首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of structural factors on the stability of duplexes formed by DNA minor groove binders conjugated with oligonucleotide mono- or diphosphoramidates of the general formula Oligo-MGBm (where Oligo is an oligonucleotide; m = 1 or 2; MGB is -L(Py)2R, L(Py)4R, -L(Im)4R, or -L(Py)4NH(CH2)3CO(Py)4R; Py is a 4-aminopyrrol-2-carboxylic acid residue, L is a gamma-aminobutyric acid or an epsilon-aminocaproic acid residue, R = OEt, NH(CH2)6NEt2, or NH(CH2)6N+Me3) was studied by the method of thermal denaturation. The mode of binder interaction with minor groove depends on the conjugate structure; it may be of the parallel head to head type for bisphosphoramidates and of the antiparallel head to tail type for monophosphoramidates of a hair-pin structure. The effects of the duplexes with parallel orientation (bisphosphoramidates, MGB is L(Py)4R, m = 2) and those of the hairpin structure with the antiparallel orientation (monophosphoramidates, MGB is L(Py)4(CH2)3CO(Py)4R, m = 1) on Tm values were close. The influence of the linker (L) and substituent (R) structures upon Tm was more pronounced for monophosphoramidate (MGB is L(Py)nR, m = 1) than for bisphosphoramidate (MGB is L(Py)nR, m = 2). No more than two oligopyrrolcarboxamide residues (either in parallel or antiparallel orientations) can be incorporated into the duplex minor groove. Moreover, it was shown by the example of monophosphoramidates (Oligo-L(Py)4R and Oligo-L(Py)4NH(CH2)3CO(Py)4R) that the addition of a second ligand capable of incorporation into the minor groove increased Tm of the corresponding duplex in comparison with the duplex formed by the starting monophosphoramidate. At the same time, the introduction of the ligand incapable of incorporating decreased the Tm value. The mode of interaction of the conjugated ligand with the oligonucleotide duplex is determined by its structure. For example, dipyrrolcarboxamide containing an ethoxy group at the ligand C-end stabilizes the duplex due to the stacking interaction with the terminal A*T pair, whereas tetrapyrrolcarboxamides stabilize the duplex by incorporation into the minor groove.  相似文献   

2.
Synthetic polycarboxamide minor groove binders (MGB) consisting of N‐methylpyrrole (Py), N‐methylimidazole (Im), N‐methyl‐3‐hydroxypyrrole (Hp) and β‐alanine (β) show strong and sequence‐specific interaction with the DNA minor groove in side‐by‐side antiparallel or parallel orientation. Two MGB moieties covalently linked to the same terminal phosphate of one DNA strand stabilize DNA duplexes formed by this strand with a complementary one in a sequence‐specific manner, similarly to the corresponding mono‐conjugated hairpin structures. The series of conjugates with the general formula Oligo‐(L‐MGB‐R)m was synthesized, where m = 1 or 2, L = linker, R = terminal charged or neutral group, MGB = –(Py)n–, –(Im)n– or –[(Py/Im)n–(CH2)3CONH–(Py/Im)n–] and 1 < n < 5. Using thermal denaturation, we studied effects of structural factors such as m and n, linker L length, nature and orientation of the MGB monomers, the group R and the backbone (DNA or RNA), etc. on the stability of the duplexes. Structural factors are more important for linear and hairpin monophosphoroamidates than for parallel bis‐phosphoroamidates. No more than two oligocarboxamide strands can be inserted into the duplex minor groove. Attachment of the second sequence‐specific parallel ligand [–L(Py)4R] to monophosphoroamidate conjugate CGTTTATT–L(Py)4R leads to the increase of the duplex Tm, whereas attachment of [–L(Im)4R] leads to its decrease. The mode of interaction between oligonucleotide duplex and attached ligands could be different (stacking with the terminal A:T pair of the duplex or its insertion into the minor groove) depending on the length and structure of the MGB.  相似文献   

