首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chitinous material was isolated from the mycelium of seven species of Basidiomycetes to evaluate the possibility of using fungal biomass as a source of chitin and chitosan. Such material was characterised for its purity, degree of acetylation and crystallinity. Chitin yields ranged between 8.5 and 19.6% dry weight and the chitosan yield was approximately 1%. The characteristics of the fungal chitins were similar to those of commercial chitin. Chitosans, with a low degree of acetylation, comparable with that of commercial chitosan, were obtained by the chemical deacetylation of fungal chitins.  相似文献   

2.
The fungal chitin deacetylases (CDA) studied so far are able to perform heterogeneous enzymatic deacetylation on their solid substrate, but only to a limited extent. Kinetic data show that about 5-10% of the N-acetyl glucosamine residues are deacetylated rapidly. Thereafter enzymatic deacetylation is slow. In this study, chitin was exposed to various physical and chemical conditions such as heating, sonicating, grinding, derivatization and interaction with saccharides and presented as a substrate to the CDA of the fungus Absidia coerulea. None of these treatments of the substrate resulted in a more efficient enzymatic deacetylation. Dissolution of chitin in specific solvents followed by fast precipitation by changing the composition of the solvent was not successful either in making microparticles that would be more accessible to the enzyme. However, by treating chitin in this way, a decrystallized chitin with a very small particle size called superfine (SF) chitin could be obtained. This SF chitin, pretreated with 18% formic acid, appeared to be a good substrate for fungal deacetylase. This was confirmed both by enzyme-dependent deacetylation measured by acetate production as well as by isolation and assay for the degree of deacetylation (DD). In this way chitin (10% DD) was deacetylated by the enzyme into chitosan with DD of 90%. The formic acid treatment reduced the molecular weight of the polymeric chain from 2x10(5) in chitin to 1.2 x 10(4) in the chitosan product. It is concluded that nearly complete enzymatic deacetylation has been demonstrated for low-molecular chitin.  相似文献   

3.
The high molecular weight of chitosan, which results in a poor solubility at neutral pH values and high viscosity aqueous solutions, limits its potential uses in the fields of food, health and agriculture. However, most of these limitations are overcome by chitosan oligosaccharides obtained by enzymatic hydrolysis of the polymer. Several commercial enzymes with different original specificities were assayed for their ability to hydrolyze a 93% deacetylation degree chitosan and compared with a chitosanase. According to the patterns of viscosity decrease and reducing end formation, three enzymes--cellulase, pepsin and lipase A--were found to be particularly suitable for hydrolyzing chitosan at a level comparable to that achieved by chitosanase. Unlike the appreciable levels of both 2-amino-2-deoxy-D-glucose and 2-acetamido-2-deoxy-D-glucose monomers released from chitosan by the other enzymes after a 20h-hydrolysis (4.6-9.1% of the total product weight), no monomer could be detected following pepsin cleavage. As a result, pepsin produced a higher yield of chitosan oligosaccharides than the other enzymes: 52% versus as much as 46%, respectively. Low molecular weight chitosans accounted for the remaining 48% of hydrolysis products. The calculated average polymerization degree of the products released by pepsin was around 16 units after 20h of hydrolysis. This product pattern and yield are proposed to be related to the bond cleavage specificity of pepsin and the high deacetylation degree of chitosan used as substrate. The optimal reaction conditions for hydrolysis of chitosan by pepsin were 40 degrees C and pH 4.5, and an enzyme/substrate ratio of 1:100 (w/w) for reactions longer than 1h.  相似文献   

4.
The waste biomass of Aspergillus niger, following citric acid production, was used as a source for fungal chitosan extraction. The produced chitosan was characterized with deacetylation degree of 89.6%, a molecular weight of 25,000 dalton, 97% solubility in 1% acetic acid solution and comparable FT-IR spectra to standard shrimp chitosan. Fungal chitosan was applied as a cotton fabric finishing agent using pad-dry-cure method. The topographical structure of chitosan-treated fabrics (CTF) was much improved compared with control fabrics. CTF, after durability tests, exhibited a powerful antimicrobial activity against both E. coli and Candida albicans, the captured micrographs for E. coli cells contacted with CTF showed a complete lysis of cell walls with the prolonging contact time. The produced antimicrobial CTF could be proposed as a suitable material for many medical and hygienic applications.  相似文献   

