首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enterotoxigenic strains of Escherichia coli (ETEC) may produce a heat-labile enterotoxin (LT), a heat-stable enterotoxin (ST) or both enterotoxins. Certain serogroups are represented more frequently than others in ETEC isolated from humans. The transfer of three plasmids encoding enterotoxin production (Ent) to 22 non-toxigenic E. coli strains of many different O:H serotypes was studied. The Ent plasmids encoded ST (TP276), or LT (TP277), or ST + LT (TP214), and all carried antibiotic-resistance determinants. Twenty-one recipient strains acquired TP214, 18 acquired TP277 and 14 acquired TP276. Strains of those serotypes to which ETEC in diarrhoeal studies commonly belong neither acquired nor maintained Ent plasmids with a higher frequency than strains of those serotypes to which ETEC rarely belong. The recipient strains, with one exception, all expressed ST, or LT, or ST and LT, when they had acquired the appropriate plasmid; a non-motile strain belonging to O serogroup 88 expressed LT but failed to express ST when it acquired TP214 or TP277.  相似文献   

2.
AIMS: To investigate phenotypic and genotypic aspects of sorbitol-negative or slow-fermenting Escherichia coli, suspected to belong to O157 serogroup, isolated in Italy. METHODS AND RESULTS: Milk samples originating from goats and cows were screened for the presence of E. coli O157 with cultural methods. Sorbitol-negative or slow-fermenting strains were subjected to phenotypic characterization, antibiotic resistance profiles, PCR reactions for detection of toxins (stx(1) and stx(2)) and intimin (eae(GEN) and eae(O157)) genes and clustering by pulsed field gel electrophoresis (PFGE). Only one strain revealed to be O157. Susceptibility to 11 antibiotics highlighted the high resistance to tetracycline (50%), sulfonamide and streptomycin (33%). The stx(2) gene was detected in two strains; only the strain identified as O157 exhibited an amplicon for both eae genes. PFGE identified seven distinct XbaI macrorestriction patterns at a similarity level of 41%. CONCLUSIONS: The use of sorbitol fermentation as cultural method is not sufficient for STEC discrimination while PCR assay proved to be a valuable method. SIGNIFICANCE AND IMPACT OF THE STUDY: The study reports presence of Shiga toxin-producing E. coli in raw milk, signalling a potential risk for humans.  相似文献   

3.
Nineteen enterotoxigenic Escherichia coli strains of serogroup O78, isolated in different geographical areas from humans with diarrheal diseases, were tested for their ability to transfer enterotoxin production. All of the strains originally produced heat-labile enterotoxin, and 16 also produced heat-stable enterotoxin and colonization factor antigen I. Plasmids coding for the production of heat-labile enterotoxin only were transferred from 13 strains. Some properties of these plasmids were compared. All were fi+, but they could be divided into three groups on the basis of their incompatibility reactions, ability to restrict E. coli K-12 phages, and size. The three heat-labile enterotoxin plasmids isolated from African strains all belonged to one enterotoxin plasmid group. The heat-labile enterotoxin plasmids from the Asian strains were divided into two groups, those from serotype O78.H11 differing from those from serotype O78.H12.  相似文献   

4.
Aims:  To find out the prevalence of different serogroups of Escherichia coli ( E. coli ) and to detect heat-stable (ST) and heat-labile (LT) enterotoxin genes of enterotoxigenic E. coli (ETEC) from the faeces of mithun calves with diarrhoea.
Methods and Results:  Faecal samples obtained from 65 diarrhoeic mithun calves of under 2 months of age were examined for E. coli using polymerase chain reaction (PCR). Fifty-four E. coli isolates were obtained from those samples, which belonged to 38 different serogroups. Out of 54 isolates tested by PCR, two isolates (3·70%) belonging to serogroups O26 and O55 were found to possess gene that code for ST enterotoxin and one isolate (1·85%) belonging to serogroup O125 was found to carry LT enterotoxin gene.
Conclusions:  Escherichia coli isolates from diarrhoeic mithun calves were found to possess ST and LT enterotoxin genes, which are designated as ETEC, and these isolates can be detected through PCR using specific primers.
Significance and Impact of the Study:  This study reports the isolation of ETEC possessing ST and LT enterotoxin genes for the first time and ETEC could be a cause of diarrhoea in mithun calves leading to calf mortality.  相似文献   

