首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Systemic PCD occurs in TMV-tomato interaction   总被引:1,自引:0,他引:1  
In hypersensitive response (HR), programmed cell death (PCD) is reported as a powerful defense mechanism in plant immune responses to pathogen. However, little is known about the PCD in systemic acquired resistance (SAR). Using tobacco mosaic virus (TMV) to infect the tomato (Lycopersicon esculentum cv. Jiafen 16) we found that localized TMV-infection could induce cell death in the uninoculated parts of the tomatoes, where the enzyme-linked immunosorbent assay (ELISA) showed no spreading virus. The biological and molecular characterization of this cell death was shown as following: chromatin condensed and formed peripheral conglomeration in nuclei; cell nucleus were TUNEL positive labeled; genomic DNA was fragmented and showed DNA laddering; mitochondria and chloroplast were disrupted; tonoplast and plasma membrane were shrunk and degradated. These results suggested that with an absence of TMV spread, the local TMV-infection on certain tomato leaves could induce systemic PCD in the root-tips, stem-apices and uninoculated leaves. The systemic PCD has various initiation and synchronization in such tissues and is distinct in inducement and exhibition from HR-PCD and SAR.  相似文献   

2.
Inoculation of wheat (Triticum aestivum L. cv. Huamai 8) leaves with wheat powderly mildew fungus (Blumeria graminis f. sp. tritici) induced cell death in wheat adventitious roots, where no fungal structures were observed. The cytological and molecular characterization of this cell death was shown as following: cell nuclei were TUNEL positive labeled; genomic DNA was fragmented and showed DNA laddering; chromatin condensed and formed peripheral conglomeration in nuclei; and perinuclear spaces partly dilated. These results suggested that, without pathogen spread, the infection could induce systemic PCD in adventitious roots. Comparison with a leaf-cutting experiment (LC)enabled us to speculate that lack of assimilates was not the only reason for the systemic PCD in wheat roots in powdery mildew experiment and that such systemic PCD might be mediated by long-distance signals. In addition, reactive oxygen species (ROS) and Ca2+ were related to the systemic PCD.  相似文献   

3.
Shulaev V  Leon J  Raskin I 《The Plant cell》1995,7(10):1691-1701
Salicylic acid (SA) is a likely endogenous signal in the development of systemic acquired resistance (SAR) in some dicotyledonous plants. In tobacco mosaic virus (TMV)-resistant Xanthi-nc tobacco, SA levels increase systemically following the inoculation of a single leaf with TMV. To determine the extent to which systemic increases in SA result from SA export from the inoculated leaf, SA produced in TMV-inoculated or healthy leaves was noninvasively labeled with 18O2. Spatial and temporal distribution of 18O-SA indicated that most of the SA detected in the healthy tissues was synthesized in the inoculated leaf. No significant increase in the activity of benzoic acid 2-hydroxylase, the last enzyme involved in SA biosynthesis, was detected in upper uninoculated leaves, although the basal level of enzyme activity was relatively high. No increases in SA level, pathogenesis-related PR-1 gene expression, or TMV resistance in the upper uninoculated leaf were observed if the TMV-inoculated leaf was detached up to 60 hr after inoculation. Apart from the inoculated tissues, the highest increase in SA was observed in the leaf located directly above the inoculated leaf. The systemic SA increase observed during SAR may be explained by phloem transport of SA from the inoculation sites.  相似文献   

4.
Localized infections produced by tobacco necrosis virus (TNV) or tomato mosaic virus (ToMV) in White Burley tobacco induced a systemic acquired resistance in upper, uninoculated leaves. This resistance was effective against challenge infection by TNV or ToMV but not by potato virus Y, necrotic strain (PVYn), tobacco mosaic virus (TMV) or tobacco rattle virus (TRV), viruses giving systemic infections. Systemic acquired resistance against TNV or ToMV was expressed as a reduction in lesion size but not in viral antigen content of the resulting necrotic local lesions. The acquisition of resistance was concurrent with an increased capacity of the resistant leaves to convert 1-aminocyclopropane-1-carboxylic acid into ethylene. Systemic acquired resistance was ineffective to contrast or minimize in whatever way the systemic challenge infection produced by PVYN, TMV or TRV. Severity of symptoms and virus multiplication did not differ in resistant leaves from controls. This result does not allow any optimistic promise on possible application of the systemic acquired resistance against severe viral diseases of crops.  相似文献   

