNA nicks become detectable, are synthetic-lethal with recA inactivation, substantiating the idea. Escherichia coli dut mutants are the only known hyper-recs in which presumed nicks in DNA do not cause inviability with recA, suggesting that nicks stimulate homologous recombination directly. Here, we show that dut recA mutants are synthetic-lethal; specifically, dut mutants depend on the RecBC-RuvABC recombinational repair pathway that mends double-strand DNA breaks. Although induced for SOS, dut mutants are not rescued by full SOS induction if RecA is not available, suggesting that recombinational rather than regulatory functions of RecA are needed for their viability. We also detected chromosomal fragmentation in dut rec mutants, indicating double-strand DNA breaks. Both the synthetic lethality and chromosomal fragmentation of dut rec mutants are suppressed by preventing uracil excision via inactivation of uracil DNA-glycosylase or by preventing dUTP production via inactivation of dCTP deaminase. We suggest that nicks become substrates for recombinational repair after being converted into double-strand DNA breaks.  相似文献   

3.
Lethality of rep recB and rep recC double mutants of Escherichia coli   总被引:4,自引:1,他引:3  
A rep mutation in combination with a recB or a recC mutation renders Escherichia coli non-viable. This conclusion is based on the following lines of evidence: (i) double mutants cannot be constructed by P1 transduction; (ii) induction of the λ Gam protein, which inactivates most of the RecBCD activities, is lethal in rep mutants; (iii) rep recBts recCts mutants are not viable at high temperature. The reasons for a requirement for the RecBCD enzyme in rep strains were investigated. Initiation of chromosome replication, elongation and chromosomal segregation do not seem impaired in the rep recBts recCts mutant at the non-permissive temperature. The viability of other rep derivatives was tested. rep recA recD triple mutants are not viable, whereas rep recD and rep recA double mutants are. Inactivation of both exoV activity and recBC -dependent homologous recombination is therefore responsible for the non-viability of rep recBC strains. However, sbcA and sbcB mutations, which render recBC mutants recombination proficient, do not restore viability of rep recBC mutants, indicating that recombination via the RecF or the RecE pathways cannot functionally replace RecBCD-mediated recombination. The specific requirement for RecBCD suggests the occurrence of double-strand DNA breaks in rep strains. Additional arguments in favour of the presence of DNA lesions in rep mutants are as follows: (i) expression of SOS repair functions delays lethality of rep derivatives after inactivation of RecBCD; (ii) sensitivity of rep strains to ultraviolet light is increased by partial inactivation of RecBCD. A model for the recovery of cells from double-strand breaks in rep mutants is discussed.  相似文献   

4.
To study the fate of linear DNA in Escherichia coli cells, we linearized plasmid DNA at a specific site in vivo and monitored its behavior in recA mutant cells deficient in recombinational repair. Earlier, we had found that in wild-type (WT) cells linearized DNA is degraded to completion by RecBCD nuclease. We had also found that in WT cells chi sites on linear DNA inhibit RecBCD degradation by turning off its nucleolytic activities. Now we report that chi sites do not work in the absence of the RecA protein, suggesting that RecA is required in vivo to turn off the degradative activities of the RecBCD enzyme. We also report that the degradation of linearized plasmid DNA, even devoid of chi sites, is never complete in recA cells. Investigation of this linear DNA stability indicates that a fraction of recA cells are recBC phenocopies due to ongoing chromosomal DNA degradation, which titrates RecBCD nuclease. A possible role for RecBCD-promoted DNA degradation in controlling chromosomal DNA replication in E. coli is discussed.  相似文献   

5.
Bacterial RecA protein is required for repair of two-strand DNA lesions that disable whole chromosomes. recA mutants are viable, suggesting a considerable cellular capacity to avoid these chromosome-disabling lesions. recA-dependent mutants reveal chromosomal lesion avoidance pathways. Here we characterize one such mutant, rdgB/yggV, deficient in a putative inosine/xanthosine triphosphatase, conserved throughout kingdoms of life. The rdgB recA lethality is suppressed by inactivation of endonuclease V (gpnfi) specific for DNA-hypoxanthines/xanthines, suggesting that RdgB either intercepts improper DNA precursors dITP/dXTP or works downstream of EndoV in excision repair of incorporated hypoxathines/xanthines. We find that DNA isolated from rdgB mutants contains EndoV-recognizable modifications, whereas DNA from nfi mutants does not, substantiating the dITP/dXTP interception by RdgB. rdgB recBC cells are inviable, whereas rdgB recF cells are healthy, suggesting that chromosomes in rdgB mutants suffer double-strand breaks. Chromosomal fragmentation is indeed observed in rdgB recBC mutants and is suppressed in rdgB recBC nfi mutants. Thus, one way to avoid chromosomal lesions is to prevent hypoxanthine/xanthine incorporation into DNA via interception of dITP/dXTP.  相似文献   