3.
Synthetic polycarboxamide minor groove binders (MGB) consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove in side-by-side antiparallel or parallel orientation. Two MGB moieties covalently linked to the same terminal phosphate of one DNA strand stabilize DNA duplexes formed by this strand with a complementary one in a sequence-specific manner, similarly to the corresponding mono-conjugated hairpin structures. The series of conjugates with the general formula Oligo-(L-MGB-R)m was synthesized, where m = 1 or 2, L = linker, R = terminal charged or neutral group, MGB = -(Py)n-, -(Im)n- or -[(Py/Im)n-(CH2)3CONH-(Py/Im)n-] and I < n < 5. Using thermal denaturation, we studied effects of structural factors such as m and n, linker L length, nature and orientation of the MGB monomers, the group R and the backbone (DNA or RNA), etc. on the stability of the duplexes. Structural factors are more important for linear and hairpin monophosphoroamidates than for parallel bis-phosphoroamidates. No more than two oligocarboxamide strands can be inserted into the duplex minor groove. Attachment of the second sequence-specific parallel ligand [-L(Py)4R] to monophosphoroamidate conjugate CGTTTATT-L(Py)4R leads to the increase of the duplex Tm, whereas attachment of [-L(Im)4R] leads to its decrease. The mode of interaction between oligonucleotide duplex and attached ligands could be different (stacking with the terminal A:T pair of the duplex or its insertion into the minor groove) depending on the length and structure of the MGB.  相似文献   

4.
The polyamides based on 4-amino-1-methylpyrrol-2-carboxylic acid, 4-amino-1-methylimidazole-2-carboxylic acid, and -alanine that stabilize oligonucleotide duplexes consisting of GC pairs through parallel packing in the minor groove were studied. The initial duplex TTGCGCpGCGCAA melts at 28°C; the TTGCGCp[NH(CH2)3COPyImImNH(CH2)3NH(CH3)2][NH(CH2)3COImImPyNH(CH2)3N(CH3)2]GCGCAA duplex (bisphosphoramidate with parallel orientation of ligands, where Py, Im, and are the residues of 1-methyl-4-aminopyrrol-2-carboxylic and 1-methyl-4-aminoimidazole-2-carboxylic acids and -alanine, respectively), at 48°C; and the TTGCGCp[NH(CH2)3COImImPyNH(CH2)3COImImPyNH(CH2)3N(CH3)2]GCGCAA duplex (a hairpin structure with antiparallel orientation), at 56°C.  相似文献   

5.
Synthetic polycarboxamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove when they form hairpin structures with side-by-side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide-linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5'-CGTTTATTp-3'/5'-AATAAACG-3' melts at 20 degrees C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46 degrees C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60 degrees C. It is even higher than in case of "classic" octapyrrole hairpin ligand (Tm = 58 degrees C). Sequence-specific character of stabilization by two conjugated ligands was demonstrated for G:C-containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and beta units according to established recognition rules (deltaTm = 20 degrees C). The two-strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site-specific ligands recognizing single- and double-stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

6.
DNA probes with conjugated minor groove binder (MGB) groups form extremely stable duplexes with single-stranded DNA targets, allowing shorter probes to be used for hybridization based assays. In this paper, sequence specificity of 3′-MGB probes was explored. In comparison with unmodified DNA, MGB probes had higher melting temperature (Tm) and increased specificity, especially when a mismatch was in the MGB region of the duplex. To exploit these properties, fluorogenic MGB probes were prepared and investigated in the 5′-nuclease PCR assay (real-time PCR assay, TaqMan assay). A 12mer MGB probe had the same Tm (65°C) as a no-MGB 27mer probe. The fluorogenic MGB probes were more specific for single base mismatches and fluorescence quenching was more efficient, giving increased sensitivity. A/T rich duplexes were stabilized more than G/C rich duplexes, thereby leveling probe Tm and simplifying design. In summary, MGB probes were more sequence specific than standard DNA probes, especially for single base mismatches at elevated hybridization temperatures.  相似文献   