5.
Chitosan samples with different molecular weights (Mw) and degree of deacetylation (DD) were prepared by controlling operating conditions throughout the multistage alkali treatment. The temperature of the reaction, time duration and number of reaction steps were considered effective parameters. A database was developed for chitosan preparation in order to achieve high degrees of deacetylation and control the molecular weight of chitosan without changing other molecular structures. The number of treatments and the duration of each step of deacetylation significantly affected molecular weight so that two samples were obtained with a DD of 99% and two different molecular weights ranging from 4.66×105 to 2.93×105 Based on these results, the highest molecular weight obtained using the multistage treatment without decreasing DD was 5.32×105, with a DD of 96.67%. Also, the morphological studies indicate that the molecular weight of chitosan has a significant effect on the pore size of the prepared scaffolds. However, this effect is critical. In other words, the pore size will increase by increasing molecular weight of chitosan from low upto medium molecular weight and when it reached to high molecular weight the pore size is decreased.  相似文献   

6.
Previous research has shown that soluble protein recovery by chitosan (Chi) complexes with polyanions such as alginate (Alg) is more effective than using chitosan alone. In this study, Chi-Alg complexes were used to recover soluble proteins from surimi wash water (SWW) slightly acidified to pH 6. Six Chi samples differing in molecular weight (MW) and degree of deacetylation (DD) were used at 20, 40 and 100mg/L SWW Chi-Alg complexes prepared with a Chi:Alg mixing ratio previously optimized (MR=0.2). FTIR analysis of the solids recovered revealed the three characteristic amide bands observed in the same region for untreated SWW confirming protein adsorption by Chi-Alg. The superior effectiveness of Chi complexes was confirmed but differences among chitosan types could not be correlated to MW and DD. Experimental Chi samples with 94%, 93%, 75% and 93% DD and 22, 47, 225 and 3404 x 10(3)Da, respectively, showed 73-76% protein adsorption while a commercial chitosan sample with 84% DD and 3832 x 10(3)Da had 74-83% protein adsorption. An experimental chitosan, SY-1000 with 94% DD and 1.5 x 10(6)Da, showed the highest protein adsorption (79-86%) and turbidity reduction (85-92%) when used at 20mg/L SWW.  相似文献   

7.
Chitosan is a deacetylated form of the polysaccharide chitin. Over the last decade, researchers have employed reductive amination to hydrophobically modify chitosan to induce a micellar structure. These micellar polymers have been used for a variety of purposes including drug delivery and enzyme immobilization and stabilization. However, commercial sources of chitosan vary in their degree of deacetylation and there remains a paucity of information regarding how this can impact the modified polymer’s functionality for enzyme immobilization. This paper, therefore, evaluates the effect that the degree of deacetylation has on the hydrophobic modification of medium molecular weight chitosan via reductive amination with long chain aldehydes and the resulting changes in enzyme activity after the immobilization of glucose oxidase in the micellar polymeric structure. The chitosan was deacetylated to differing degrees via autoclaving in 40–45% NaOH solutions and characterized using NMR, viscosity measurements, and differential scan calorimetry. Results suggest that a high degree of deacetylation provides optimal enzyme immobilization properties (i.e. high activity), but that the deacetylation method begins to significantly decrease the polymer molecular weight after a 20 min autoclave treatment, which negatively affects immobilized enzyme activity.  相似文献   

8.
At the core of cellulosic ethanol research are innovations leading to reductions in the chemical and energetic stringency of thermochemical pretreatments and enzymatic saccharification. In this study, key compositional features of maize cell walls influencing the enzymatic conversion of biomass into fermentable sugars were identified. Stem samples from eight contrasting genotypes were subjected to a series of thermal dilute-acid pretreatments of increasing severity and evaluated for glucose release after enzymatic saccharification. The biochemically diverse set of genotypes displayed significant differences in glucose yields at all processing conditions evaluated. The results revealed that mechanisms controlling biomass conversion efficiency vary in relation to pretreatment severity. At highly severe pretreatments, cellulose conversion efficiency was primarily influenced by the inherent efficacy of the thermochemical process, and maximum glucose yields were obtained from cellulosic feedstocks harboring the highest cellulose contents per dry gram of biomass. When mild dilute-acid pretreatments were applied, however, maximum bioconversion efficiency and glucose yields were observed for genotypes combining high stem cellulose contents, reduced cell wall lignin and highly substituted hemicelluloses. For the best-performing genotype, glucose yields under sub-optimal processing regimes were only 10 % lower than the genotype-set mean at the most stringent processing conditions evaluated, while furfural production was reduced by approximately 95 %. Our results ultimately established that cellulosic feedstocks with tailored cell wall compositions can help reduce the chemical and energetic intensity of pretreatments used in the industry and improve the commercial and environmental performance of biomass-to-ethanol conversion technologies.  相似文献   

