首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA-based typing of the HLA class II loci in a sample of the Cayapa Indians of Ecuador reveals several lines of evidence that selection has operated to maintain and to diversify the existing level of polymorphism in the class II region. As has been noticed for other Native American groups, the overall level of polymorphism at the DRB1, DQA1, DQB1, and DPB1 loci is reduced relative to that found in other human populations. Nonetheless, the relative evenness in the distribution of allele frequencies at each of the four loci points to the role of balancing selection in the maintenance of the polymorphism. The DQA1 and DQB1 loci, in particular, have near-maximum departures from the neutrality model, which suggests that balancing selection has been especially strong in these cases. Several novel DQA1-DQB1 haplotypes and the discovery of a new DRB1 allele demonstrate an evolutionary tendency favoring the diversification of class II alleles and haplotypes. The recombination interval between the centromeric DPB1 locus and the other class II loci will, in the absence of other forces such as selection, reduce disequilibrium across this region. However, nearly all common alleles were found to be part of DR-DP haplotypes in strong disequilibrium, consistent with the recent action of selection acting on these haplotypes in the Cayapa.  相似文献   

2.
Thirty-nine CEPH (Centre d'Etude du Polymorphisme Humain) families, comprised of 502 individuals, have been typed for the HLA class II genes DRB1, DQA1, DQB1, and DPB1 using nonradioactive sequence-specific oligonucleotide probes to analyze polymerase chain reaction amplified DNA. This population, which consists of 266 independent chromosomes, contains 27 DRB1, 7 DQA1, 12 DQB1, and 17 DPB1 alleles. Analysis of the distribution of allele frequencies using the homozygosity statistic, which gives an indication of past selection pressures, suggests that balancing selection has acted on the DRB1, DQA1, and DQB1 loci. The distribution of DPB1 alleles, however, suggests a different evolutionary past. Family data permits the estimation of recombination rates and the unambiguous assignment of haplotypes. No recombinants were found between DRB1, DQA1, and DQB1; however, recombinants were detected between DQB1 and DPB1, resulting in an estimated recombination fraction of greater than or equal to 0.008 +/- 0.004. Only 33 distinct DRB1-DQA1-DQB1 haplotypes were found in this population which illustrates the extreme nonrandom haplotypic association of alleles at these loci. A few of these haplotypes are unusual (previously unreported) for a Caucasian population and most likely result from past recombination events between the DR and DQ subregions. Examination of disequilibrium across the HLA region using these data and the available serologic HLA-A and HLA-B types of these samples shows that global disequilibrium between these loci declines with the recombination fraction, approaching statistic nonsignificance at the most distant interval, HLA-A to HLA-DP.DR-DQ haplotypes in linkage disequilibrium with DPB1 and B are noted and, finally, the evolutionary origin of certain class II haplotypes is addressed.  相似文献   

3.
HLA class I and class II associations were examined in relation to measles virus-specific cytokine responses in 339 healthy children who had received two doses of live attenuated measles vaccine. Multivariate linear regression modeling analysis revealed suggestions of associations between the expression of DPA1*0201 (p=0.03) and DPA1*0202 (p=0.09) alleles and interleukin-2 (IL-2) cytokine production (global p-value 0.06). Importantly, cytokine production and DQB1 allele associations (global p-value 0.04) revealed that the alleles with the strongest association with IL-10 secretion were DQB1*0302 (p=0.02), DQB1*0303 (p=0.07) and DQB1*0502 (p=0.06). Measles-specific IL-10 secretion associations approached significance with DRB1 and DQA1 loci (both global p-values 0.08). Specifically, suggestive associations were found between DRB1*0701 (p=0.07), DRB1*1103 (p=0.06), DRB1*1302 (p=0.08), DRB1*1303 (p=0.06), DQA1*0101 (p=0.08), and DQA1*0201 (p=0.04) alleles and measles-induced IL-10 secretion. Further, suggestive association was observed between specific DQA1*0505 (p=0.002) alleles and measles-specific IL-12p40 secretion (global p-value 0.09) indicating that cytokine responses to measles antigens are predominantly influenced by HLA class II genes. We found no associations between any of the alleles of HLA A, B, and Cw loci and cytokine secretion. These novel findings suggest that HLA class II genes may influence the level of cytokine production in the adaptive immune responses to measles vaccine.  相似文献   