6.
DNA helicases play pivotal roles in homologous recombination and recombinational DNA repair. They are involved in both the generation of recombinogenic single-stranded DNA ends and branch migration of synapsed Holliday junctions. Escherichia coli helicases II (uvrD), IV (helD), and RecQ (recQ) have all been implicated in the presynaptic stage of recombination in the RecF pathway. To probe for functional redundancy among these helicases, mutant strains containing single, double, and triple deletions in the helD, uvrD, and recQ genes were constructed and examined for conjugational recombination efficiency and DNA repair proficiency. We were unable to construct a strain harboring a delta recQ delta uvrD double deletion in a recBC sbcB(C) background (RecF pathway), suggesting that a delta recQ deletion mutation was lethal to the cell in a recBC sbcB(C) delta D background. However, we were able to construct a triple delta recQ delta uvrD Delta helD mutant in the recBC sbcB(C) background. This may be due to the increased mutator frequency in delta uvrD mutants which may have resulted in the fortuitous accumulation of a suppressor mutation(s). The triple helicase mutant recBC sbcB(C) delta uvrD delta recQ delta helD severely deficient in Hfr-mediated conjugational recombination and in the repair of methylmethane sulfonate-induced DNA damage. This suggests that the presence of at least one helicase--helicase II, RecQ helicase, or helicase IV--is essential for homologous recombination and recombinational DNA repair in a recBC sbcB(C) background. The triple helicase mutant was recombination and repair proficient in a rec+ background. Genetic analysis of the various double mutants unmasked additional functional redundancies with regard to conjugational recombination and DNA repair, suggesting that mechanisms of recombination depend both on the DNA substrates and on the genotype of the cell.  相似文献   

7.
DNA repair mechanisms affecting cytotoxicity by streptozotocin in E. coli   总被引:2,自引:0,他引:2  
Mechanisms underlying cytotoxicity by the monofunctional nitrosourea streptozotocin (STZ) were evaluated in DNA repair-deficient E. coli mutants. Strains not proficient in recombinational repair which lack either RecA protein or RecBC gene products were highly sensitive to STZ. In contrast, cells that constitutively synthesize RecA protein and cannot initiate SOS repair mechanisms because of uncleavable LexA repressor (recAo98 lexA3) were resistant to this drug compared to a lexA3 strain. Further, E. coli cells lacking both 3-methyladenine DNA glycosylases I (tag) and II (alkA) also were highly sensitive to STZ. DNA synthesis was most inhibited by STZ in recA and alkA tag E. coli mutants, but was suppressed less markedly in wild-type and recBC cells. DNA degradation was most extensive in recA E. coli after STZ treatment, while comparable in recBC, alkA tag, and wild-type cells. Although increased single-stranded DNA breaks were present after STZ treatment in recA and recBC mutants compared to the wild type, no significant increase in DNA single-stranded breaks was noted in alkA tag E. coli. Further, DNA breaks in recBC cells were repaired, while those present in recA cells were not. These findings establish the critical importance of both recombinational repair and 3-methyladenine DNA glycosylase in ameliorating cytotoxic effects and DNA damage caused by STZ in E. coli.  相似文献   

8.
Ultraviolet (UV) irradiation is not known to induce chromosomal fragmentation in sublethal doses, and yet UV irradiation causes genetic instability and cancer, suggesting that chromosomes are fragmented. Here we show that UV irradiation induces fragmentation in sublethal doses, but the broken chromosomes are repaired or degraded by RecBCD; therefore, to observe full fragmentation, RecBCD enzyme needs to be inactivated. Using quantitative pulsed field gel electrophoresis and sensitive DNA synthesis measurements, we investigated the mechanisms of UV radiation-induced chromosomal fragmentation in recBC mutants, comparing five existing models of DNA damage-induced fragmentation. We found that fragmentation depends on active DNA synthesis before, but not after, UV irradiation. At low UV irradiation doses, fragmentation does not need excision repair or daughter strand gap repair. Fragmentation absolutely depends on both RecA-catalyzed homologous strand exchange and RuvABC-catalyzed Holliday junction resolution. Thus, chromosomes fragment when replication forks stall at UV lesions and regress, generating Holliday junctions. Remarkably, cells specifically utilize fork breakage to rescue stalled replication and avoid lethality.  相似文献   