5.
The Escherichia coli O45 O-antigen gene cluster of strain O45:H2 96-3285 was sequenced, and conventional (singleplex), multiplex, and real-time PCR assays were designed to amplify regions in the wzx (O-antigen flippase) and wzy (O-antigen polymerase) genes. In addition, PCR assays targeting the E. coli O55 wzx and wzy genes were designed based on previously published sequences. PCR assays targeting E. coli O45 showed 100% specificity for this serogroup, whereas by PCR assays specific for E. coli O55, 97/102 strains serotyped as E. coli O55 were positive for wzx and 98/102 for wzy. Multiplex PCR assays targeting the E. coli O45 and the E. coli O55 wzx and wzy genes were used to detect the organisms in fecal samples spiked at levels of 10(6) and 10(8) CFU/0.2 g feces. Thus, the PCR assays can be used to detect and identify E. coli serogroups O45 and O55.  相似文献   

6.
The prevalence of enteropathogenic (EPEC) and enterohaemorrhagic (EHEC) E. coli strains in stool specimens from asymptomatic human carriers working in the canteens and also in the kitchen and sanitary facilities was evaluated. The E. coli genes coding for the following virulence markers: intimin (eae), enterohaemolysin (hlyA), and verotoxins type I and II (stx1 and stx2) were sought by multiplex PCR assay. E. coli isolates were obtained from 144 stool specimens, 295 swabs taken from kitchen hardware and surrounding facilities, and from 33 meat specimens. Only 66 (8.5%) of total 777 E. coli isolates belonged to O44, O18, O25, O127, O55, O114, O125, and O142 serogroups, the prevalent serogroups in Poland. None of the strains was classified as serogroup O157. The serogroups O44 and O18 were present most often among all typeable strains and their incidence was 51.5% and 25.8% respectively. Among 363 isolates assayed for the presence of the genes encoding virulence markers only 10 isolates (2.8%) carried eae gene. None of the isolates possessing eae gene belonged to the serogroups tested. The hlyA, stx1 and stx2 genes were absent in all E. coli isolates tested.  相似文献   

7.
Escherichia coli was isolated from wild and captive Japanese macaques (Macaca fuscata) to investigate the risk of zoonotic infections and the prevalence of antimicrobial-resistant Escherichia coli in the wild macaque population in Shimokita Peninsula, a rural area of Japan. We collected 265 fresh fecal samples from wild macaques and 20 samples from captive macaques in 2005 and 2006 for E. coli isolation. The predominant isolates were characterized by serotyping, virulence gene profiling, plasmid profiling, pulsed-field gel electrophoresis (PFGE), and microbial sensitivity tests. In total, 248 E. coli strains were isolated from 159 fecal samples from wild macaques, and 42 E. coli were isolated from 17 samples from captive macaques. None of the virulence genes eae, stx, elt, and est were detected in any of the isolates. The relatedness between wild- and captive-derived isolates was low by serotyping, PFGE, and plasmid profiling. Serotypes O8:H6, O8:H34, O8:H42, O8:HUT, O103:H27, O103:HNM, and OUT:H27 were found in wild macaque feces; serotypes O157:H42 and O119:H21 were recovered from captive macaques. O-and H-serotypes of the 26 isolates were not typed by commercial typing antisera and were named OUT and HUT, respectively. Twenty-eight isolates had no flagellar antigen, and their H-serotypes were named HNM. Similarity of PFGE patterns between wild-derived isolates and captive-derived isolates was <70%. No plasmid profile was shared between wild-derived and captive-derived isolates. The prevalence of antimicrobial-resistant E. coli was 6.5% (n=62) in wild macaques, and these isolates were resistant to cephalothin. We conclude that wild Japanese macaques in Shimokita Peninsula were unlikely to act as a reservoir of pathogenic E. coli for humans and that antimicrobial-resistant E. coli in wild macaques may be derived from humans.  相似文献   