4.
Polymorphism at the ovine major histocompatibility complex class II loci   总被引:2,自引:0,他引:2  
Southern hybridization analysis of the ovine major histocompatibility complex (MHC) ( MhcOvar ) class II region, using sheep-specific probes for the DQA1, DQA2, DQB and DRA loci, has revealed extensive polymorphism. DQA1 and DQAP had eight and 16 alleles respectively, DQB had six and DRA had three alleles. Little information was derived from the DRB locus owing to extensive cross-hybridization between the DRB probe and the DQB locus. Differences in allele frequency between breeds were revealed. At the DQA1 locus a null allele (DQA1-N) was observed with a frequency of between 27% and 45%, making this the most common DQA1 allele in all breeds examined. The frequency of DQA1-N homozygotes was between 11% and 18%, raising questions as to the functional significance of the DQA1 gene. Linkage analysis between the DQA1, DQA2, DQB and DRA loci did not reveal any recombination.  相似文献   

5.
Insulin-dependent diabetes mellitus (IDDM) HLA class II DRB1-DQA1-DQB1 data from four populations (Norwegian, Sardinian, Mexican American, and Taiwanese) have been analyzed to detect the amino acids involved in the disease process. The combination of sites DRB1#67 and 86; DQA1#47; and DQB1#9, 26, 57, and 70 predicts the IDDM component in these four populations, when the results and criteria of the haplotype method for amino acids, developed in the companion paper in this issue of the Journal, are used. The following sites, either individually, or in various combinations, previously have been suggested as IDDM components: DRB1#57, 70, 71, and 86; DQA1#52; and DQB1#13, 45, and 57 (DQB1#13 and 45 correlates 100% with DQB1#9 and 26). We propose that DQA1#47 is a better predictor of IDDM than is the previously suggested DQA1#52, and we add DRB1#67 and DQB1#70 to the HLA DR-DQ IDDM amino acids. We do not claim to have identified all HLA DR-DQ amino acids-or highly correlated sites-involved in IDDM. The frequencies and predisposing/protective effects of the haplotypes defined by these seven sites have been compared, and the effects on IDDM are consistent across the populations. The strongest susceptible effects came from haplotypes DRB1 *0301/DQA1 *0501/ DQB1*0201 and DRB1*0401-5-7-8/DQA1*0301/ DQB1*0302. The number of strong protective haplotypes observed was larger than the number of susceptible ones; some of the predisposing haplotypes were present in only one or two populations. Although the sites under consideration do not necessarily have a functional involvement in IDDM, they should be highly associated with such sites and should prove to be useful in risk assessment.  相似文献   

6.
Molecular typing of HLA class II loci has been performed on a sample of 196 patients with Hodgkin lymphoma. Division of patients into two histological categories--nodular sclerosing Hodgkin disease versus all other types--shows significant overall association of the nodular sclerosing group with the HLA class II region. Haplotypes and alleles defined for the four loci typed--DRB1, DQA1, DQB1, and DPB1--were present in both excess and deficit in the nodular sclerosing sample. Some of the effects are attributable to particular DRB1 and DQB1 alleles, while other effects are best explained by haplotypes marking the entire class II region. The latter effects might be due to variation in additional, as-yet-unexamined loci in the class II region or to particular combinations of alleles from two or more loci. These data also explain why earlier studies showed HLA linkage but not association, and they substantiate the specific involvement of the immune system in certain neoplastic diseases.  相似文献   

