首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Multiple intracellular signaling pathways have been shown to regulate the hypertrophic growth of cardiac myocytes including mitogen-activated protein kinase (MAPK) and calcineurin-nuclear factor of activated T-cells. However, it is uncertain if individual regulatory pathways operate in isolation or if interconnectivity between unrelated pathways is required for the orchestration of the entire hypertrophic response. To this end, we investigated the interconnectivity between calcineurin-mediated cardiac myocyte hypertrophy and p38 MAPK signaling in vitro and in vivo. We show that calcineurin promotes down-regulation of p38 MAPK activity and enhances expression of the dual specificity phosphatase MAPK phosphatase-1 (MKP-1). Transgenic mice expressing activated calcineurin in the heart were characterized by inactivation of p38 and increased MKP-1 expression during early postnatal development, before the onset of cardiac hypertrophy. In vitro, cultured neonatal cardiomyocytes infected with a calcineurin-expressing adenovirus and stimulated with phenylephrine demonstrated reduced p38 phosphorylation and increased MKP-1 protein levels. Activation of endogenous calcineurin with the calcium ionophore decreased p38 phosphorylation and increased MKP-1 protein levels. Inhibition of endogenous calcineurin with cyclosporin A decreased MKP-1 protein levels and increased p38 activation in response to agonist stimulation. To further investigate potential cross-talk between calcineurin and p38 through alteration in MKP-1 expression, the MKP-1 promoter was characterized and determined to be calcineurin-responsive. These data suggest that calcineurin enhances MKP-1 expression in cardiac myocytes, which is associated with p38 inactivation.  相似文献   

7.
Mechanical stretch and para- and/or autocrine factors, including endothelin-1, induce hypertrophy of cardiac myocytes and proliferation of fibroblasts. To investigate the effect of mechanical load on endothelin-1 production and endothelin system gene expression in neonatal rat ventricular myocytes and fibroblasts, we exposed cells to cyclic mechanical stretch in vitro (0.5 Hz, 10-25% elongation, from 1 min to 24 h). Endothelin-1 peptide levels were measured from culture media of myocytes and fibroblasts and human umbilical vein endothelial cells (positive control) by specific radioimmunoassay. Preproendothelin-1 promoter activity was measured via transfection of reporter plasmids and mRNA levels with Northern blot analysis or quantitative RT-PCR. Activity of extracellular signal-regulated kinase was quantified with specific kinase assay. We found that stretching of myocytes activated preproendothelin-1 gene expression, including promoter activation, transient mRNA level increases, and augmented endothelin-1 secretion. In contrast, preproendothelin-1 gene expression was inhibited in stretched fibroblasts. Endothelin-converting enzyme-1beta mRNA levels elevated in stretched fibroblasts but decreased in stretched myocytes. Endothelin receptor type A mRNA levels declined in stretched myocytes, whereas levels were below detection in fibroblasts. Stretch activated extracellular signal-regulated kinase in myocytes, and when the kinase activity was pharmacologically inhibited, the preproendothelin-1 induction was suppressed. Transient overexpression of mitogen-activated ERK-activating kinase-1 induced preproendothelin-1 promoter in myocytes. In summary, mechanical stretch distinctly regulates endothelin system gene expression in cardiac myocytes and fibroblasts. The inhibition of the endothelin system may affect cardiac mechanotransduction and therefore provides an approach in treatment of load-induced cardiac pathology.  相似文献   

8.
9.
10.
11.
The Na+-K+--ATPase, or Na+ pump, is a member of the P-type ATPase superfamily. In addition to pumping ions, Na+-K+--ATPase is engaged in assembly of multiple protein complexes that transmit signals to different intracellular compartments. The signaling function of the enzyme appears to have been acquired through the evolutionary incorporation of many specific binding motifs that interact with proteins and ligands. In some cell types the signaling Na+ --ATPase and its protein partners are compartmentalized in coated pits (i.e., caveolae) the plasma membrane. Binding of ouabain to the signaling Na+-K+--ATPase activates the cytoplasmic tyrosine kinase Src, resulting in the formation of an active "binary receptor" that phosphorylates and assembles other proteins into different signaling modules. This in turn activates multiple protein kinase cascades including mitogen-activated protein kinases and protein kinase C isozymes in a cell-specific manner. It also increases mitochondrial production of reactive oxygen species (ROS)and regulates intracellular calcium concentration. Crosstalk among the activated pathways eventually results in changes in the expression of a number of genes. Although ouabain stimulates hypertrophic growth in cardiac myocytes and proliferation in smooth muscle cells, it also induces apoptosis in many malignant cells. Finally, the signaling function of the enzyme is also pivotal to ouabain-induced nongenomic effects on cardiac myocytes.  相似文献   

