首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic granulomatous disease (CGD) is a hereditary disorder of host defense due to absent or decreased activity of phagocyte NADPH oxidase. The X-linked form of the disease derives from defects in the CYBB gene, which encodes the 91-kD glycoprotein component (termed "gp91-phox") of the oxidase. We have identified the mutations in the CYBB gene responsible for X-linked CGD in 131 consecutive independent kindreds. Screening by SSCP analysis identified mutations in 124 of the kindreds, and sequencing of all exons and intron boundary regions revealed the other seven mutations. We detected 103 different specific mutations; no single mutation appeared in more than seven independent kindreds. The types of mutations included large and small deletions (11%), frameshifts (24%), nonsense mutations (23%), missense mutations (23%), splice-region mutations (17%), and regulatory-region mutations (2%). The distribution of mutations within the CYBB gene exhibited great heterogeneity, with no apparent mutational hot spots. Evaluation of 87 available mothers revealed X-linked carrier status in all but 10. The heterogeneity of mutations and the lack of any predominant genotype indicate that the disease represents many different mutational events, without a founder effect, as is expected for a disorder with a previously lethal phenotype.  相似文献   

2.
Membrane and cytosolic factors cooperate to generate NADPH-oxidase. The study of the syndrome of NADPH-oxidase deficiencies, chronic granulomatous disease, has enabled the identification of two membrane factors: a flavin adenine dinucleotide flavoprotein and ab cytochrome. The nature of the cytosolic components is still unknown, but a 47-kD protein, whose phosphorylation occurs in parallel with the generation of a respiratory burst in intact cells, seems to be one of the cytosolic factors. The subcellular localization of the membrane-bound NADPH-oxidase components has been studied in neutrophils: In unstimulated cells, only a minute fraction of the NADPH-oxidase components is localized in the plasma membrane, whereas 80% is localized in the membrane of the specific granules and the majority of the rest is in a newly described membrane-bound compartment, the secretory granules, identified by latent alkaline phosphatase. During stimulation, these NADPH-oxidase components are translocated to the plasma membrane as a result of fusion of granule membrane with plasma membrane. Only the NADPH-oxidase components present in the plasma membrane are incorporated in the respiratory burst oxidase generated in intact cells.  相似文献   

3.
Data are presented on three components of the quinol oxidation branch of theParacoccus respiratory chain: cytochromec reductase, cytochromec 552, and thea-type terminal oxidase. Deletion mutants in thebc 1 and theaa 3 complex give insight into electron pathways, assembly processes, and stability of both redox complexes, and, moreover, are an important prerequisite for future site-directed mutagenesis experiments. In addition, evidence for a role of cytochromec 552 in electron transport between complex III and IV is presented.  相似文献   

4.
Electron transport in theParacoccus denitrificans respiratory chain system is considerably more rapid when it includes the membrane-bound cytochromec 552 than with either solubleParacoccus c 550 or bovine cytochromec; a pool function for cytochromec is not necessary. Low concentrations ofParacoccus or bovine cytochromec stimulate the oxidase activity. This observation could explain the multiphasic Scatchard plots which are obtained. A negatively charged area on the back side ofParacoccus c which is not present in mitochondrialc could be a control mechanism forParacoccus reactions.Paracoccus oxidase and reductase reactions with bovinec show the same properties as mammalian systems; and this is true ofParacoccus oxidase reactions with its own soluble cytochromec if added polycation masks the negatively charged area. Evidence for different oxidase and reductase reaction sites on cytochromec include: (1) stimulation of the oxidase but not reductase by a polycation; (2) differences in the inhibition of the oxidase and reductases by monoclonal antibodies toParacoccus cytochromec; and (3) reaction of another bacterial cytochromec withParacoccus reductases but not oxidase. Rapid electron transport occurs in cytochromec-less mutants ofParacoccus, suggesting that the reactions result from collision of diffusing complexes.  相似文献   

5.
Various direct, indirect (kinetic and thermodynamic), and combined mechanisms have been proposed to explain the conversion of redox energy into a transmembrane protonmotive force (p) by enzymatic complexes of respiratory chains. The conceptual evolution of these models is examined. The characteristics of thermodynamic coupling between redox transitions of electron carriers and scalar proton transfer in cytochromec oxidase and its possible involvement in proton pumping is discussed. Other aspects dealt with in this paper are: (i) variability of H+/e stoichiometries, in cytochromec oxidase and cytochromec reductase and its mechanistic implications; (ii) possible models by which the reduction of dioxygen to water at the binuclear heme-copper center of protonmotive oxidases can be directly involved in proton pumping. Finally a unifying concept for proton pumping by the redox complexes of respiratory chain is presented.  相似文献   

