首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 699 毫秒
1.
In higher plants, the chloroplastic protein plastocyanin is synthesized as a transit peptide-containing precursor by cytosolic ribosomes and posttranslationally transported to the thylakoid lumen. En route to the lumen, a plastocyanin precursor is first imported into chloroplasts and then further directed across the thylakoid membrane by a second distinct transport event. A partially processed form of plastocyanin is observed in the stroma during import experiments using intact chloroplasts and has been proposed to be the translocation substrate for the second step (Smeekens, S., Bauerle, C., Hageman, J., Keegstra, K., and Weisbeek, P. (1986) Cell 46, 365-375). To further characterize this second step, we have reconstituted thylakoid transport in a system containing in vitro-synthesized precursor proteins and isolated thylakoid membranes. This system was specific for lumenal proteins since stromal proteins lacking the appropriate targeting information did not accumulate in the thylakoid lumen. Plastocyanin precursor was taken up by isolated thylakoids, proteolytically processed to mature size, and converted to holo form. Translocation was temperature-dependent and was stimulated by millimolar levels of ATP but did not strictly require the addition of stromal factors. We have examined the substrate requirements of thylakoid translocation by testing the ability of different processed forms of plastocyanin to transport in the in vitro system. Interestingly, only the full-length plastocyanin precursor, not the partially processed intermediate form, was competent for transport in this in vitro system.  相似文献   

2.
Roffey RA  Theg SM 《Plant physiology》1996,111(4):1329-1338
A series of deletions from the carboxyl terminus of the 23-kD subunit of the photosynthetic oxygen-evolving complex OE23 revealed that these truncations result in various degrees of inhibition of translocation across thylakoid membranes and their subsequent assembly to the oxygen-evolving complex. Import of in vitro translated precursors across the chloroplast envelopes was not inhibited by these truncations. Time-course studies of the import of truncated OE23 precursors into intact chloroplasts revealed that the stromal intermediate was subsequently translocated into the thylakoid lumen, where it was processed to a smaller size and rapidly degraded. In contrast to the full-length OE23 intermediate, the truncated intermediate forms that accumulated in the stroma as a result of de-energization of thylakoid membranes could be found associated with the membrane rather than free in the stroma. Protease digestion experiments revealed that the deletions evidently altered the folded conformation of the protein. These results suggest that the carboxyl-terminal portion of the OE23 precursor is important for the maintenance of an optimal structure for import into thylakoids, implying that the efficient translocation of OE23 requires the protein to be correctly folded. In addition, the rapid degradation of the truncated forms of the processed OE23 within the lumen indicates that a protease (or proteases) active in the lumen can recognize and remove misfolded polypeptides.  相似文献   

3.
K Ko  A R Cashmore 《The EMBO journal》1989,8(11):3187-3194
Various chimeric precursors and deletions of the 33 kd oxygen-evolving protein (OEE1) were constructed to study the mechanism by which chloroplast proteins are imported and targeted to the thylakoid lumen. The native OEE1 precursor was imported into isolated chloroplasts, processed and localized in the thylakoid lumen. Replacement of the OEE1 transit peptide with the transit peptide of the small subunit of ribulose-1,5-bisphosphate carboxylase, a stromal protein, resulted in redirection of mature OEE1 into the stromal compartment of the chloroplast. Utilizing chimeric transit peptides and block deletions we demonstrated that the 85 residue OEE1 transit peptide contains separate signal domains for importing and targeting the thylakoid lumen. The importing domain, which mediates translocation across the two membranes of the chloroplast envelope, is present in the N-terminal 58 amino acids. The thylakoid lumen targeting domain, which mediates translocation across the thylakoid membrane, is located within the C-terminal 27 residues of the OEE1 transit peptide. Chimeric precursors were constructed and used in in vitro import experiments to demonstrate that the OEE1 transit peptide is capable of importing and targeting foreign proteins to the thylakoid lumen.  相似文献   

4.
We have examined the transport of the precursor of the 17-kD subunit of the photosynthetic O2-evolving complex (OE17) in intact chloroplasts in the presence of inhibitors that block two protein-translocation pathways in the thylakoid membrane. This precursor uses the transmembrane pH gradient-dependent pathway into the thylakoid lumen, and its transport across the thylakoid membrane is thought to be independent of ATP and the chloroplast SecA homolog, cpSecA. We unexpectedly found that azide, widely considered to be an inhibitor of cpSecA, had a profound effect on the targeting of the photosynthetic OE17 to the thylakoid lumen. By itself, azide caused a significant fraction of mature OE17 to accumulate in the stroma of intact chloroplasts. When added in conjunction with the protonophore nigericin, azide caused the maturation of a fraction of the stromal intermediate form of OE17, and this mature protein was found only in the stroma. Our data suggest that OE17 may use the sec-dependent pathway, especially when the transmembrane pH gradient-dependent pathway is inhibited. Under certain conditions, OE17 may be inserted across the thylakoid membrane far enough to allow removal of the transit peptide, but then may slip back out of the translocation machinery into the stromal compartment.  相似文献   