7.
The human leukocyte antigen (HLA) DRB1*1501 has been consistently associated with multiple sclerosis (MS) in nearly all populations tested. This points to a specific antigen presentation as the pathogenic mechanism though this does not fully explain the disease association. The identification of expression quantitative trait loci (eQTL) for genes in the HLA locus poses the question of the role of gene expression in MS susceptibility. We analyzed the eQTLs in the HLA region with respect to MS-associated HLA-variants obtained from genome-wide association studies (GWAS). We found that the Tag of DRB1*1501, rs3135388 A allele, correlated with high expression of DRB1, DRB5 and DQB1 genes in a Caucasian population. In quantitative terms, the MS-risk AA genotype carriers of rs3135388 were associated with 15.7-, 5.2- and 8.3-fold higher expression of DQB1, DRB5 and DRB1, respectively, than the non-risk GG carriers. The haplotype analysis of expression-associated variants in a Spanish MS cohort revealed that high expression of DRB1 and DQB1 alone did not contribute to the disease. However, in Caucasian, Asian and African American populations, the DRB1*1501 allele was always highly expressed. In other immune related diseases such as type 1 diabetes, inflammatory bowel disease, ulcerative colitis, asthma and IgA deficiency, the best GWAS-associated HLA SNPs were also eQTLs for different HLA Class II genes. Our data suggest that the DR/DQ expression levels, together with specific structural properties of alleles, seem to be the causal effect in MS and in other immunopathologies rather than specific antigen presentation alone.  相似文献   

8.

Background

Kazakhstan has been inhabited by different populations, such as the Kazakh, Kyrgyz, Uzbek and others. Here we investigate allelic and haplotypic polymorphisms of human leukocyte antigen (HLA) genes at DRB1, DQA1 and DQB1 loci in the Kazakh ethnic group, and their genetic relationship between world populations.

Methodology/Principal Findings

A total of 157 unrelated Kazakh ethnic individuals from Astana were genotyped using sequence based typing (SBT-Method) for HLA-DRB1, -DQA1 and -DQB1 loci. Allele frequencies, neighbor-joining method, and multidimensional scaling analysis have been obtained for comparison with other world populations. Statistical analyses were performed using Arlequin v3.11. Applying the software PAST v. 2.17 the resulting genetic distance matrix was used for a multidimensional scaling analysis (MDS). Respectively 37, 17 and 19 alleles were observed at HLA-DRB1, -DQA1 and -DQB1 loci. The most frequent alleles were HLA-DRB1*07:01 (13.1%), HLA-DQA1*03:01 (13.1%) and HLA-DQB1*03:01 (17.6%). In the observed group of Kazakhs DRB1*07:01-DQA1*02:01-DQB1*02:01 (8.0%) was the most common three loci haplotype. DRB1*10:01-DQB1*05:01 showed the strongest linkage disequilibrium. The Kazakh population shows genetic kinship with the Kazakhs from China, Uyghurs, Mongolians, Todzhinians, Tuvinians and as well as with other Siberians and Asians.

Conclusions/Significance

The HLA-DRB1, -DQA1and -DQB1 loci are highly polymorphic in the Kazakh population, and this population has the closest relationship with other Asian and Siberian populations.  相似文献   