8.
Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.  相似文献   

9.
The molecular properties of enterotoxin (Ent) plasmids from 12 Escherichia coli strains of human origin were examined. Ten strains belonged to the O78 serogroup, and the remainder were of serogroup O7 or O159. Eleven plasmids coded for heat-labile enterotoxin (LT), and one coded for heat-stable enterotoxin (ST) and LT. The results of restriction enzyme digests and deoxyribonucleic acid reassociation experiments showed that all of the Ent plasmids were related, and supported the subdivision of the LT plasmids into three groups based on their genetic properties (M. M. McConnell et al., J. Bacteriol. 143: 158–167, 1980). Within group 1, two plasmids from South African strains were indistinguishable but differed in EcoRI and HindIII digests from the LT plasmid that originated from an Ethiopian strain. The three plasmids had >70% homology. The two non-autotransferring group 2 plasmids identified in O78.H11 strains from Bangladesh were indistinguishable. The group 3 plasmids were from strains belonging to serogroups O7 and O78 isolated in Bangladesh, India, and Thailand. They shared >95% homology but showed slight differences in fragment patterns when treated with EcoRI and HindIII. There was 60 to 70% homology between the plasmids of groups 1 and 3, and the group 2 plasmid had 40 to 50% homology with members of these two groups. The autotransferring Ent plasmids had up to 40% homology with R factors of incompatibility groups FI, FII, and FIV.  相似文献   

10.
Escherichia coli serogroup O103 has been associated with gastrointestinal illness and hemolytic uremic syndrome. To develop PCR-based methods for detection and identification of this serogroup, the DNA sequence of the 12,033-bp region containing the O antigen gene cluster of Escherichia coli O103 was determined. Of the 12 open reading frames identified, the E. coli O103 wzx (O antigen flippase) and wzy (O antigen polymerase) genes were selected as targets for development of both conventional and real-time PCR assays specific for this serogroup. In addition, a multiplex PCR targeting the Shiga toxin (Stx) 1 (stx1), Shiga toxin 2 (stx2), wzx, and wzy genes was developed to differentiate Stx-producing E. coli O103 from non-toxigenic strains. The PCR assays can be employed to identify E. coli serogroup O103, replacing antigen-based serotyping, and to potentially detect the organism in food, fecal, or environmental samples.  相似文献   

11.
Cattle are a major reservoir for Shiga toxin-producing Escherichia coli O157 (STEC O157) and harbor multiple genetic subtypes that do not all associate with human disease. STEC O157 evolved from an E. coli O55:H7 progenitor; however, a lack of genome sequence has hindered investigations on the divergence of human- and/or cattle-associated subtypes. Our goals were to 1) identify nucleotide polymorphisms for STEC O157 genetic subtype detection, 2) determine the phylogeny of STEC O157 genetic subtypes using polymorphism-derived genotypes and a phage insertion typing system, and 3) compare polymorphism-derived genotypes identified in this study with pulsed field gel electrophoresis (PFGE), the current gold standard for evaluating STEC O157 diversity. Using 762 nucleotide polymorphisms that were originally identified through whole-genome sequencing of 189 STEC O157 human- and cattle-isolated strains, we genotyped a collection of 426 STEC O157 strains. Concatenated polymorphism alleles defined 175 genotypes that were tagged by a minimal set of 138 polymorphisms. Eight major lineages of STEC O157 were identified, of which cattle are a reservoir for seven. Two lineages regularly harbored by cattle accounted for the majority of human disease in this study, whereas another was rarely represented in humans and may have evolved toward reduced human virulence. Notably, cattle are not a known reservoir for E. coli O55:H7 or STEC O157:H(-) (the first lineage to diverge within the STEC O157 serogroup), which both cause human disease. This result calls into question how cattle may have originally acquired STEC O157. The polymorphism-derived genotypes identified in this study did not surpass PFGE diversity assessed by BlnI and XbaI digestions in a subset of 93 strains. However, our results show that they are highly effective in assessing the evolutionary relatedness of epidemiologically unrelated STEC O157 genetic subtypes, including those associated with the cattle reservoir and human disease.  相似文献   