5.
Hirohashi T  Hase T  Nakai M 《Plant physiology》2001,125(4):2154-2163
Preprotein translocation across the outer and inner envelope membranes of chloroplasts is an energy-dependent process requiring ATP hydrolysis. Several precursor proteins analyzed so far have been found to be imported into isolated chloroplasts equally well in the dark in the presence of ATP as in the light where ATP is supplied by photophosphorylation in the chloroplasts themselves. We demonstrate here that precursors of two maize (Zea mays L. cv Golden Cross Bantam) ferredoxin isoproteins, pFdI and pFdIII, show distinct characteristics of import into maize chloroplasts. pFdI, a photosynthetic ferredoxin precursor, was efficiently imported into the stroma of isolated maize chloroplasts both in the light and in the dark. In contrast pFdIII, a non-photosynthetic ferredoxin precursor, was mostly mis-sorted to the intermembrane space of chloroplastic envelopes as an unprocessed precursor form in the light but was efficiently imported into the stroma and processed to its mature form in the dark. The mis-sorted pFdIII, which accumulated in the intermembrane space in the light, could not undergo subsequent import into the stroma in the dark, even in the presence of ATP. However, when the mis-sorted pFdIII was recovered and used for a separate import reaction, pFdIII was capable of import into the chloroplasts in the dark. pFNRII, a ferredoxin-NADP+ reductase isoprotein precursor, showed import characteristics similar to those of pFdIII. Moreover, pFdIII exhibited similar import characteristics with chloroplasts isolated from wheat (Pennisetum americanum) and pea (Pisum sativum cv Alaska). These findings suggest that the translocation of precursor proteins across the envelope membranes of chloroplasts may involve substrate-dependent light-regulated mechanisms.  相似文献   

6.
Import, targeting, and processing of a plant polyphenol oxidase.   总被引:14,自引:4,他引:10  
A tomato (Lycopersicon esculentum L.) gene encoding a precursor of polyphenol oxidase (PPO) was transcribed and translated in vitro. The import, targeting, and processing of the [35S]methionine-labeled precursor protein (pPPO) were studied in isolated chloroplasts. The protein was routed to the thylakoid lumen in two steps. The 67-kD precursor was first imported into the stroma in an ATP-dependent step. It was processed to a 62-kD intermediate by a stromal peptidase. Translocation into the lumen was light dependent and involved processing of the 62-kD to the 59-kD mature form. The mature polypeptide was soluble in the lumen and not bound to thylakoids. This two-step targeting pattern was observed in plastids from a variety of plants including pea (Pisum sativum L.), tomato, and maize (Zea mays L.). The ratio between the intermediate and mature forms observed depended on the plant species, leaf age, growth conditions, and illumination regime to which the plants had been subjected. Cu2+ was not required for pPPO import or processing. Furthermore, low concentrations of Cu2+ (1-5 microM) markedly inhibited the first import step. Tentoxin specifically inhibited pPPO import, leaving the precursor bound to the envelope membrane. The two-step routing of pPPO into chloroplasts, typical of thylakoid lumen proteins, is consistent with the two-domain structure of the transit peptide and appears to be a feature of all plant PPO genes isolated so far. No evidence was found for unorthodox routing mechanisms, which have been suggested to be involved in the import of plant PPOs. The two-step routing may account for some of the multiplicity of PPO observed in vivo.  相似文献   

7.
Many of the thylakoid membrane proteins of plant and algal chloroplasts are synthesized in the cytosol as soluble, higher molecular weight precursors. These precursors are post-translationally imported into chloroplasts, incorporated into the thylakoids, and proteolytically processed to mature size. In the present study, the process by which precursors are incorporated into thylakoids was reconstituted in chloroplast lysates using the precursor to the light-harvesting chlorophyll a/b protein (preLHCP) as a model. PreLHCP inserted into thylakoid membranes, but not envelope membranes, if ATP was present in the reaction mixture. Correct integration into the bilayer was verified by previously documented criteria. Integration could also be reconstituted with purified thylakoid membranes if reaction mixtures were supplemented with a soluble extract of chloroplasts. Several other thylakoid precursor proteins in addition to preLHCP, but no stromal precursor proteins, were incorporated into thylakoids under the described assay conditions. These results suggest that the observed in vitro activity represents in vivo events during the biogenesis of thylakoid proteins.  相似文献   