9.
Production and isolation of chitosan from Mucor rouxii.   总被引:9,自引:0,他引:9       下载免费PDF全文
A method for the lab-scale production and isolation of chitosan (polyglucosamine) from hyphal walls of Mucor rouxii was developed. Hyphal wall yields were generally 16 to 22% on a dry cell weight basis, of which 35 to 40% was glucosamine. Chitosan was readily extracted from purified, mycelial walls with acetic, formic, and hydrochloric acids; the last named was the most efficient. The yield of chitosan isolated ranged from 4 to 8% of the dry weight of the cell wall material.  相似文献   

10.
Chitosan, copolymer of glucosamine and N-acetyl glucosamine is mainly derived from chitin, which is present in cell walls of crustaceans and some other microorganisms, such as fungi. Chitosan is emerging as an important biopolymer having a broad range of applications in different fields. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal sources. The methods used for extraction of chitosan are laden with many disadvantages. Alternative options of producing chitosan from fungal biomass exist, in fact with superior physico-chemical properties. Researchers around the globe are attempting to commercialize chitosan production and extraction from fungal sources. Chitosan extracted from fungal sources has the potential to completely replace crustacean-derived chitosan. In this context, the present review discusses the potential of fungal biomass resulting from various biotechnological industries or grown on negative/low cost agricultural and industrial wastes and their by-products as an inexpensive source of chitosan. Biologically derived fungal chitosan offers promising advantages over the chitosan obtained from crustacean shells with respect to different physico-chemical attributes. The different aspects of fungal chitosan extraction methods and various parameters having an effect on the yield of chitosan are discussed in detail. This review also deals with essential attributes of chitosan for high value-added applications in different fields.  相似文献   

11.
Cuttlefish chitosan was extracted from the cuttlebone of Sepiella inermis by demineralization and deproteinization and produced by deacetylation, and its physical and chemical parameters were also compared with that of commercial chitosan. Ash, moisture, and mineral and metal content of the chitosan was estimated by adopting standard methodologies. The rate of deacetylation was calculated as 79.64% by potentiometric titration. Through viscometry and gel permeation chromatography, the molecular weight of chitosan was found to be significantly lower than that of the commercial chitosan. Optical activity was found to be levorotatory. The structure of the chitosan was elucidated with spectral techniques such as Fourier-transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopy. Cuttlefish chitosan showed a melting endothermic peak at 117.32°C. The x-ray diffraction (XRD) pattern of chitosan and standard chitosan exhibited the same crystalline peaks. Through scanning electron microscopy (SEM) the fine structure of chitosan was studied. The binding capacity (water and fat) of cuttlefish chitosan was found to be significantly higher than that of the commercial chitosan. The antioxidant efficacy of chitosan was determined through the conjugated diene method, scavenging ability on DPPH radicals, reducing power, and chelating ability on ferrous ions. This study has brought out the importance of shell as a potential source for obtaining another natural antioxidant.  相似文献   

12.
Chitosan-like materials were extracted from five different fungal cells with NaOH and acetic acid, with the yields varying from 1.2 to 10.4% of the dry fungal cell weight. The degree of N-acetylation of the extracts measured by the colloidal titration method varied considerably depending on the individual species. By IR measurements and the Elson-Morgan method, four kinds of the extracts were characterized as chitosan while another one was not.