6.
Archer provided the most recent and comprehensive suprageneric classification of dasyurid marsupials. Five extant subfamilies, two with constituent tribes, were recognized on the basis of morphological, serological, and allozyme data. Phylogenetic relationships among these groups, however, were totally unresolved. Subsequent molecular studies suggested that the endemic New Guinean subfamilies Muricinae and Phascolosoricinae are parts of larger Australian clades. Our objective in this study was to test the monophyly of Archer's seven groups and estimate relationships among them using DNA sequences from the mitochondrial cytochromeb (cyt-b) gene. We report 657 bp ofcyt-b from 32 dasyuroid species. Phylogenetic analysis of these data leads to the following conclusions: (1) muricines form a clade within Phascogalinae that includes endemic New GuineanAntechinus species; (2) the two genera of Phascolosoricinae are part of a more inclusive Dasyurinae; (3) Sminthopsinae is monophyletic, but the tribes Sminthopsini and Planigalini are not; and (4) the dasyurine tribes Dasyurini and Parantechini are probably not monophyletic. Relationships among Sminthopsinae, Dasyurinae (including phascolosoricines), and Phascogalinae (including muricines) remain unresolved.  相似文献   

7.
The Q cycle and theb cycle are the main current models of action of the cytochromebc-type complexes of mitochondria, bacteria, and chloroplasts. Both are based on the concept, proposed in 1972, of two sequential one-electron oxidations of (ubi)quinol along two discrete pathways which operate at different redox potentials, and with bound semiubiquinone as an intermediate. The models differ in two respects, viz. in the pathway of electron transfer and the principle of linkage of electron transfer to proton translocation. In this article we outline a new model, called the semiquinone or, simply, SQ cycle, which is based on the electron transfer principles of theb cycle but which incorporates the Q cycle concept of direct coupling between electron transfer and proton translocation through action of ubiquinone.This paper is dedicated to the memory of Bob Casey, who died in Helsinki on the 2nd of August 1985.  相似文献   

8.
Turnover of the ubiquinol oxidizing site of the UQH2:cyt c2 oxidoreductase (b/c 1 complex) ofRps. sphaeroides can be assayed by measuring the rate of reduction of cytb 561 in the presence of antimycin (AA). Oxidation of ubiquinol is a second-order process, with a value ofk 2 of about 3 × 105 M–1. The reaction shows saturation at high quinol concentrations, with an apparentK m of about 6–8 mM (with respect to the concentration of quinol in the membrane). When the quinone pool is oxidized before illumination, reduction of the complex shows a substantial lag (about 1 ms) after a flash, indicating that the quinol produced as a result of the photochemical reactions is not immediately available to the complex. We have suggested that the lag may be due to several factors, including the leaving time of the quinol from the reaction center, the diffusion time to the complex, and the time for the head group to cross the membrane. We have suggested aminimal value for the diffusion coefficient of ubiquinone in the membrane (assuming that the lag is due entirely to diffusion) of about 10–9 cm–2 sec–1. The lag is reduced to about 100 µsec when the pool is significantly reduced, showing that quinol from the pool is more rapidly available to the complex than that from the reaction center. With the pool oxidized, similar kinetics are seen when the reduction of cytb 561 occurs through the AA-sensitive site (with reactions at the quinol oxidizing site blocked by myxothiazol). These results show that there is no preferential reaction pathway for transfer of reducing equivalents from reaction center tob/c 1 complex. Oxidation of cytb 561 through the AA-sensitive site can be assayed from the slow phase of the carotenoid electrochromic change, and by comparison with the kinetics of cytb 561. As long as the quinone pool is significantly oxidized, the reaction is not rate-determining for the electrogenic process. On reduction of the pool below 1 quinone per complex, a slowing of the electrogenic process occurs, which could reflect a dependence on the concentration of quinone. If the process is second-order, the rate constant must be about 2–5 times greater than that for quinol oxidation, since the effect on rate is relatively small compared with the effect seen at the quinol oxidizing site when the quinol concentration is changed over theE h range where the first few quinols are produced on reductive titration. When the quinone pool is extracted (experiments in collaboration with G. Venturoli and B. A. Melandri), the slowing of the electrochromic change on reduction of the pool is not enhanced; we assume that this is due to the fact that a minimum of one quinone per active complex is produced by turnover of the quinol oxidizing site. Two lines of research lead us to revise our previous estimate for the minimal value of the quinone diffusion coefficient. These relate to the relation between the diffusion coefficient and the rate constants for processes involving the quinones: (a) The estimated rate constant for reaction of quinone at the AA-site approaches the calculated diffusion limited rate constant, implying an improbably efficient reaction. (b) From a preliminary set of experiments, the activation energy determined by measuring the variation of the rate constant for quinol oxidation with temperature, is about 8 kcal mol–1. Although we do not know the contribution of entropic terms to the pre-exponential factor, the result is consistent with a considerably larger value for the diffusion coefficient than that previously suggested.  相似文献   