7.
Synthetic polycarboxamides consisting of N‐methylpyrrole (Py), N‐methylimidazole (Im), N‐methyl‐3‐hydroxypyrrole (Hp) and β‐alanine (β) show strong and sequence‐specific interaction with the DNA minor groove when they form hairpin structures with side‐by‐side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide‐linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5′‐CGTTTATTp‐3′/5′‐AATAAACG‐3′ melts at 20°C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46°C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60°C. It is even higher than in case of “classic” octapyrrole hairpin ligand (Tm = 58°C). Sequence‐specific character of stabilization by two conjugated ligands was demonstrated for G:C‐containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and β units according to established recognition rules (ΔTm = 20°C). The two‐strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site‐specific ligands recognizing single‐ and double‐stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

8.
Ray K  Lee SM  Que L 《Inorganica chimica acta》2008,361(4):1066-1069
The mechanism of formation of [FeIV(O)(N4Py)]2+ (2, N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) from the reaction of [FeII(N4Py)(CH3CN)]2+ (1) with m-chloroperbenzoic acid (mCPBA) in CH2Cl2 at −30 °C has been studied on the basis of the visible spectral changes observed and the reaction stoichiometry. It is shown that the conversion of 1 to 2 in 90% yield requires 1.5 equiv. peracid and takes place in two successive one-electron steps via an [FeIII(N4Py)OH]2+(3) intermediate. The first oxidation step uses 0.5 equiv. peracid and produces 0.5 equiv. 3-chlorobenzoic acid, while the second step uses 1 equiv. peracid and affords byproducts derived from chlorophenyl radical. We conclude that the FeII(N4Py) center promotes O-O bond heterolysis, while the FeIII(N4Py) center favors O-O bond homolysis, so the nature of O-O bond cleavage is dependent on the iron oxidation state.  相似文献   

9.
Abstract

New conjugates containing two parallel or antiparallel carboxamide minor groove binders (MGB) attached to the same terminal phosphate of one oligonucleotide strand were synthesized. The conjugates interact with their target DNA stronger than the individual components. Effect of conjugated MGB on DNA duplex and triplex stability and their sequence specificity was demonstrated on the short oligonucleotide duplexes and on the triplex formed by model 16-mer oligonucleotide with HIV polypurine tract.  相似文献   

10.
In order to investigate the Conformational change of the α-aminoisobutyric acid (Aib) containing peptide by the D /L replacement of an amino acid residue, single crystals of two diastereomers, Dnp-L -Val-Aib-Gly-L -Leu-pNA (L -L isomer) and Dnp-D -Val-Aib-Gly-L -Leu-pNA (D -L isomer), were prepared from aqueous methanol solutions as CH3OH and CH3OH · H2O solvates, respectively, and were analyzed by the x-ray diffraction method. Molecular conformation of L -L isomer adopts consecutive two different types of β-turns, a type II′ β-turn bent at Aib-Gly, and a type III β-turn bent at Gly-Leu, stabilized by two intramolecular (Leu) NH …? O?C (Val) and (pNA) NH …? O?C(Aib) hydrogen bonds. In contrast, these two intramolecular hydrogen bonds lead the D -L isomer to a distorted 310-helix conformation consisting of consecutive two type-III β-turn of Aib-Gly-Leu sequence. The most significant structural difference between these diastereomers is the mutual orientation between the Dnp and pNA chromophores. While the extensive stacking of both the chromophores is intramolecularly formed for the folded conformation of L -L isomer, they are oriented toward an opposite direction in the open conformation of D -L isomer and are intermolecularly stacked with each other. The large separation between these diastereomers observed in the chromatography is discussed in the relation with their Conformational differences. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Three new magnetic compounds were synthesized by using 2-(2′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (NIT2Py) and tris(2-benzimidazolymethyl)amine (NTB) as ligands. The structures and magnetic properties of the complexes with formula [Ni(NIT2Py)(NTB)](ClO4)2(CH3OH) 1, [Mn(NIT2Py)(NTB)](ClO4)22 and {[Zn(NIT2Py)2(CH3OH)2](ClO4)2}{[Zn(NTB)(H2O)](ClO4)2} 3 were characterized. Compounds 1 and 2 both have [M(NIT2Py)(NTB)] structural units, where the metal ion is in an octahedral environment bound to one NIT2Py through one pyridyl nitrogen atom and one nitroxide oxygen atom. However, compound 3, the chelating zinc ion has two crystallographically independent molecules in the asymmetric unit: one is six coordinated octahedral structure [Zn(NIT2Py)2(CH3OH)2](ClO4)2, and the other one is five coordinated pyramidal structure [Zn(NTB)(H2O)](ClO4)2. The magnetic behaviors of these compounds indicate that both the nickel ion and the manganese ion are antiferromagnetically coupled with the NIT2Py ligand with a coupling constant of −19.44 and −0.37 cm−1, respectively, whereas two NIT2Py ligands in compound 3 are ferromagnetically coupled with a coupling constant of 19.1 cm−1.  相似文献   