The degree of N-acetylation and the Cu2+ adsorption capacity of the fungal chitosans were measured and compared with those of authentic samples with various degrees of N-acetylation, which were prepared by chemical treatment of authentic chitin and chitosan derived from Crustacea. The Cu2+ adsorption capacity of the fungal chitosans was higher than that of the authentic chitosan samples with similar degrees of N-acetylation and independent of the molecular weight of the chitosans from the various sources.  相似文献   

13.
In the present study, carboxymethyl chitosan was prepared from chitosan, crosslinked with glutaraldehyde and evaluated in vitro as a potential carrier for colon targeted drug delivery of ornidazole. Ornidazole was incorporated at the time of crosslinking of carboxymethyl chitosan. The chitosan was evaluated for its degree of deacetylation (DD) and average molecular weight; which were found to be 84.6% and 3.5×10(4) Da, respectively. The degree of substitution on prepared carboxymethyl chitosan was found to be 0.68. All hydrogel formulations showed more than 85% and 74% yield and drug loading, respectively. The swelling behaviour of prepared hydrogels checked in different pH values, 1.2, 6.8 and 7.4, indicated pH responsive swelling characteristic with very less swelling at pH 1.2 and quick swelling at pH 6.8 followed by linear swelling at pH 7.4 with slight increase. In vitro release profile was carried out at the same conditions as in swelling and drug release was found to be dependant on swelling of hydrogels and showed biphasic release pattern with non-fickian diffusion kinetics at higher pH. The carboxymethylation of chitosan, entrapment of drug and its interaction in prepared hydrogels were checked by FTIR, (1)H NMR, DSC and p-XRD studies, which confirmed formation of carboxymethyl chitosan from chitosan and absence of any significant chemical change in ornidazole after being entrapped in crosslinked hydrogel formulations. The surface morphology of formulation S6 checked before and after dissolution, revealed open channel like pores formation after dissolution.  相似文献   

14.
Chitosan samples manufactured under different conditions were compared for effectiveness of coagulating an activated sludge suspension grown on vegetable canning wastes. Computer analysis of data from Buchner funnel filterability tests resulted in quadratic polynomial equations describing the response curves for volume of filtrate versus dosage, expressed as g/liter chitosan/100 g sludge suspended solids (SSS). The quotient of the filtrate volume and dosage at the inflection points of the equations obtained for 10 test samples and 1 commercial chitosan sample were compared to evaluate the response (effectiveness) per unit amount for each chitosan product. The product made by a standard procedure (deproteinated with 3% NaOH at 100°C for 1 hr, demineralized with 1N HCL at ambient temperature for 30 min, and deacetylated with 50% NaOH at 145–150°C under N2 for 5 or 15 min) gave the best performance as a coagulating agent for this activated sludge system. Other products, including the commercial preparation, required higher dosages to achieve the same effectiveness. Products deacetylated in the presence of sir rather than nitrogen decreased waste treatment effectiveness, which approximated the trends of reduced viscosity and molecular-weight distribution. The products containing minerals were less effective than products from which minerals had been removed prior to deacetylation, but they were more effective than the enzyme treated sample and the commercial product. In general, although chitosan products obtained after 15 min deacetylation were more effective than those receiving 5 min deacetylation, effectiveness did not correlate linearly with viscosity and molecular-weight distribution trends. However, chitosan products deacetylated for 15 min did show that the higher-molecular-weight products (0.65–1.1 × 106) were more effective coagulating agents for activated sludge than the manufactured product having the lowest molecular weight (0.47 × 106) and the commercial reference sample (0.56 × 106). Thus, higher values for molecular weight were predictive of greater effectiveness for coagulation of activated sludge suspensions.  相似文献   

15.
Phenol oxidant is successfully removed by using chitosan particles in the aqueous phase. Removal of p-quinone by chitosan from crab shells was investigated kinetically from molecular weight (MW) of chitosan, deacetylation degree (DD) and reaction temperature. The rate constant assuming first-ordered reaction on removal of p-quinone in aqueous phase primarily depended on the MW of chitosan, not on the DD. Quantities of chitosan exceeding 5 x 10(5) MW are able to obtain a sufficiently high rate constant (10(-3) s(-1)). At higher temperatures, higher rate constants were obtained in the entire experimental MW and DD. The activation energy obtained was 43.8 kJ x mol(-1).  相似文献   