9.
We have amplified and sequnced the entire mitochondrial DNA cytochromeb gene from four species of Suidae: babirusa, warthog, bearded pig, and some specimens belonging to different subspecies and populations of wild and domestic pigs (Sus scrofa). These sequences were aligned with additional mammalian sequences retrieved from the literature and were used to obtain phylogenetic trees of the Suiformes (Artiodactyla). Several species of Carnivora, Perissodactyla. Cetacea, and other Artiodactyla were used as outgroups. Molecular phylogenetic relationships among the Suiformes reflect their current taxonomy: Hippopotamidae, Tayassuidae, and Suidae are separated by deep genetic gaps, and the division of the Suidae into the subfamilies Babyrousinae., Phacochoerinae, and Suinae has strong genetic correlates. Cytochromeb sequences show differences among Asian and Western populations ofSus scrofa, agreeing with other genetic information (karyotypes blood groups, and protein variability). The two Italian subspecies of wild boar have unique mtDNA cytochromeb haplotypes. The evolutionary rates of cytochromeb sequences are different at transitions versus transversions as well as at first, second, and third positions of codons. Therefore, these classes of substitutions reached different levels of mutational saturation. Only transversions and the conservative first and second position substitutions are linearly related to genetic distances among the Suiformes. Therefore, divergence times were computed using unsaturated conserved nucleotide substitutions and calibrated using paleontological divergence times between some Artiodactyla. Transversions apparently evolve at remarkably regular rates in ungulate taxa which have accumulated less than 20% estimated sequence divergence, corresponding to about 40–45 million years of independent evolution. Molecular, information suggests that Hippopotamidae and Tayassuidae are not closely related (as stated by Pickford, 1986, 1989, 1993) and that the origin of babirusa and warthog (about 10–19 and 5–15 million years ago, respectively) is more recent than supported by current evolutionary reconstructions. The inferred origin of bearded pig is about 2.1 million years old, and genetic divergence among differentSus scrofa populations is probably a Pleistocene event. The addition of new sequences of Suiformes does not help in resolving the phylogenetic position ofHippopotamus amphibius, which shows weak but recurrent linkages with the cetacean evolutionary lineage.To whom correspondence should be addressed.  相似文献   

10.
An improved procedure for the isolation of the cytochromeb 6/f complex from spinach chloroplasts is reported. With this preparation up to tenfold higher plastoquinol-plastocyanin oxidoreductase activities were observed. Like the complex obtained by our previous procedure, the complex prepared by the modified way consisted of five polypeptides with apparent molecular masses of 34, 33, 23, 20, and 17 kD, which we call Ia, Ib, II, III, and IV, respectively. In addition, one to three small components with molecular masses below 6 kD were now found to be present. These polypeptides can be extracted with acidic acetone. Cytochromef, cytochromeb 6, and the Rieske Fe-S protein could be purified from the isolated complex and were shown to be represented by subunits Ia + Ib, II, and III, respectively. The heterogeneity of cytochromef is not understood at present. Estimations of the stoichiometry derived from relative staining intensities with Coomassie blue and amido black gave 1:1:1:1 for the subunits Ia + Ib/II/III/IV, which is interesting in of the presence of two cytochromesb 6 per cytochromef. Cytochromef titrated as a single-electron acceptor with a pH-independent midpoint potential of +339 mV between pH 6.5 and 8.3, while cytochromeb 6 was heterogeneous. With the assumption of two components present in equal amounts, two one-electron transitions withE m(1)=–40 mV andE m(2)=–172 at pH 6.5 were derived. Both midpoint potentials were pH-dependent.Abbreviation Tris tris(hydroxymethyl)aminomethane - SDS sodium dodecylsulfate - SDS-PAGE SDS polyacrylamide gel electrophoresis - MES 2-(N-morpholino)ethanesulfonic acid  相似文献   