12.
A total of 26 strains of Vibrio cholerae, including members of the O1, O139, and non-O1, non-O139 serogroups from both clinical and environmental sources, were examined for the presence of genes encoding cholera toxin (ctxA), zonula occludens toxin (zot), accessory cholera enterotoxin (ace), hemolysin (hlyA), NAG-specific heat-stable toxin (st), toxin-coregulated pilus (tcpA), and outer membrane protein (ompU), for genomic organization, and for the presence of the regulatory protein genes tcpI and toxR in order to determine relationships between epidemic serotypes and sources of isolation. While 22 of the 26 strains were hemolytic on 5% sheep blood nutrient agar, all strains were PCR positive for hlyA, the hemolysin gene. When multiplex PCR was used, all serogroup O1 and O139 strains were positive for tcpA, ompU, and tcpI. All O1 and O139 strains except one O1 strain and one O139 strain were positive for the ctxA, zot, and ace genes. Also, O1 strain VO3 was negative for the zot gene. All of the non-O1, non-O139 strains were negative for the ctxA, zot, ace, tcpA, and tcpI genes, and all of the non-O1, non-O139 strains except strain VO26 were negative for ompU. All of the strains except non-O1, non-O139 strain VO22 were PCR positive for the gene encoding the central regulatory protein, toxR. All V. cholerae strains were negative for the NAG-specific st gene. Of the nine non-ctx-producing strains of V. cholerae, only one, non-O1, non-O139 strain VO24, caused fluid accumulation in the rabbit ileal loop assay. The other eight strains, including an O1 strain, an O139 strain, and six non-O1, non-O139 strains, regardless of the source of isolation, caused fluid accumulation after two to five serial passages through the rabbit gut. Culture filtrates of all non-cholera-toxigenic strains grown in AKI media also caused fluid accumulation, suggesting that a new toxin was produced in AKI medium by these strains. Studies of clonality performed by using enterobacterial repetitive intergenic consensus sequence PCR, Box element PCR, amplified fragment length polymorphism (AFLP), and pulsed-field gel electrophoresis (PFGE) collectively indicated that the V. cholerae O1 and O139 strains had a clonal origin, whereas the non-O1, non-O139 strains belonged to different clones. The clinical isolates closely resembled environmental isolates in their genomic patterns. Overall, there was an excellent correlation among the results of the PCR, AFLP, and PFGE analyses, and individual strains derived from clinical and environmental sources produced similar fingerprint patterns. From the results of this study, we concluded that the non-cholera-toxin-producing strains of V. cholerae, whether of clinical or environmental origin, possess the ability to produce a new secretogenic toxin that is entirely different from the toxin produced by toxigenic V. cholerae O1 and O139 strains. We also concluded that the aquatic environment is a reservoir for V. cholerae O1, O139, non-O1, and non-O139 serogroup strains.  相似文献   

13.
Enterotoxigenic Escherichia coli (ETEC) of serogroup O166 gave mannose-resistant haemagglutination (MRHA) with bovine and human erythrocytes. The strains did not react with antisera prepared against the known colonization factors CFA/I, CFA/II, CFA/III, CFA/IV and PCFO159:H4. Strain E7476 of serotype O166:H27, which produced heat-stable enterotoxin (ST), was examined initially. It produced fimbriae about 7 nm in diameter. On SDS-PAGE two possible fimbrial polypeptides of molecular mass 15.5 and 17.0 kDa were seen. When variants of strain E7476 were isolated, loss of ST and MRHA together was associated with loss of a 98 MDa plasmid, while loss of ST alone correlated with plasmid deletion. An absorbed anti-strain E7476 antiserum reacted specifically with the 15.5 and 17.0 kDa polypeptides in Western immunoblotting and bound to the intact fimbriae by immuno-electron microscopy. When this antiserum was used in an ELISA to examine other strains of serogroup O166, a positive reaction was obtained with all the ST- and MRHA-positive strains. One strain of serotype O71:H27 and two strains of serotype O98:H- also reacted with the absorbed anti-strain E7476 antiserum. The antiserum did not react with ETEC carrying known colonization factors. E. coli K12 and a number of E. coli of different serotypes carrying a plasmid coding for ST transferred from strain E7476, all gave MRHA and reacted with the absorbed anti-strain E7476 antiserum. The term putative colonization factor O166 (PCFO166) is proposed to describe the adhesive factor(s) on ETEC of serogroup O166 because of the similarity of properties with those of known colonization factors.  相似文献   

14.
This study investigated the shedding of Escherichia coli O26, O103, O111, O145, and O157 in a cohort of beef calves from birth over a 5-month period and assessed the relationship between shedding in calves and shedding in their dams, the relationship between shedding and scouring in calves, and the effect of housing on shedding in calves. Fecal samples were tested by immunomagnetic separation and by PCR and DNA hybridization assays. E. coli O26 was shed by 94% of calves. Over 90% of E. coli O26 isolates carried the vtx(1), eae, and ehl genes, 6.5% carried vtx(1) and vtx(2), and one isolate carried vtx(2) only. Serogroup O26 isolates comprised seven pulsed-field gel electrophoresis (PFGE) patterns but were dominated by one pattern which represented 85.7% of isolates. E. coli O103 was shed by 51% of calves. Forty-eight percent of E. coli O103 isolates carried eae and ehl, 2% carried vtx(2), and none carried vtx(1). Serogroup O103 isolates comprised 10 PFGE patterns and were dominated by two patterns representing 62.5% of isolates. Shedding of E. coli O145 and O157 was rare. All serogroup O145 isolates carried eae, but none carried vtx(1) or vtx(2). All but one serogroup O157 isolate carried vtx(2), eae, and ehl. E. coli O111 was not detected. In most calves, the temporal pattern of E. coli O26 and O103 shedding was random. E. coli O26 was detected in three times as many samples as E. coli O103, and the rate at which calves began shedding E. coli O26 for the first time was five times greater than that for E. coli O103. For E. coli O26, O103, and O157, there was no association between shedding by calves and shedding by dams within 1 week of birth. For E. coli O26 and O103, there was no association between shedding and scouring, and there was no significant change in shedding following housing.  相似文献   