9.
Escherichia coli cells with mutations in recBC genes are defective for the main RecBCD pathway of recombination and have severe reductions in conjugational and transductional recombination, as well as in recombinational repair of double-stranded DNA breaks. This phenotype can be corrected by suppressor mutations in sbcB and sbcC(D) genes, which activate an alternative RecF pathway of recombination. It was previously suggested that sbcB15 and DeltasbcB mutations, both of which inactivate exonuclease I, are equally efficient in suppressing the recBC phenotype. In the present work we reexamined the effects of sbcB15 and DeltasbcB mutations on DNA repair after UV and gamma irradiation, on conjugational recombination, and on the viability of recBC (sbcC) cells. We found that the sbcB15 mutation is a stronger recBC suppressor than DeltasbcB, suggesting that some unspecified activity of the mutant SbcB15 protein may be favorable for recombination in the RecF pathway. We also showed that the xonA2 mutation, a member of another class of ExoI mutations, had the same effect on recombination as DeltasbcB, suggesting that it is an sbcB null mutation. In addition, we demonstrated that recombination in a recBC sbcB15 sbcC mutant is less affected by recF and recQ mutations than recombination in recBC DeltasbcB sbcC and recBC xonA2 sbcC strains is, indicating that SbcB15 alleviates the requirement for the RecFOR complex and RecQ helicase in recombination processes. Our results suggest that two types of sbcB-sensitive RecF pathways can be distinguished in E. coli, one that is activated by the sbcB15 mutation and one that is activated by sbcB null mutations. Possible roles of SbcB15 in recombination reactions in the RecF pathway are discussed.  相似文献   

10.
The repair response of Escherichia coli K-12 to bleomycin was examined in Rec- mutants showing differential sensitivity to this agent. Sedimentation analysis of the cellular DNA showed incision after bleomycin treatment. The subsequent reformation of the DNA, found in the wild-type and the recD mutant, was abolished in the recB and delayed in the recF and recBC sbcB mutants. The bleomycin-induced SOS response was reduced in strains containing recB or recBC sbsB mutations. It is suggested that the RecBCD pathway has the main role in the efficient repair of bleomycin-induced DNA damage.  相似文献   

11.
In Bacillus subtilis, the products of the pta and ackA genes, phosphotransacetylase and acetate kinase, play a crucial role in the production of acetate, one of the most abundant by-products of carbon metabolism in this gram-positive bacterium. Although these two enzymes are part of the same pathway, only mutants with inactivated ackA did not grow in the presence of glucose. Inactivation of pta had only a weak inhibitory effect on growth. In contrast to pta and ackA in Escherichia coli, the corresponding B. subtilis genes are not cotranscribed. Expression of the pta gene was increased in the presence of glucose, as has been reported for ackA. The effects of the predicted cis-acting catabolite response element (CRE) located upstream from the promoter and of the trans-acting proteins CcpA, HPr, Crh, and HPr kinase on the catabolite regulation of pta were investigated. As for ackA, glucose activation was abolished in ccpA and hprK mutants and in the ptsH1 crh double mutant. Footprinting experiments demonstrated an interaction between CcpA and the pta CRE sequence, which is almost identical to the proposed CRE consensus sequence. This interaction occurs only in the presence of Ser-46-phosphorylated HPr (HPrSer-P) or Ser-46-phosphorylated Crh (CrhSer-P) and fructose-1,6-bisphosphate (FBP). In addition to CcpA, carbon catabolite activation of the pta gene therefore requires at least two other cofactors, FBP and either HPr or Crh, phosphorylated at Ser-46 by the ATP-dependent Hpr kinase.  相似文献   

12.
The dut mutants of Escherichia coli fail to hydrolyze dUTP and thus incorporate uracil into their DNA, suffering from chromosomal fragmentation. The postulated mechanism for the double-strand DNA breaks is clustered uracil excision, which requires high density of DNA-uracils. However, we did not find enough uracil residues or excision nicks in the DNA of dut mutants to account for clustered uracil excision. Using a dut recBC(Ts) mutant of E.coli to inquire into the mechanism of uracil-triggered chromosomal fragmentation, we show that this fragmentation requires DNA replication and, in turn, inhibits replication of the chromosomal terminus. As a result, origin-containing sub-chromosomal fragments accumulate in dut recBC conditions, indicating preferential demise of replication bubbles. We propose that the basic mechanism of the uracil-triggered chromosomal fragmentation is replication fork collapse at uracil-excision nicks. Possible explanations for the low level terminus fragmentation are also considered.  相似文献   