11.
The principal route of oxygen utilization in the respiratory burst of fungally infected plants was determined from stoichiometries of the uptake and electronic reduction of oxygen in cotton cells exposed to Aspergillus favus walls. Using 2,2-azino-di-(3-ethyl-benzothiazoline-6-sulfonic acid) and epinephrine as redox reagents to manipulate oxygen transitions, we found that oxygen consumption doubled when superoxide disproportionation was abolished and was abolished when disproportionation doubled. Of four possible pathways for oxygen consumption, only monovalent reduction of molecular oxygen to superoxide was consistent with this inversely proportional relationship. According to the observed rate of oxygen consumption in this pathway and in the absence of competition to disproportionation of superoxide, infected cells are capable of generating intracellular concentrations of 1 M hydrogen peroxide in 13 min.  相似文献   

12.
We report DNA sequence variation in 861 bp of the mitochondrial cytochromeb gene from 10 species of the dasyurid marsupial subfamily Phascogalinae (including the New Guinean genusMurexia) and an outgroup planigale (Planigale ingrami). Phylogenetic analyses of these sequences indicate that (1) the subfamily consists of three major clades corresponding to (a)Phascogale, (b) AustralianAntechinus, and (c) New Guinean Antechinus andMurexia; (2) Antechinus habbema constitutes the earliest branch of the New Guinean clade; and (3); Antechinus melanurus and A. naso are sister species within the New Guinean clade. Among Australian antechnuses,A. stuartii andA. swainsonii are more closely related to each other than either is toA. flavipes, a result that is seemingly at odds with all previous systematic studies. Although resolution is limited, it appears thatAntechnius andMurexia species form a clade to the exclusion ofPhascogale. This relationship suggests that male semelparity is not a strong synapomorphy for Australian antechinuses and phascogales, despite its apparent physiological similarity in the two groups.To whom correspondence should be addressed.  相似文献   

13.
The experimental data currently available suggest that QH2: cytochromec oxidoreductase functions according to a Q-cycle type of mechanism. The molecular weight of the enzyme in a natural or artificial phospholipid bilayer or in solution corresponds to that of a dimer. The pre-steady state kinetics of reduction of the prosthetic groups indicate that the enzyme is functionally dimeric. A double Q cycle is proposed, describing the pathway of electron transfer in the dimeric QH2: cytochromec oxidoreductase. According to this scheme, the two monomeric halves of the enzyme act in a cooperative fashion to complete the catalytic cycle. It is proposed that high-potential cytochromeb-562 and low-potential cytochromeb-562 act cooperatively, viz. as a functional pair, in the antimycin-sensitive reduction of ubiquinone to ubiquinol.  相似文献   

14.
A major bactericidal mechanism of neutrophils involves activation of the respiratory burst oxidase to generate superoxide (O 2 ). The oxidase is activated rapidly, often within a minute, in response to extracellular signals such as chemoattractants, inflammatory mediators, and invading microorganisms. Increasing evidence indicates that lipases also respond rapidly, releasting potent regulatory molecules from progenitor lipids. Released molecules include potential regulators of protein kinase C—diacylglycerol (DAG), arachidonate, and sphingosine—and levels of one of these, DAG, frequently correlate with O 2 production. In this author's view, the available data implicate DAG and protein kinase C as key factors in the regulation of the respiratory burst. Herein, the array of activating agonists, the generation and function of some lipid-derived mediators, and evidence pertaining to the participation of protein kinase C are reviewed.  相似文献   

15.
Summary In an ultrastructural and cytochemical study of tentoxin-treatedSorghum bicolor (L.) Moench, both bundle sheath and mesophyll plastids were severely affected, Plastids from chlorotic leaf areas lacked most internal membranes yet had plastid ribosomes and large fibrillar areas of plastid DNA. In recovered areas (mottled yellow and green), cells were found that had plastids of near-normal ultrastructure as well as the severely affected plastid-types found in chlorotic leaf areas. Polyphenol oxidase (PPO) cytochemistry of these mottled leaf areas indicated that all recovered mesophyll plastids had PPO whereas all the abnormal mesophyll plastids showed no activity. Because bundle sheath plastids ofSorghum have no PPO activity at any developmental stage, yet are affected by tentoxin, PPO cannot be uniquely affected by this toxin. We suggest that tentoxin may affect the transport of cytosolic proteins into the plastid.  相似文献   