8.
In order to ascertain whether there is one site for the import of precursor proteins into chloroplasts or whether different precursor proteins are imported via different import machineries, chloroplasts were incubated with large quantities of the precursor of the 33 kDa subunit of the oxygen-evolving complex (pOE33) or the precursor of the light-harvesting chlorophyll a/b-binding protein (pLHCP) and tested for their ability to import a wide range of other chloroplast precursor proteins. Both pOE33 and pLHCP competed for import into chloroplasts with precursors of the stromally-targeted small subunit of Rubisco (pSSu), ferredoxin NADP(+) reductase (pFNR) and porphobilinogen deaminase; the thylakoid membrane proteins LHCP and the Rieske iron-sulphur protein (pRieske protein); ferrochelatase and the gamma subunit of the ATP synthase (which are both associated with the thylakoid membrane); the thylakoid lumenal protein plastocyanin and the phosphate translocator, an integral membrane protein of the inner envelope. The concentrations of pOE33 or pLHCP required to cause half-maximal inhibition of import ranged between 0.2 and 4.9 microM. These results indicate that all of these proteins are imported into the chloroplast by a common import machinery. Incubation of chloroplasts with pOE33 inhibited the formation of early import intermediates of pSSu, pFNR and pRieske protein.  相似文献   

9.
Cline K 《Plant physiology》1988,86(4):1120-1126
The apoprotein of the light-harvesting chlorophyll a/b protein (LHCP) is a major integral thylakoid membrane protein that is normally complexed with chlorophyll and xanthophylls and serves as the antenna complex of photosystem II. LHCP is encoded in the nucleus and synthesized in the cytosol as a higher molecular weight precursor that is subsequently imported into chloroplasts and assembled into thylakoids. In a previous study it was established that the LHCP precursor can integrate into isolated thylakoid membranes. The present study demonstrates that under conditions designed to preserve thylakoid structure, the inserted LHCP precursor is processed to mature size, assembled into the LHC II chlorophyll-protein complex, and localized to the appressed thylakoid membranes. Under these conditions, light can partially replace exogenous ATP in the membrane integration process.  相似文献   

10.
The 33- and 23-kDa proteins of the photosynthetic oxygen-evolving complex are synthesized in the cytosol as larger precursors and transported into the thylakoid lumen via stromal intermediate forms. We have investigated the energetics of protein transport across the thylakoid membrane using import assays that utilize either intact chloroplasts or isolated thylakoids. We have found that the light-driven import of the 23-kDa protein into isolated thylakoids is almost completely inhibited by electron transport inhibitors or by the ionophore nigericin but not by valinomycin. These compounds have similar effects in chloroplast import assays: precursors of both the 33- and 23-kDa proteins are imported and processed to intermediate forms in the stroma, but transport into the thylakoid lumen is blocked when electron transport is inhibited or nigericin is present. These results indicate that the transport of these proteins across the thylakoid membrane requires a protonmotive force and that the dominant component in this respect is the proton gradient and not the electrical potential.  相似文献   

11.
It is currently thought that chloroplasts of higher plants were derived from endosymbiont oxygenic photosynthetic bacteria (primary endosymbiosis), while Euglena, a photosynthetic protista, gained chloroplasts by secondary endosymbiosis (i.e., incorporation of a photosynthetic eukaryote into heterotrophic eukaryotic host). To examine if the protein transport inside chloroplasts is similar between these organisms, we carried out heterologous protein import experiments with Euglena precursor proteins and spinach chloroplasts. The precursor of a 30-kDa subunit of the oxygen-evolving complex (OEC30) from the thylakoid lumen of Euglena chloroplasts contained the N-terminal signal, stroma targeting, and thylakoid transfer domains. Truncated preOEC30s lacking the N-terminal domain were post-translationally imported into spinach chloroplasts, transported into the thylakoid lumen, and processed to a mature protein. These results showed that protein translocations within chloroplasts in Euglena and higher plants are similar and supported the hypothesis that Euglena chloroplasts are derived from the ancestral Chlorophyta.  相似文献   