13.
Acetyl phosphate (AcP) is a small-molecule metabolite that can act as a phosphoryl group donor for response regulators of two-component systems (TCSs). The serious human respiratory pathogen Streptococcus pneumoniae (pneumococcus) synthesizes AcP by the conventional pathway involving phosphotransacetylase and acetate kinase, encoded by pta and ackA, respectively. In addition, pneumococcus synthesizes copious amounts of AcP and hydrogen peroxide (H(2)O(2)) by pyruvate oxidase, which is encoded by spxB. To assess possible roles of AcP in pneumococcal TCS regulation and metabolism, we constructed strains with combinations of spxB, pta, and ackA mutations and determined their effects on ATP, AcP, and H(2)O(2) production. Unexpectedly, ΔackA mutants were unstable and readily accumulated primary suppressor mutations in spxB or its positive regulator, spxR, thereby reducing H(2)O(2) and AcP levels, and secondary capsule mutations in cps2E or cps2C. ΔackA ΔspxB mutants contained half the cellular amount of ATP as a ΔspxB or spxB(+) strain. Acetate addition and anaerobic growth experiments suggested decreased ATP, rather than increased AcP, as a reason that ΔackA mutants accumulated spxB or spxR suppressors, although experimental manipulation of the AcP amount was limited. This finding and other considerations suggest that coping with endogenously produced H(2)O(2) may require energy. Starting with a ΔspxB mutant, we constructed Δpta, ΔackA, and Δpta ΔackA mutants. Epistasis and microarray experiment results were consistent with a role for the SpxB-Pta-AckA pathway in expression of the regulons controlled by the WalRK(Spn), CiaRH(Spn), and LiaSR(Spn) TCSs involved in sensing cell wall status. However, AcP likely does not play a physiological role in TCS sensing in S. pneumoniae.  相似文献   

14.
RecBCD protein, necessary for Escherichia coli dam mutant viability, is directly required for DNA repair. Recombination genes recF+, recN+, recO+, and recQ+ are not essential for dam mutant viability; they are required for recBC sbcBC dam mutant survival. mutH, mutL, or mutS mutations do not suppress subinduction of SOS genes in dam mutants.  相似文献   

15.
To study the role played by acetate metabolism during high-cell-density growth of Escherichia coli cells, we constructed isogenic null mutants of strain W3100 deficient for several genes involved either in acetate metabolism or the transition to stationary phase. We grew these strains under identical fed-batch conditions to the highest cell densities achievable in 8 h using a predictive-plus-feedback-controlled computer algorithm that maintained glucose at a set-point of 0.5 g/l, as previously described. Wild-type strains, as well as mutants lacking the ss subunit of RNA polymerase (rpoS), grew reproducibly to high cell densities (44–50 g/l dry cell weights, DCWs). In contrast, a strain lacking acetate kinase (ackA) failed to reach densities greater than 8 g/l. Strains lacking other acetate metabolism genes (pta, acs, poxB, iclR, and fadR) achieved only medium cell densities (15–21 g/l DCWs). Complementation of either the acs or the ackA mutant restored wild-type high-cell-density growth. On a dry weight basis, poxB and fadR strains produced approximately threefold more acetate than did the wild-type strain. In contrast, the pta, acs, or rpoS strains produced significantly less acetate per cell dry weight than did the wild-type strain. Our results show that acetate metabolism plays a critical role during growth of E. coli cultures to high cell densities. They also demonstrate that cells do not require the ss regulon to grow to high cell densities, at least not under the conditions tested. Journal of Industrial Microbiology & Biotechnology (2000) 24, 421–430. Received 12 November 1999/ Accepted in revised form 24 February 2000  相似文献   

16.
Nucleotide pool sanitizing enzymes Dut (dUTPase), RdgB (dITPase), and MutT (8-oxo-dGTPase) of Escherichia coli hydrolyze noncanonical DNA precursors to prevent incorporation of base analogs into DNA. Previous studies reported dramatic AT-->CG mutagenesis in mutT mutants, suggesting a considerable density of 8-oxo-G in DNA that should cause frequent excision and chromosomal fragmentation, irreparable in the absence of RecBCD-catalyzed repair and similar to the lethality of dut recBC and rdgB recBC double mutants. In contrast, we found mutT recBC double mutants viable with no signs of chromosomal fragmentation. Overproduction of the MutM and MutY DNA glycosylases, both acting on DNA containing 8-oxo-G, still yields no lethality in mutT recBC double mutants. Plasmid DNA, extracted from mutT mutM double mutant cells and treated with MutM in vitro, shows no increased relaxation, indicating no additional 8-oxo-G modifications. Our DeltamutT allele elevates the AT-->CG transversion rate 27,000-fold, consistent with published reports. However, the rate of AT-->CG transversions in our mutT(+) progenitor strain is some two orders of magnitude lower than in previous studies, which lowers the absolute rate of mutagenesis in DeltamutT derivatives, translating into less than four 8-oxo-G modifications per genome equivalent, which is too low to cause the expected effects. Introduction of various additional mutations in the DeltamutT strain or treatment with oxidative agents failed to increase the mutagenesis even twofold. We conclude that, in contrast to the previous studies, there is not enough 8-oxo-G in the DNA of mutT mutants to cause elevated excision repair that would trigger chromosomal fragmentation.  相似文献   