12.
The uranyl(VI)-mediated photocleavage of a Drew–Dickerson sequence oligonucleotide (5′-dGATCACGCGAATTCGCGT) either as the (self-complementary) duplex or cloned into the BamH1 site of pUC19 has been studied. At pH 6.5 in acetate buffer relatively enhanced photocleavage is observed at the 3′-end of the AATT sequence corresponding to maximum cleavage across the minor groove in the A/T tract. Thus maximum cleavage correlates with minimum minor groove width in the crystal structure and also with the largest electronegative potential according to computations. Using plasmid constructs with cloned inserts of the type [CGCG(A/T4)]n, we also analysed all possible sequence combinations of the (A/T)4 tract and in all cases we observed maximum uranyl-mediated photocleavage across the minor groove in the (A/T)4 tract without any significant differences between the various sequences. From these results we infer that DNA double helices of all (A/T)4 sequences share the same narrow minor groove helix conformation.  相似文献   

13.
Abstract

Assignment of the 1H and 31P NMR spectra of a phosphorodithioate modified oligonucleotide decamer duplex, d(CGCTTpS? 2AAGCG)2 (10-mer-S; a site of dithioate substitution is designated with the symbols pS? 2), was achieved by two-dimensional homonuclear TOCSY, NOES Y and 1H-31P Pure Absorption phase Constant time (PAC) heteronuclear correlation spectroscopy. In contrast to the parent palindromic decamer sequence (1) which has been shown to exist entirely in the duplex B-DNA conformation under comparable conditions (100 mM KCI), the dithiophosphate analogue forms a hairpin loop. However, the duplex form of the dithioate oligonucleotide can be stabilized at lower temperatures, higher salt and strand concentration. The solution structure of the decamer duplex was calculated by an iterative hybrid relaxation matrix method (MORASS) combined with 2D NOESY-distance restrained molecular dynamics. These backbone modified compounds, potentially attractive antisense oligonucleotide agents, are often assumed to possess similar structure as the parent nucleic acid complex. Importantly, the refined structure of the phosphorodithioate duplex shows a significant deviation from the parent unmodified, phosphoryl duplex. An overall bend and unwinding in the phosphorodithioate duplex is observed. The structural distortion of the phosphorodithioate duplex was confirmed by comparison of helicoidal parameters and groove dimensions. Especially, the helical twists of the phosphorodithioate decamer deviate significantly from the parent phosphoryl decamer. The minor groove width of phosphorodithioate duplex 10-mer-S varies between 8.4 and 13.3 Å which is much wider than those of the parent phosphoryl decamer d(CGCTTAAGCG)2 (4.2~9.4Å). The larger minor groove width of 10-mer-S duplex contributes to the unwinding of the backbone and indicates that the duplex has an overall A-DNA-like conformation in the region surrounding the dithiophosphate modification.  相似文献   