9.
Human narcolepsy-cataplexy, a sleep disorder associated with a centrally mediated hypocretin (orexin) deficiency, is tightly associated with HLA-DQB1*0602. Few studies have investigated the influence that additional HLA class II alleles have on susceptibility to this disease. In this work, 1,087 control subjects and 420 narcoleptic subjects with cataplexy, from three ethnic groups, were HLA typed, and the effects of HLA-DRB1, -DQA1, and -DQB1 were analyzed. As reported elsewhere, almost all narcoleptic subjects were positive for both HLA-DQA1*0102 and -DQB1*0602. A strong predisposing effect was observed in DQB1*0602 homozygotes, across all ethnic groups. Relative risks for narcolepsy were next calculated for heterozygous DQB1*0602/other HLA class II allelic combinations. Nine HLA class II alleles carried in trans with DQB1*0602 were found to influence disease predisposition. Significantly higher relative risks were observed for heterozygote combinations including DQB1*0301, DQA1*06, DRB1*04, DRB1*08, DRB1*11, and DRB1*12. Three alleles-DQB1*0601, DQB1*0501, and DQA1*01 (non-DQA1*0102)-were found to be protective. The genetic contribution of HLA-DQ to narcolepsy susceptibility was also estimated by use of lambda statistics. Results indicate that complex HLA-DR and -DQ interactions contribute to the genetic predisposition to human narcolepsy but that additional susceptibility loci are also most likely involved. Together with the recent hypocretin discoveries, these findings are consistent with an immunologically mediated destruction of hypocretin-containing cells in human narcolepsy-cataplexy.  相似文献   

10.
PCR amplification, oligonucleotide probe typing, and sequencing were used to analyze the HLA class II loci (DRB1, DQA1, DQB1, and DPB1) of an isolated South Amerindian tribe. Here we report HLA class II variation, including the identification of a new DRB1 allele, several novel DR/DQ haplotypes, and an unusual distribution of DPB1 alleles, among the Cayapa Indians (N = 100) of Ecuador. A general reduction of HLA class II allelic variation in the Cayapa is consistent with a population bottle-neck during the colonization of the Americas. The new Cayapa DRB1 allele, DRB1*08042, which arose by a G-->T point mutation in the parental DRB1*0802, contains a novel Val codon (GTT) at position 86. The generation of DRB1*08042 (Val-86) from DRB1*0802 (Gly-86) in the Cayapa, by a different mechanism than the (GT-->TG) change in the creation of DRB1*08041 (Val-86) from DRB1*0802 in Africa, implicates selection in the convergent evolution of position 86 DR beta variants. The DRB1*08042 allele has not been found in > 1,800 Amerindian haplotypes and thus presumably arose after the Cayapa separated from other South American Amerindians. Selection pressure for increased haplotype diversity can be inferred in the generation and maintenance of three new DRB1*08042 haplotypes and several novel DR/DQ haplotypes in this population. The DPB1 allelic distribution in the Cayapa is also extraordinary, with two alleles, DPB1*1401, a very rare allele in North American Amerindian populations, and DPB1*0402, the most common Amerindian DPB1 allele, constituting 89% of the Cayapa DPB1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Variability of the HLA class II genes (alleles of the DRB1, DQA1, and DQB1 loci) was investigated in a sample of Aleuts of the Commanders (n = 31), whose ancestors inhabited the Commander Islands for many thousand years. Among 19 haplotypes revealed in Aleuts of the Commanders, at most eight were inherited from the native inhabitants of the Commander Islands. Five of these haplotypes (DRB1*0401-DQA1*0301-DQB1*0301, DRB1*1401-DQA1*0101-DQB1*0503, DRB1*0802-DQA1*0401-DQB1*0402, DRB1*1101-DQA1*0501-DQB1*0301, and DRB1*1201-DQA1*0501-DQB1*0301) were typical of Beringian Mongoloids, i.e., Coastal Chukchi and Koryaks, as well as Siberian and Alaskan Eskimos. Genetic contribution of the immigrants to the genetic pool of proper Aleuts constituted about 52%. Phylogenetic analysis based on Transberingian distribution of the DRB1 allele frequencies favored the hypothesis on the common origin of Paleo-Aleuts, Paleo-Eskimos, and the Indians from the northwestern North America, whose direct ancestors survived in Beringian/southwestern Alaskan coastal refugia during the late Ice Age.  相似文献   