17.
We have proposed previously that, in Escherichia coli, blockage of replication forks can lead to the reversal of the fork. Annealing of the newly synthesized strands creates a double-stranded end adjacent to a Holliday junction. The junction is migrated away from the DNA end by RuvAB and can be cleaved by RuvC, while RecBCD is required for the repair of the double-stranded tail. Consequently, the rep mutant, in which replication arrests are frequent and fork reversal occurs, requires RecBCD for growth. We show here that the combination of sbcB sbcCD null mutations restores the viability to rep recBC mutants by activation of the RecF pathway of recombination. This shows that the proteins belonging to the RecF pathway are able to process the DNA ends made by the replication fork reversal into a structure that allows recombination-dependent replication restart. However, we confirm that, unlike sbcB null mutations, sbcB15, which suppresses all other recBC mutant defects, does not restore the viability of rep recBC sbcCD strains. We also show that ruvAB inactivation suppresses the lethality and the formation of double-stranded breaks (DSBs) in a rep recBC recF strain, totally deficient for homologous recombination, as well as in rep recBC mutants. This confirms that RuvAB processing of arrested replication forks is independent of the presence of recombination intermediates.  相似文献   

18.
The RecBCD nuclease of Escherichia coli and "recombinase" determined by R1drd-19 plasmid (the latter is able to replace at least partially the indicated cellular enzyme) were shown to differ from each other in some essential features. The product encoded by the plasmid as distinct from RecBCD nuclease practically is not sensitive to inhibition by GamS protein of the lambda phage. Earlier, it was found that the presence of R1drd-19 plasmid in the recBC cells restores the level of the total ATP-dependent exonuclease activity because of appearance in such cells of a new exonuclease activity also ATP-dependent. The exonuclease activity determined by R1drd-19 plasmid was found to differ from the corresponding activity of the RecBCD enzyme. The plasmid enzyme was able to prevent reproduction of T4g2- mutant on recBC cells. The ability of the plasmid "recombinase" to some stimulation of intrachromosomal recombination in recA mutant witness to incomplete RecA-dependence of its function. No significant homology was registered between Escherichia coli DNA fragment containing the recB, recC, recD genes and the EcoRI-C-fragment of R1drd-19 carrying the sequences responsible for recombination and repair functions of the plasmid.  相似文献   

19.
20.
Genetic analysis of double-strand break repair in Escherichia coli.   总被引:4,自引:1,他引:4       下载免费PDF全文
We had reported that a double-strand gap (ca. 300 bp long) in a duplex DNA is repaired through gene conversion copying a homologous duplex in a recB21 recC22 sbcA23 strain of Escherichia coli, as predicted on the basis of the double-strand break repair models. We have now examined various mutants for this repair capacity. (i) The recE159 mutation abolishes the reaction in the recB21C22 sbcA23 background. This result is consistent with the hypothesis that exonuclease VIII exposes a 3'-ended single strand from a double-strand break. (ii) Two recA alleles, including a complete deletion, fail to block the repair in this recBC sbcA background. (iii) Mutations in two more SOS-inducible genes, recN and recQ, do not decrease the repair. In addition, a lexA (Ind-) mutation, which blocks SOS induction, does not block the reaction. (iv) The recJ, recF, recO, and recR gene functions are nonessential in this background. (v) The RecBCD enzyme does not abolish the gap repair. We then examined genetic backgrounds other than recBC sbcA, in which the RecE pathway is not active. We failed to detect the double-strand gap repair in a rec+, a recA1, or a recB21 C22 strain, nor did we find the gap repair activity in a recD mutant or in a recB21 C22 sbcB15 sbcC201 mutant. We also failed to detect conservative repair of a simple double-strand break, which was made by restriction cleavage of an inserted linker oligonucleotide, in these backgrounds. We conclude that the RecBCD, RecBCD-, and RecF pathways cannot promote conservative double-strand break repair as the RecE and lambda Red pathways can.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号