16.
Enzymic preparation of water-soluble chitosan and their antitumor activity   总被引:17,自引:0,他引:17  
Water-soluble low-molecular-weight (LMW) chitosan was prepared from enzymatic hydrolysis with efficient hemicellulase. The hydrolysates were separated by ultrafiltration membranes. A separated fraction with Mw more than 5x10(3) and with a degree of deacetylation of 58% was water-soluble in the free amine form. The intraperitoneal injection of LMW chitosan and its N-acetyl product inhibited the growth of sacroma 180 (S180) tumor cells in the mice, and the maximum inhibitory rate reached 64.2%. The oral administration was also effective on decreasing weight of tumor, and the maximum inhibitory rate reached 33.7%. The Water-soluble chitosan with higher Mw than hexamer might have better antitumor activity.  相似文献   

17.
Chitosan has excellent emulsifying properties. Emulsifying activity and stability of chitosan were determined by integrated light scattering technique and turbidimetric method. The effects of concentration, degree of deacetylation and molecular weight on emulsifying properties of chitosan were systematically studied in the paper. Emulsifying activity of chitosan initially increased, arrived at the peak at 0.75% and then declined, while emulsifying stability continuously increased with a rise of chitosan concentration from 0.25% to 1.25%. Emulsifying activity and stability of chitosan initially decreased and reached the minimum, then increased with the rise of degree of deacetylation. Chitosan with DD 60.5% and 86.1% showed superior emulsifying activity and stability. Chitosan with low Mw exhibited better emulsifying activity than those with high Mw. Chitosan with Mw 410 kDa and 600 kDa showed superior emulsifying activity in the test range. Emulsifying stability of chitosan increased with a rise of Mw.  相似文献   

18.
The cell wall of Fusarium oxysporum f. sp. lycopersici was digested with chitinase to analyze the structure of its chitinous components. In spite of a similar acetylation degree of the cell wall components to that of 25-35% acetylated chitosan, only N-acetylglucosamine disaccharide [(GlcNAc)2] was obtained from chitinase hydrolyzate of the fungal cell wall by CM-Sephadex C-25 column chromatography, while (GlcNAc)2 and several types of deacetylated chitooligosaccharides were separated from that of 25-35% acetylated chitosan. The results indicate that N-acetylglucosamine residues in the polysaccharide chains of the fungal cell wall are most likely condensed into some region, while acetylated residues are more scattered in 25-35% acetylated chitosan.  相似文献   

19.
Four chitosans with different molecular weights and degrees of deacetylation degree and 28 chitosans derived from these initial chitosans by ultrasonic degradation have been characterized by gel permeation chromatography (GPC), FT-IR spectroscopy, X-ray diffraction and titrimetric analyses. Antimicrobial activities were investigated against E. coli and S. aureus using an inhibitory rate technique. The results showed that ultrasonic treatment decreased the molecular weight of chitosan, and that chitosan with higher molecular weight and higher DD was more easily degraded. The polydispersity decreased with ultrasonic treatment time, which was in linear relationship with the decrease of molecular weight. Ultrasonic degradation changed the DD of initial chitosan with a lower DD (<90%), but not the DD of the initials chitosan with a higher DD (>90%). The increased crystallinity of ultrasonically treated chitosan indicated that ultrasonic treatment changed the physical structure of chitosan, mainly due to the decrease of molecular weight. Ultrasonic treatment enhanced the antimicrobial activity of chitosan, mainly due to the decrease of molecular weight.  相似文献   

20.
Twenty-eight taxa of Helianthus collected throughout the United States and grown in afield nursery were evaluated for yields of oil, polyphenol hydrocarbon, protein, and ash in above-ground biomass. Hydrocarbons were examined for the presence of rubber, gutta, and waxes. Rubber and gutta were analyzed for weight-average molecular weight (ìw) and molecular weight distribution (MWD). Helianthus ciliaris had the highest oil yield (3.7%) and was analyzed for yield of fatty acids and unsaponifiable matter. Most taxa had low polyphenol yields (<10%), with H. strumosus having the highest (13.9%). Helianthus salicifolius yielded the most hydrocarbon (1.6%) and H. ciliaris had the highest protein content (13.4%). Natural rubber was present in 13 species of wild sunflowers. Helianthus maximiliani had the lowest ìw (29.8 x 103), while H. laevigatus had the highest (73.3 x 103). The MWD of rubber from sunflowers were within the range of those for commercial rubbers. The lower molecular weight rubbers may have potential as plasticizing additives in commercial processing of synthetic polyisoprenes and as hydrocarbon feedstock for a synthetic petroleum industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号