12.
13.
14.
15.
The related inflammatory cytokines, interleukin- (IL-) 1β and IL-33, are both implicated in the response of the heart to injury. They also activate mitogen-activated protein kinases (MAPKs) in cardiac myocytes. The hypertrophic Gq protein-coupled receptor agonist endothelin-1 is a potentially cardioprotective peptide and may modulate the inflammatory response. Endothelin-1 also stimulates (MAPKs) in cardiac myocytes and promotes rapid changes in expression of mRNAs encoding intercellular and intracellular signalling components including receptors for IL-33 (ST2) and phosphoprotein phosphatases. Prior exposure to endothelin-1 may specifically modulate the response to IL-33 and, more globally, influence MAPK activation by different stimuli. Neonatal rat ventricular myocytes were exposed to IL-1β or IL-33 with or without pre-exposure to endothelin-1 (5 h) and MAPK activation assessed. IL-33 activated ERK1/2, JNKs and p38-MAPK, but to a lesser degree than IL-1β. Endothelin-1 increased expression of soluble IL-33 receptors (sST2 receptors) which may prevent binding of IL-33 to the cell-surface receptors. However, pretreatment with endothelin-1 only inhibited activation of p38-MAPK by IL-33 with no significant influence on ERK1/2 and a small increase in activation of JNKs. Inhibition of p38-MAPK signalling following pretreatment with endothelin-1 was also detected with IL-1β, H2O2 or tumour necrosis factor α (TNFα) indicating an effect intrinsic to the signalling pathway. Endothelin-1 pretreatment suppressed the increase in expression of IL-6 mRNA induced by IL-1β and decreased the duration of expression of TNFα mRNA. Coupled with the general decrease in p38-MAPK signalling, we conclude that endothelin-1 attenuates the cardiac myocyte inflammatory response, potentially to confer cardioprotection.  相似文献   

16.
17.
We previously reported that hypoxia followed by reoxygenation (hypoxia/reoxygenation) rapidly activated intracellular signaling such as mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated protein kinase (ERK) 1/2, p38MAPK, and stress-activated protein kinases (SAPKs). To investigate the humoral factors which mediate cardiac response to hypoxia/reoxygenation, we analyzed the conditioned media from cardiac myocytes subjected to hypoxia/reoxygenation by two-dimensional electrophoresis and mass spectrometry. We identified cyclophilin A (CyPA) as one of the proteins secreted from cardiac myocytes in response to hypoxia/reoxygenation. Hypoxia/reoxygenation induced the expression of CyPA and its cell surface receptor CD147 on cardiac myocytes in vitro. This was also confirmed by ischemia/reperfusion in vivo. Recombinant human (rh) CyPA activated ERK1/2, p38MAPK, SAPKs, and Akt in cultured cardiac myocytes. Furthermore, CyPA significantly increased Bcl-2 in cardiac myocytes. These data strongly suggested that CyPA is released from cardiac myocytes in response to hypoxia/reoxygenation and may protect cardiac myocytes from oxidative stress-induced apoptosis.  相似文献   

18.
19.
Adult cardiac myocytes are terminally differentiated cells that are no longer able to divide. Accumulating data support the idea that apoptosis in these cells is involved in the transition from cardiac compensation to decompensated heart failure. Since a number of neurohormonal factors are activated in this state, these factors may be involved in the positive and negative regulation of apoptosis in cardiac myocytes. beta1-Adrenergic receptor and angiotensin type 1 receptor pathways, nitric oxide and natriuretic peptides are involved in the induction of apoptosis in these cells, while alpha1- and beta2-adrenergic receptor and endothelin-1 type A receptor pathways and gp130-related cytokines are antiapoptotic. The myocardial protection of the latter is mediated, at least in part, through mitogen-activated protein kinase-dependent pathways, compatible with the findings in other cell types. In contrast, signaling pathways leading to apoptosis in cardiac myocytes are distinct from those in other cell types. The cAMP/PKA pathway induces apoptosis in cardiac myocytes and blocks apoptosis in other cell types. The p300 protein, a coactivator of p53, mediates apoptosis in fibroblasts but appears to play a protective role in differentiated cardiac myocytes. The inhibition of myocardial cell apoptosis in heart failure may be achieved by directly blocking apoptosis signaling pathways or by modulating neurohormonal factors involved in their regulation. These may provide novel therapeutic strategies in some forms of heart failure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号