15.
Escherichia coli O25 strains that produce heat-stable toxin (ST) have been recently isolated in Japan, and epidemiological study of this type of enterotoxigenic E. coli is required. In this study the heterogeneity of 16 ST-producing and non-producing strains of E. coli O25 was investigated. All eight ST-producing strains were shown to have STIb gene, and seven of them had similar profiles of plasmids, ladder-banding of LPS in SDS-polyacrylamide gel electrophoresis, and chromosomal DNA digestions in pulsed-field gel electrophoresis (PFGE). In contrast, ST-non-producing strains were more heterogeneous in all parameters examined. PFGE of the digested chromosomal DNA with several restriction enzymes was proved to be an effective procedure to compare the closely related strains of E. coli O25.  相似文献   

16.
AIMS: The aim of this study was to isolate Escherichia coli O26, O103, O111 and O145 from 745 samples of bovine faeces using (i) immunomagnetic separation (IMS) beads coated with antibodies to lipopolysaccharide, and slide agglutination (SA) tests and (ii) PCR and DNA probes for the detection of the Verocytotoxin (VT) genes. METHODS AND RESULTS: IMS-SA tests detected 132 isolates of presumptive E. coli O26, 112 (85%) were confirmed as serogroup O26 and 102 had the VT genes. One hundred and twenty-two strains of presumptive E. coli O103 were isolated by IMS-SA, 45 (37%) were confirmed as serogroup O103 but only one of these strains was identified as Verocytotoxin-producing E. coli (VTEC). Using the PCR/DNA probe method, 40 strains of VTEC O26 and three strains of VTEC O103 were isolated. IMS-SA identified 21 strains of presumptive E. coli O145, of which only four (19%) were confirmed as serogroup O145. VTEC of this serogroup was not detected by either IMS-SA or PCR/DNA probes. E. coli O111 was not isolated by either method. CONCLUSION: IMS beads were 2.5 times more sensitive than PCR/DNA probe methods for the detection of VTEC O26 in bovine faeces. SIGNIFICANCE AND IMPACT OF THE STUDY: IMS-SA is a sensitive method for detecting specific E. coli serogroups. However, the specificity of this method would be enhanced by the introduction of selective media and the use of tube agglutination tests for confirmation of the preliminary SA results.  相似文献   

17.
Two types of pathogenic Escherichia coli, enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC), cause diarrheal disease by disrupting the intestinal environment through the intimate attachment of the bacteria to the intestinal epithelium. This process is mediated by intimin, an outer membrane protein that is homologous to the invasins of pathogenic Yersinia. The intimin (eae) gene is part of a pathogenicity island, a 35-kb segment of DNA that has been acquired independently in different groups of pathogens. Nucleotide sequences of eae of three EPEC and four EHEC strains representing distinct clonal lineages revealed an exceptionally high level of divergence (15%) in the amino acid sequences of alpha, beta, and gamma intimin molecules, most of which is concentrated in the C-terminal region. The gamma intimin sequences from E. coli strains with serotypes O157:H7, O55:H7, and O157:H- are virtually identical, supporting the hypothesis that these bacteria belong to a single clonal lineage. Sequences of beta intimin of EPEC strains of serotypes O111:H2 and O128:H2 show substantial differences from alpha and gamma intimins, indicating that these strains have evolved independently. Strong nonrandom clustering of polymorphic sites indicates that the intimin genes are mosaics, suggesting that protein divergence has been accelerated by recombination and diversifying selection.  相似文献   