12.
The populations that colonized Siberia diverged from one another in the Paleolithic and evolved in isolation until today. These populations are therefore a rich source of information about the conditions under which the initial divergence of modern humans occurred. In the present study we used the HLA system, first, to investigate the evolution of the human major histocompatibility complex (MHC) itself, and second, to reveal the relationships among Siberian populations. We determined allelic frequencies at five HLA class II loci (DRB1, DQA1, DQB1, DPA1, and DPB1) in seven Siberian populations (Ket, Evenk, Koryak, Chukchi, Nivkh, Udege, and Siberian Eskimo) by the combination of single-stranded conformational polymorphism and DNA sequencing analysis. We then used the gene frequency data to deduce the HLA class II haplotypes and their frequencies. Despite high polymorphism at four of the five loci, no new alleles could be detected. This finding is consistent with a conserved evolution of human class II MHC genes. We found a high number of HLA class II haplotypes in Siberian populations. More haplotypes have been found in Siberia than in any other population. Some of the haplotypes are shared with non-Siberian populations, but most of them are new, and some represent “forbidden” combinations of DQA1 and DQB1 alleles. We suggest that a set of “public” haplotypes was brought to Siberia with the colonizers but that most of the new haplotypes were generated in Siberia by recombination and are part of a haplotype pool that is turning over rapidly. The allelic frequencies at the DRB1 locus divide the Siberian populations into eastern and central Siberian branches; only the former shows a clear genealogical relationship to Amerinds. Received: 18 August 1997 / Accepted: 6 October 1997  相似文献   

13.
Variability of the HLA class II genes (alleles of the DRB1, DQA1, and DQB1 loci) was investigated in a sample of Aleuts of the Commanders (n = 31), whose ancestors inhabited the Commander Islands for many thousand years. Among 19 haplotypes revealed in the Aleuts of the Commanders, at most eight were inherited from the native inhabitants of the Commander Islands. Five of these haplotypes (DRB1*0401-DQA1*0301-DQB1*0301, DRB1*1401-DQA1*0101-DQB1*0503, DRB1*0802-DQA1*0401-DQB1*0402, DRB1*1101-DQA1*0501-DQB1*0301, and DRB1*1201-DQA1*0501-DQB1*0301) were typical of Beringian Mongoloids, i.e., Coastal Chukchi and Koryaks, as well as Siberian and Alaskan Eskimos. Genetic contribution of the immigrants to the genetic pool of the proper Aleuts constituted about 52%. Phylogenetic analysis based on Transberingian distribution of the DRB1 allele frequencies favored the hypothesis on the common origin of the Paleo-Aleuts, Paleo-Eskimos, and the Indians from the northwestern North America, whose direct ancestors survived in Beringian/southwestern Alaskan coastal refugia during the late Ice Age.  相似文献   

14.
We have analyzed the distribution of HLA class II alleles and haplotypes in a Filipino population by PCR amplification of the DRB1, DQB1, and DPB1 second-exon sequences from buccal swabs obtained from 124 family members and 53 unrelated individuals. The amplified DNA was typed by using nonradioactive sequence-specific oligonucleotide probes. Twenty-two different DRB1 alleles, including the novel Filipino *1105, and 46 different DRB1/DQB1 haplotypes, including the unusual DRB1*0405-DQB1*0503, were identified. An unusually high frequency (f = .383) of DPB1*0101, a rare allele in other Asian populations, was also observed. In addition, an unusual distribution of DRB1 alleles and haplotypes was seen in this population, with DR2 (f = .415) and DRB1*1502-DQB1*0502 (f = .233) present at high frequencies. This distribution of DRB1 alleles differs from the typical HLA population distribution, in which the allele frequencies are more evenly balanced. The distribution of HLA class II alleles and haplotypes in this Filipino population is different from that of other Asian and Pacific groups: of those populations studied to date; the Indonesian population is the most similar. DRB1*1502-DQB1*0502 was in strong linkage disequilibrium (D'' = .41) with DPB1*0101 (f = .126, for the extended haplotype), which is consistent with selection for this DR, DQ, DP haplotype being responsible for the high frequency of these three class II alleles in this population.  相似文献   