12.
A chimaeric gene was constructed encoding the pre-sequence of the 33 kDa oxygen-evolving complex protein from wheat (a thylakoid lumen protein) linked to ricin A chain. The fusion protein is efficiently imported by isolated pea chloroplasts and localised partly in the stroma, with the remainder bound to the stromal surface of the thylakoids. The imported protein is fully processed by both the stromal and thylakoidal processing peptidases, indicating that partial or complete translocation across the thylakoid membrane has taken place.  相似文献   

13.
Onda Y  Hase T 《FEBS letters》2004,564(1-2):116-120
We investigated the process of flavin adenine dinucleotide (FAD) incorporation into the ferredoxin (Fd):NADP(+) oxidoreductase (FNR) polypeptide during FNR biosynthesis, using pull-down assay with resin-immobilized Fd which bound strongly to FAD-assembled holo-FNR, but hardly to FAD-deficient apo-FNR. After FNR precursor was imported into isolated chloroplasts and processed to the mature size, the molecular form pulled down by Fd-resin increasingly appeared. The mature-sized FNR (mFNR) accumulated transiently in the stroma as the apo-form, and subsequently bound on the thylakoid membranes as the holo-form. Thus, FAD is incorporated into the mFNR inside chloroplasts, and this assembly process is followed by the thylakoid membrane localization of FNR.  相似文献   

14.
The precursor for a Lemna light-harvesting chlorophyll a/b protein (pLHCP) has been synthesized in vitro from a single member of the nuclear LHCP multigene family. We report the sequence of this gene. When incubated with Lemna chloroplasts, the pLHCP is imported and processed into several polypeptides, and the mature form is assembled into the light-harvesting complex of photosystem II (LHC II). The accumulation of the processed LHCP is enhanced by the addition to the chloroplasts of a precursor and a co-factor for chlorophyll biosynthesis. Using a model for the arrangement of the mature polypeptide in the thylakoid membrane as a guide, we have created mutations that lie within the mature coding region. We have studied the processing, the integration into thylakoid membranes, and the assembly into light-harvesting complexes of six of these deletions. Four different mutant LHCPs are found as processed proteins in the thylakoid membrane, but only one appears to have an orientation in the membrane that is similar to that of the wild type. No mutant LHCP appears in LHC II. The other two mutant LHCPs cannot be detected within the chloroplasts. We conclude that stable complex formation is not required for the processing and insertion of altered LHCPs into the thylakoid membrane. We discuss the results in light of our model.  相似文献   

15.
The light-harvesting chlorophyll a/b protein (LHCP) is synthesized in the cytosol as a precursor (pLHCP) that is imported into chloroplasts and assembled into thylakoid membranes. Under appropriate conditions, either pLHCP or LHCP will integrate into isolated thylakoids. We have identified two situations that inhibit integration in this assay. Ionophores and uncouplers inhibited integration up to 70%. Carboxyl-terminal truncations of pLHCP also interfered with integration. A 22-residue truncation reduced integration to about 25% of control, whereas a 93 residue truncation completely abolished it. When pLHCP was imported into chloroplasts in the presence of uncouplers or when truncated forms of pLHCP were used, significant amounts of the imported proteins failed to insert into thylakoids and instead accumulated in the aqueous stroma. Accumulation of stromal LHCP occurred at uncoupler concentrations required to dissipate the trans-thylakoid proton electrochemical gradient and was enhanced at reduced levels of ATP. The latter effect may be a secondary consequence of a reduction in ATP-dependent degradation within the stroma. These results indicate that the stroma is an intermediate location in the LHCP assembly pathway and provide the first evidence for a soluble intermediate during biogenesis of a chloroplast membrane protein.  相似文献   

16.
The NADPH-protochlorophyllide oxidoreductase (pchlide reductase, EC 1.6.99.1) is the major protein in the prolamellar bodies (PLBs) of etioplasts, where it catalyzes the light-dependent reduction of protochlorophyllide to chlorophyllide during chlorophyll synthesis in higher plants. The suborganellar location in chloroplasts of light-grown plants is less clear. In vitro assays were performed to characterize the assembly process of the pchlide reductase protein in pea chloroplasts. Import reactions employing radiolabelled precursor protein of the pchlide reductase showed that the protein was efficiently imported into fully matured green chloroplasts of pea. Fractionation assays following an import reaction revealed that imported protein was targeted to the thylakoid membranes. No radiolabelled protein could be detected in the stromal or envelope compartments upon import. Assembly reactions performed in chloroplast lysates showed that maximum amount of radiolabelled protein was associated to the thylakoid membranes in a thermolysin-resistant conformation when the assays were performed in the presence of hydrolyzable ATP and NADPH, but not in the presence of NADH. Furthermore, membrane assembly was optimal at pH 7.5 and at 25°C. However, further treatment of the thylakoids with NaOH after an assembly reaction removed most of the membrane-associated protein. Assembly assays performed with the mature form of the pchlide reductase, lacking the transit peptide, showed that the pre-sequence was not required for membrane assembly. These results indicate that the pchlide reductase is a peripheral protein located on the stromal side of the membrane, and that both the precursor and the mature form of the protein can act as substrates for membrane assembly.  相似文献   