18.
If the acquisition of virulence genes (VGs) for pathogenicity were not solely acquired through horizontal gene transfers of pathogenicity islands, transposons, and phages, then clonal clusters of enterotoxigenic Escherichia coli (ETEC) would contain few or even none of the VGs found in strains responsible for extraintestinal infections. To evaluate this possibility, 47 postweaning diarrhea (PWD) ETEC strains from different geographical origins and 158 commensal E. coli isolates from the gastrointestinal tracts of eight group-housed healthy pigs were screened for 36 extraintestinal and 18 enteric VGs using multiplex PCR assays. Of 36 extraintestinal VGs, only 8 were detected (fimH, traT, fyuA, hlyA, kpsMtII, k5, iha, and ompT) in the ETEC collection. Among these, hlyA (alpha-hemolysin) and iha (nonhemagglutinating adhesin) occurred significantly more frequently among the ETEC isolates than in the commensal isolates. Clustering analysis based on the VG profiles separated commensal and ETEC isolates and even differentiated serogroup O141 from O149. On the other hand, pulsed-field gel electrophoresis (PFGE) successfully clustered ETEC isolates according to both serotype and geographical origin. In contrast, the commensal isolates were heterogeneous with respect to both serotype and DNA fingerprint. This study has validated the use of VG profiling to examine pathogenic relationships between porcine ETEC isolates. The clonal relationships of these isolates can be further clarified by PFGE fingerprinting. The presence of extraintestinal VGs in porcine ETEC confirmed the hypothesis that individual virulence gene acquisitions can occur concurrently against a background of horizontal gene transfers of pathogenicity islands. Over time, this could enable specific clonotypes to respond to host selection pressure and to evolve into new strains with increased virulence.  相似文献   

19.
Rectal fecal samples were taken once a week from 49 calves on the same farm. In addition, the dams of the calves were sampled at the time of calf birth and at the end of the study. Strains of verocytotoxin-producing Escherichia coli (VTEC) were isolated from these samples by using PCR and DNA probe hybridization tests and were characterized with respect to serotype, verocytotoxin gene (vtx) type, and the presence of the intimin (eae) and hemolysin (ehxA) genes. A total of 170 VTEC strains were isolated during 21 weeks from 130 (20%) of 664 samples from calves and from 40 (47%) of 86 samples from their dams. The characteristics of the calf strains differed from those strains isolated from the dams with respect to verocytotoxin 2 and the presence of the eae gene. In addition, no calf shed the same VTEC serogroup (excluding O?) as its dam at birth or at the end of the study. The most frequently detected serogroups in calves were serogroup O26 and provisional serogroup E40874 (VTEC O26 was found in 25 calves), whereas in dams serogroup O91 and provisional serogroup E54071 were the most common serogroups. VTEC O26 shedding appeared to be associated with very young calves and declined as the calves aged, whereas VTEC O2 shedding was associated with housing of the animals. VTEC O26 strains from calves were characterized by the presence of the vtx1, eae, and ehxA genes, whereas vtx2 was associated with VTEC O2 and provisional serogroup E40874. The high prevalence of VTEC O26 and of VTEC strains harboring the eae gene in this calf cohort is notable because of the association of the O26 serogroup and the presence of the eae gene with human disease. No association between calf diarrhea and any of the VTEC serogroups was identified.  相似文献   

20.
The O6 serogroup Escherichia coli strain 536 carries two hemolysin (hly) determinants integrated into the chromosome. The two hly determinants are not completely identical, either functionally or structurally, as demonstrated by spontaneous deletion mutants carrying only one of them and by cloning each of the two determinants separately into cosmid vectors. Each hly determinant is independently deleted at a frequency of 10(-4), leading to variants which exhibit similar levels of internal hemolysin but different amounts of secreted hemolysin. The two hly determinants were also identified in the O4 E. coli strain 519. The three E. coli strains 251, 764, and 768, which belong to the serogroup O18, and the O4 strain 367 harbor a single chromosomal hly determinant, as demonstrated by hybridization with hly-gene-specific probes. However, a hybridization probe derived from a sequence adjacent to the hlyC-proximal end of the plasmid pHly 152-encoded hly determinant hybridizes with several additional chromosomal bands in hemolytic O18 and O6 E. coli strains and even in E. coli K-12. The size of the probe causing the multiple hybridization suggests a 1,500- to 1,800-base pair sequence directly flanking hlyC. Spontaneous hemolysin-negative mutants were isolated from strains 764 and 768, which had lost the entire hly determinant but retained all copies of the hlyC-associated sequence.2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号