15.
The HLA class II region genes DQB1*0602 and DQA1*0102 are currently the best genetic predictors for narcolepsy in humans (1(. The aim of this study was to identify the HLA DQ alleles (DQB1*0602 and DQA1*0102) in Slovene sporadic narcoleptic patients. 11 patients who fulfilled ICSD criteria for narcolepsy entered the study. DRB1*1501 DQB1*0602 was present in all the patients while DQA1*0102 was absent in 2 patients. We propose that DQB1*0602 typing is important in diagnosing narcolepsy in Slovene patients  相似文献   

16.
The HLA system is being paid more and more attention because it is very significant in polymorphous immunological reactions. Several studies have suggested that genetic susceptibility to rheumatic fever (RF) and rheumatic heart disease (RHD) is linked to HLA class II alleles. We hypothesized that HLA class II associations within RHD may be more consistent if analysed amongst patients with a relatively homogeneous clinical outcome. A total of 70 RF patients under the age of 18 years were surveyed and analysed in Latvia. HLA genotyping of DQA1, DQB1 and DRB1 was performed using PCR with amplification with sequence-specific primers. We also used results from a previous study of DQB1 and DRB1 genotyping. In the RF patients, HLA class II DQA1*0401 was found more frequently compared to DQA1*0102. In the RF homogeneous patient groups, DQA1*0402 has the highest odds ratio. This is also the case in the multivalvular lesion (MVL) group, together with DQA1*0501 and DQA1*0301. In the chorea minor patients, DQA1*0201 was often found. Significant HLA DQA1 protective genotypes were not detected, although DQA1 genotypes *0103/*0201 and *0301/*0501 were found significantly and frequently. In the distribution of HLA DRB1/DQA1 genotypes, *07/*0201 and *01/*0501 were frequently detected; these also occurred significantly often in the MVL group. The genotype *07/*0201 was frequently found in Sydenhamn's chorea patients that had also acquired RHD, but DRB1*04/DQA1*0401 was often apparent in RF patients without RHD. In the distribution of HLA DQA1/DQB1 genotypes, both in RF patients and in the homogeneous patient groups, the least frequent were *0102/*0602-8. The genotype DQA1*0501 with the DQB1 risk allele *0301 was often found in the MVL group. The genotype *0301/*0401-2 was frequently found in the RF and Sydenhamn's chorea patient groups. The haplotype *07-*0201-*0302 was frequently found in RF and homogeneous patient groups, including the MVL group. In addition, haplotypes *04-*0401-*0301 and *04-*0301-*0401-2 were frequent amongst patients with Sydenhamn's chorea. The protective alleles DQA1*0102 and DQB1*0602-8 in the haplotype DRB1*15 were less frequently found in RF patients. The results of the present study support our hypothesis and indicate that certain HLA class II haplotypes are associated with risk for or protection against RHD and that these associations are more evident in patients in clinically homogeneous groups.  相似文献   

17.
The Ainu people are considered to be the descendants of preagricultural native populations of northern Japan, while the majority of the population of contemporary Japan (Wajin) is descended mainly from postneolithic migrants. Polymorphisms of the HLA-DRB1, DRB3, and DQB1 alleles were investigated in DNA samples of 50 Ainu living in Hidaka district, Hokkaido. Unique features of the Ainu in this study were high incidences of DRB1*1401, DRB1*1406, and a newly described allele, DRB1*1106 (20%, 17%, and 5%, respectively). On the other hand, several common alleles in Wajin (DRB1*1502, 1302, 0803, and 1501) were found at relatively low frequencies (1–2%) in Ainu. Previously DRB1*1406 was described as a characteristic allele of some Native American or northeast Asian ethnic groups, and DRB1*1106 had been found in only two Singapore Chinese and one Korean. Principal component analysis of various populations based on HLA class II allele frequencies places the Ainu population midway between other east Asian populations, including Wajin, and Native Americans. These observations may support the hypothesis that the Ainu people are the descendants of some Upper Paleolithic populations of northeast Asia from which Native Americans are also descended. © 1996 Wiley-Liss, Inc.  相似文献   