17.
The CFoII subunit of the ATP synthase is an integral component of the thylakoid membrane which is synthesized in the cytosol with a bipartite, lumen-targeting presequence similar in structural terms to those of imported lumenal proteins such as plastocyanin. This presequence is shown to possess a terminal cleavage site for the thylakoidal processing peptidase, but no intermediate site for the stromal processing peptidase. The integration of CFoII into the thylakoid membrane of Pisum sativum has been analysed using in vitro assays for the import of proteins into intact chloroplasts or isolated thylakoids. Efficient integration into thylakoids is observed in the light and dark, and the integration process does not require the presence of either stromal extracts or nucleoside triphosphates. The uncoupler nigericin inhibits integration only very slightly, indicating that the thylakoidal delta pH does not play a significant role in the integration mechanism. In each of these respects, the requirements for CFoII integration differ notably from those determined for integration of the light-harvesting chlorophyll-binding protein of photosystem II. The integration mechanism also differs significantly from the two mechanisms involved in the translocation of lumenal proteins across the thylakoid membrane, since one of these processes requires the presence of stromal protein factors and ATP, and the other mechanism is dependent on the thylakoidal delta pH. This conclusion is reinforced by the finding that saturation of the translocation system for the precursor to the lumenal 23 kDa oxygen-evolving complex protein does not affect integration of CFoII into thylakoids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
During the early stage of protein import into chloroplasts, precursor proteins synthesized in the cytosol irreversibly bind to chloroplasts to form the early translocation intermediate under stringent energy conditions. Many efforts have been made to identify the components involved in protein import by analyzing the early intermediate. However, the state of the precursor within the intermediate has not been well investigated so far. In this study, an attempt was made to evaluate the extent of translocation of the precursor by determining the state of the precursor in the early intermediate under various conditions and analyzing the fragments generated by limited proteolysis of the precursors docked to chloroplasts. Our results indicate that three different sets of early intermediate are formed based on temperature and the hydrolysis of GTP/ATP. These have been identified based on the size of proteolytic fragments of the precursor as "energy-dependent association," "insertion," and "penetration" states. These findings suggest two individual ATP-hydrolyzing steps during the early stage of protein import, one of which is temperature-sensitive. Our results also demonstrate that translocation through the outer envelope membrane is mainly dependent on internal ATP.  相似文献   

19.
The 33 kd protein of the photosynthetic oxygen-evolving complex is synthesized in the cytoplasm as a larger precursor and transported into the thylakoid lumen via a stromal intermediate form. In this report we describe a reconstituted system in which the later stages of this import pathway can be studied in isolation. We demonstrate import of the 33 kd protein, probably as the intermediate form, into isolated pea thylakoids by a mechanism which is stimulated by the addition of ATP. The imported protein is processed to the mature size and is resistant to digestion by proteases. The thylakoidal protein transport system is specific in that non-chloroplast proteins and precursors of stromal proteins are not imported.  相似文献   

20.
K Cline  R Henry  C Li    J Yuan 《The EMBO journal》1993,12(11):4105-4114
Many thylakoid proteins are cytosolically synthesized and have to cross the two chloroplast envelope membranes as well as the thylakoid membrane en route to their functional locations. In order to investigate the localization pathways of these proteins, we over-expressed precursor proteins in Escherichia coli and used them in competition studies. Competition was conducted for import into the chloroplast and for transport into or across isolated thylakoids. We also developed a novel in organello method whereby competition for thylakoid transport occurred within intact chloroplasts. Import of all precursors into chloroplasts was similarly inhibited by saturating concentrations of the precursor to the OE23 protein. In contrast, competition for thylakoid transport revealed three distinct precursor specificity groups. Lumen-resident proteins OE23 and OE17 constitute one group, lumenal proteins plastocyanin and OE33 a second, and the membrane protein LHCP a third. The specificity determined by competition correlates with previously determined protein-specific energy requirements for thylakoid transport. Taken together, these results suggest that thylakoid precursor proteins are imported into chloroplasts on a common import apparatus, whereupon they enter one of several precursor-specific thylakoid transport pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号