14.
2-Amino-3-methylimidazo[4,5-f]quinolone (IQ), a heterocyclic amine found in cooked meats, undergoes bioactivation to a nitrenium ion, which alkylates guanines at both the C8-dG and N2-dG positions. The conformation of a site-specific N2-dG-IQ adduct in an oligodeoxynucleotide duplex containing the iterated CG repeat restriction site of the NarI endonuclease has been determined. The IQ moiety intercalates, with the IQ H4a and CH3 protons facing the minor groove, and the IQ H7a, H8a and H9a protons facing the major groove. The adducted dG maintains the anti-conformation about the glycosyl bond. The complementary dC is extruded into the major groove. The duplex maintains its thermal stability, which is attributed to stacking between the IQ moiety and the 5′- and 3′-neighboring base pairs. This conformation is compared to that of the C8-dG-IQ adduct in the same sequence, which also formed a ‘base-displaced intercalated’ conformation. However, the C8-dG-IQ adopted the syn conformation placing the Watson−Crick edge of the modified dG into the major groove. In addition, the C8-dG-IQ adduct was oriented with the IQ CH3 group and H4a and H5a facing the major groove. These differences may lead to differential processing during DNA repair and replication.  相似文献   

15.
The solution structure and hydration of a DNARNA hybrid chimeric duplex [d(CGC)r(amamam)d(TTTGCG)]2 in which the RNA adenines were substituted by 2-O-methylated riboadenines was determined using two-dimensional NMR, simulated annealing, and restrained molecular dynamics. Only DNA residue 7T in the 2-OMe-RNA DNA junction adopted an O4-endo sugar conformation, while the other DNA residues including 3C in the DNA 2-OMe-RNA junction, adopted C1-exo or C2-endo conformations. The observed NOE intensity of 2-O-methyl group to H1 proton of 4am at the DNA 2-OMe-RNA junction is much weaker than those of 5am and 6am. The 2-O-methyl group of 4am was found to orient towards the minor groove in the trans domain while the 2-O- methyl groups of 5am and 6am were found to be in the gauche (+) domain. In contrast to the long-lived water molecules found close to the RNA adenine H2 and H1 protons and the methyl group of 7T in the RNA-DNA junction of [d(CGC)r(aaa)d(TTTGCG)]2, there were no long-lived water molecules found in [d(CGC)r(amamam)d(TTTGCG)]2. This is probably due to the hydrophobic enviroment created by the 2-O-methylated riboadenines in the minor groove or due to the wider minor groove width in the middle of the structure. In addition, the 2-O-methylation of riboadenines in pure chimeric duplex increses its melting temperature from 48.5°C to 51.9°C. The characteristic structural features and hydration patterns of this chimeric duplex provide a molecular basis for further therapeutic applications of DNARNA hybrid and chimeric duplexes with 2-modified RNA residues.  相似文献   

16.
Abstract

The DNA binding behavior of a tricationic cyanine dye (DiSC3+(5)) was studied using the [Poly(dA-dT)]2, [Poly(dI-dC)]2 and Poly(dA)?Poly(dT) duplex sequences and the Poly(dA) ?2Poly(dT) triplex. Optical spectroscopy and viscometry results indicate that the dye binds to the triplex structure by intercalation, to the nonalternating Poly(dA)?Poly(dT) duplex through minor groove binding and to the alternating [Poly(dA-dT)]2 duplex by a combination of two binding modes: intercalation at low concentration and dimerization within the minor groove at higher concentration. Dimerization occurs at lower dye concentrations for the [Poly(dI-dC)]2 sequence, consistent with our previous investigations on an analogous monocationic cyanine dye. [Seifert, J.L., et al. (1999) J. Am. Chem. Soc. 121, 2987–2995] These studies illustrate the diversity of DNA binding modes that are available to a given ligand structure.  相似文献   

17.
Summary Net CO2 fixation inLemna gibba L. was inhibited by 0.5 mM L-methionine D,L-sulfoximine (MSX) both under photorespiratory conditions (21% O2) and in 2% O2. The inhibition was noticeably delayed by addition of 5 mM glutamine. Glutamine also delayed MSX-induced inactivation of glutamine synthetase. An increase in intracellular NH 4 + concentration was noted in the presence of MSX only, and in the presence of 10 mM NH 4 + only. However, presence of 10 mM NH 4 + did not cause any inhibition of CO2 fixation.  相似文献   