18.
The use of polymerase chain reaction (PCR) and oligonucleotide hybridization offers a new approach for the definition of HLA class II alleles. It has been possible to determine 43 alleles of DRB1, four of DRB3, two of DRB4, four of DRB5, eight of DQA1, and 14 of DQB1. These alleles are inherited together in members of families and form closely associated groups which are found repeatedly and in characteristics patterns in different populations. We have determined the HLA class II alleles and analyzed their association in 431 healthy unrelated subjects including 161 North American Caucasians, 53 Latin Americans, 61 Blacks, 88 Chinese, and 68 Israeli Jews. For-locus haplotypes (DRB1; DRB3/4/5; DQA1; DQB1) were derived from 79 B cell lines and the analysis of segregation in 34 nuclear families. The B-cell lines yielded 37 and the families showed the same, and 20 other, haplotypic combinations. In addition to these 57 haplotypes, associated alleles were assigned in the unrelated panels following certain rules. The resulting haplotypes were assigned to groups known to share associated alleles. The groups were: (1) DR1, DR2, and DRw10 (13 haplotypes); (2) DR3 and DRw6 (26 haplotypes); (3) DR5 and DRw8 (24 haplotypes); (4) DR4, DR7, and DR9 (24 haplotypes). Their distribution in populations with different ethnic backgrounds was analyzed. The expressed DRB4 allele and its null mutant were determined by PCR and oligonucleotide hybridization. The different DR7 haplotypes resulting from these determinations were analyzed in a panel of 130 North American Caucasoids. This comprehensive analysis of class II HLA haplotypes in human populations should be useful in understanding the role of these genes and in various applications including anthropolgy, disease susceptibility, and transplantation of allogeneic organs and tissues. Address correspondence and offprint requests to: P. Stastny  相似文献   

19.
The HLA class II alleles (DRB1, DRB3, DRB5, DQA1, and DQB1) and haplotypic associations were studied in the population of the island of Krk using the PCR-SSOP method and the 12th International Histocompatibility Workshop primers and probes. Allele and haplotypic frequencies were compared with the general Croatian population. Significant differences were observed between the population of the island of Krk and Croatians for: a) three broad specificities at DRB1 locus (DRB1*01, *15, and *07), b) one allele at DRB3 locus (DRB3*0301), c) one allele at DQA1 locus (DQA1*0201), d) one allele at DQB1 locus (DQB1*0303). Four unusual haplotypic associations, which have not yet been described in the Croatian population, DRB1*1301-DQA1*0103-DQB1*0607, DRB1*1302-DQA1*0102-DQB1*0605, DRB1*1305-DQA1*0102-DQB1*0605 and DRB1*1305-DQA1*0103-DQB1*0603 were observed in the population from the island of Krk.  相似文献   

20.
Human leukocyte antigen (HLA) class I and class II alleles are implicated as genetic risk factors for many autoimmune diseases. However, the role of the HLA loci in human systemic lupus erythematosus (SLE) remains unclear. Using a dense map of polymorphic microsatellites across the HLA region in a large collection of families with SLE, we identified three distinct haplotypes that encompassed the class II region and exhibited transmission distortion. DRB1 and DQB1 typing of founders showed that the three haplotypes contained DRB1*1501/ DQB1*0602, DRB1*0801/ DQB1*0402, and DRB1*0301/DQB1*0201 alleles, respectively. By visualizing ancestral recombinants, we narrowed the disease-associated haplotypes containing DRB1*1501 and DRB1*0801 to an approximately 500-kb region. We conclude that HLA class II haplotypes containing DRB1 and DQB1 alleles are strong risk factors for human SLE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号