16.
The role of plasma membrane redox activity in light effects in plants   总被引:1,自引:0,他引:1  
Stimulations by light of electron transport at the plasma membrane make it possible that redox activity is involved in light-induced signal transduction chains. This is especially true in cases where component(s) of the chain are also located at the plasma membrane. Photosynthetic reactions stimulate transplasma membrane redox activity of mesophyll cells. Activity is measured as a reduction of the nonpermeating redox probe, ferricyanide. The stimulation is due to production of a cytosolic electron donor from a substance(s) transported from the chloroplast. It is unknown whether the stimulation of redox activity is a requirement for other photosynthetically stimulated processes at the plasma membrane, but a reduced intermediate may regulate proton excretion by guard cells. Blue light induces an absorbance change (LIAC) at the plasma membrane whose difference spectrum resembles certainb-type cytochromes. This transport of electrons may be due to absorption of light by a flavoprotein. The LIAC has been implicated as an early step in certain blue light-mediated morphogenic events. Unrelated to photosynthesis, blue light also stimulates electron transport at the plasma membrane to ferricyanide. The relationship between LIAC and transmembrane electron flow has not yet been determined, but blue light-regulated proton excretion and/or growth may depend on this electron flow. No conclusions can be drawn regarding any role for phytochrome because of a paucity of information concerning the effects of red light on redox activity at the plasma membrane.  相似文献   

17.
On the role of subunit III in proton translocation in cytochromec oxidase   总被引:7,自引:0,他引:7  
Mammalian mitochondrial cytochromec oxidase catalyzes the transfer of electrons from ferrocytochromec to molecular oxygen in the respiratory chain, while conserving the energy released during its electron transfer reactions by the vectorial movement of protons across the inner membrane of the mitochondrion. The protein domain that translocates the protons across the membrane is currently unknown. Recent research efforts have investigated the role of one of the transmembrane subunits of the enzyme (III,M r 29,884) in the vectorial proton translocation reaction. The data that favor subunit III as integral in vectorial proton translocation as well as the data that support a more peripheral role for subunit III in proton translocation are reviewed. Possible experimental approaches to clarify this issue are presented and a general model discussed.  相似文献   

18.
We studied the mechanisms of adherence of Blastomyces dermatitidis conidia to murine bronchoalveolar macrophages and the ability of the conidia to elicit an increase in macrophage O inf2 sup- production, using an avirulent fungal strain. The number of cell associated conidia was counted by visual inspection of 2 hour macrophage monolayers incubated with conidia and O inf2 sup- was measured by reduction of ferricytochrome c. Adherence of conidia to bronchoalveolar macrophages was time dependent and reached a plateau after 30 min (36±5%, 51±22%, and 36±17% macrophages with adherent conidia after 15, 30, and 60 min, respectively). Both Ca+2 and Mg+2 were required. The carbohydrates mannose, mannan, fucose, alpha-methylmannoside, beta-glucan, galactose, N-acetylglucosamine and chitotriose (100–1000 g/ml) did not inhibit adherence of conidia to macrophages. Trypsin treatment of macrophages or conidia did not affect binding. Conidia did not stimulate bronchoalveolar macrophage production of O inf2 sup- above baseline concentrations (2.0±0.9 vs 0.8±0.5 nmol O inf2 sup- , p>0.05). We conclude that murine bronchoalveolar macrophage-B. dermatitidis conidia interactions occur primarily by a non-lectin-like attachment and do not result in the production of macrophage derived O inf2 sup- .  相似文献   

19.
Plant mitochondria are proposed to act as signaling organelles in the orchestration of defense responses to biotic stress and acclimation responses to abiotic stress. However, the primary signal(s) being generated by mitochondria and then interpreted by the cell are largely unknown. Recently, we showed that mitochondria generate a sustained burst of superoxide (O2-) during particular plant-pathogen interactions. This O2- burst appears to be controlled by mitochondrial components that influence rates of O2- generation and scavenging within the organelle. The O2- burst appears to influence downstream processes such as the hypersensitive response, indicating that it could represent an important mitochondrial signal in support of plant stress responses. The findings generate many interesting questions regarding the upstream factors required to generate the O2- burst, the mitochondrial events that occur in support of and in parallel with this burst and the downstream events that respond to this burst.  相似文献   

20.
Respiratory chain complex II has been extensively studied but little is known about its assembly and the role of its heme group. Mutations in the phylogenetically conserved histidine 127 of the SDHC subunit have been shown to abrogate heme binding in yeast and bacteria without impairing complex II assembly or enzymatic activities. Here we show that in mammalian cells these mutations lead to a complete reduction of SDHC in mitochondria, a destabilisation of SDHD and SDHB, and to an abrogation of complex II enzymatic activities, suggesting that in mammalian cells complex II assembly is more complex than in lower organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号