18.
A complete series of configurationally isomers (L -L , L -D , D -L AND D -D ) of a dipeptide Leu-Phe benzyl ester have been synthesized and assayed for chymotrypsin. In the conformational analysis by 400 MMz 1H NMR, the L -D and D -L isomers, but not hte L -L and D -D isomers, showed fairly large up field shifts (0.2–0.4 ppm) of Leu-βCH2 and γCH proton signals, indicating the presence of shielding effects from the benzene ring. In addition to distinct signal splitting of Phe-βCH2, the NOE enhancement observed between Leu-δCH3 and Phe-phenyl groups revealed that these groups are in close proximity. These data indicated that L -D and D -L isomers from a hydrophobic core between side chains of adjacent Leu and Phe residues. When the dipeptides were examined for inhibition of chymotrypsin using Ac-Try-OEt as a substrate, the L -L isomer showed no inhibition, itself becoming a substrate. However, the other three isomers inhibited chymotrypsin in a competitive manner, and the D -L isomer was strongest with Ki of 2.2 × 10?5 M . It was found that the D -L isomer was only slowly hydrolysed but the L (or D )-D isomer was not. H-D -Phe-L -Leu-OBzl with the inverse sequence of H-D -Leu-L -Pre-OBzl inhibited chymotrypsin more strongly (Ki = 6.3 × 10?6 M ). Since the free acid analogue of the D -L isomer exhibited no inhibition, the benzyl ester moiety itself was thought to be involved in the enzyme inhibition. It is assumed that in the inhibitory conformation the ester-benzyl group fits the S1 site of chymotrypsin, while the side chain-side chain complexing hydrophobic core fits the S2 site.  相似文献   

19.
Abstract

The molecular basis of the marked structure-activity relationship for a homologous series of DNA-binding phenoxazone drugs (ActII-ActIV) has been investigated by NMR spectroscopy and molecular mechanics. The spatial structures of the complexes between the drugs and a model deoxytetranucleotide, 5′-d(TpGpCpA), have been determined by molecular mechanics methods using homonuclear 1H-1H 2D-NOESY and heteronuclear 1H-31P (HMBC) NMR spectroscopic data. Observed intermolecular NOE contacts and equilibrium binding studies confirm that the binding affinity of the synthetic phenoxazone derivatives with d(TGCA) decreases with an increase in the number of CH2 groups in the dimethylami- noalkyl side chains, i.e., ActII > ActIII > ActIV, in agreement with the observed biological activity of these compounds. Molecular mechanics calculations of the spatial structures of the intercalated complexes of ActII-ActIV with d(TGCA) indicate that the different binding constants of the phenoxazone derivatives with the DNA oligomer are due to the different degrees of intercalation of the chromophore and the different steric arrangements of aminoalkyl side chains in the minor groove of the tetramer duplex; this results in different distances between the negatively-charged phosphates of the DNA duplex and the terminal positively-charged N(CH3)2 groups of the side chains.  相似文献   

20.
Summary

The residence time of the bound water molecules in the antisense oligodeoxyribonucleotides containing 7′-α-methyl (TMe). carbocyclic thymidines in duplex (I), d5′(1C2G3C4G5A6A7TMc 8TMc 9C10G11C12G)2 3′, and 6′-a-hydroxy (TOH) carbocyclic thymidines in duplex (II), d5′(1C3G3C4G5AOH 6 AOH 7TOH 8 TOH 9C10G11C12G)23, have been investigated using a combination of NOESY and ROESY experiments. Because of the presence of 7′-α-methyl groups of TMe in the centre of the minor groove in duplex (I), the residence time of the bound water molecule is shorter than 0.3 ns. The dramatic reduction of the residence time of the water molecule in the minor groove in duplex (I) compared with the natural counterpart has been attributed to the replacement of second shell of hydration and disruption of hydrogen-bonding with 04′ in the minor groove by hydrophobic α-methyl groups, as originally observed in the X-ray study. This effect could not be attributed to the change of the width of the minor groove because a comparative NMR study of the duplex (I) and its natural counterpart showed that the widths of their minor grooves are more or less unchanged (r.m.s.d change in the core part is <0.63Å). For duplex (II) with polar 6′-α-hydroxyl groups pointed to the minor groove, the correlation time is much longer than 0.36ns as a result of the stabilising hydrogen-bonding interaction with N3 or 02 of the neighbouring nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号