5.
Acquired resistance in hypersensitive tobacco plants against tobacco mosaic virus (TMV) was induced by components occurring in the intercellular fluid (IV) obtained from virus-infected plants or by plant cell wall components. Induced resistance could be transmitted through seed to the progeny. Lesion size and number were reduced significantly when the progeny was tested by TMV-inoculation. IV was extracted from the upper uninoculated leaves of four times TMV-inoculated Nicotiana tabacum cv. ‘Xanthi’ nc plants. Injection of IV from induction-inoculated plants (SAR-IV) into leaves of healthy plants followed by TMV-infection reduced lesion size significantly. A concentration of 5 × 10?7 g SAR-IV/ml was still active. IV from healthy plants was inactive. The IV's were partly purified by gel filtration on a Sephadex G-50 column. Some fractions were active in inducing resistance as expressed in reduction of lesion size. Fractions of control-IV were inactive. It is still unknown whether the active substances in SAR-IV are in fact cell wall fragments acting as regulatory molecules in disease resistance.  相似文献   

6.
The Potato virus X (PVX) triple gene block protein 3 (TGBp3), an 8‐kDa membrane binding protein, aids virus movement and induces the unfolded protein response (UPR) during PVX infection. TGBp3 was expressed from the Tobacco mosaic virus (TMV) genome (TMV‐p3), and we noted the up‐regulation of SKP1 and several endoplasmic reticulum (ER)‐resident chaperones, including the ER luminal binding protein (BiP), protein disulphide isomerase (PDI), calreticulin (CRT) and calmodulin (CAM). Local lesions were seen on leaves inoculated with TMV‐p3, but not TMV or PVX. Such lesions were the result of TGBp3‐elicited programmed cell death (PCD), as shown by an increase in reactive oxygen species, DNA fragmentation and induction of SKP1 expression. UPR‐related gene expression occurred within 8 h of TMV‐p3 inoculation and declined before the onset of PCD. TGBp3‐mediated cell death was suppressed in plants that overexpressed BiP, indicating that UPR induction by TGBp3 is a pro‐survival mechanism. Anti‐apoptotic genes Bcl‐xl, CED‐9 and Op‐IAP were expressed in transgenic plants and suppressed N gene‐mediated resistance to TMV, but failed to alleviate TGBp3‐induced PCD. However, TGBp3‐mediated cell death was reduced in SKP1‐silenced Nicotiana benthamiana plants. The combined data suggest that TGBp3 triggers the UPR and elicits PCD in plants.  相似文献   

7.
Mittler  Ron  Lam  Eric 《Plant molecular biology》1997,34(2):209-221
Programmed cell death (PCD) is activated during the response of multicellular organisms to some invading pathogens. One of the key aspects of this process is the degradation of nuclear DNA which is thought to facilitate the recycling of DNA from dead cells. The PCD of tobacco plants (genotype NN) infected with tobacco mosaic virus (TMV) is accompanied by the induction of nuclease activities and the cleavage of nuclear DNA to fragments of about 50 kb. We examined the correlation between the increase in nuclease activities and the fragmentation of nuclear DNA during TMV- and bacteria-induced PCD in tobacco. We found that the increase in nuclease activities did not always correlate with fragmentation of nuclear DNA. Thus, in addition to pathogens that induce PCD, mechanical injury and infiltration of leaves with 1 M sucrose or bacteria that did not induce PCD also resulted in an increase in nuclease activities. Analysis of nuclease activities in total leaf extracts, nuclear extracts, and intercellular fluid (i.e., apoplast) revealed that at least four different nuclease activities are induced during PCD in tobacco; of these at least three appear to be secreted into the intercellular fluid. Although the latter were also induced in response to treatments that did not result in DNA fragmentation, they may function in the recycling of plant DNA during late stages of PCD when the integrity of the plasma membrane is compromised. This suggestion is supported by the finding that DNA degradation occurred late during TMV-induced PCD in tobacco. In addition, the finding of induced nuclease activities in the intercellular fluid raises the possibility that they may serve a protective function by degrading the DNA of invading pathogens.  相似文献   

8.
A superoxide-producing xanthine oxidoreductase was isolated and quantified after polyacrylamide disc gel electrophoresis of tobacco leaf extracts. The results obtained indicate that, like uricase activity, a slight increase in tobacco xanthine oxidase activity takes place in the susceptible interaction with tobacco mosaic virus (TMV). In contrast, out of three hypersensitive tobacco cultivars tested, only two showed the same slight increase m activity during the late stage of hypersensitive response.
Allopurinol [4-hydroxypyrazolo(3,4-d)pyrimidine] a specific and potent in vitro and in vivo inhibitor of xanthine oxidoreductase, applied to tobacco plants by root absorption, starting about 8 days before the inoculation, did not affect the hypersensitive response but weakened the hypersensitivity-linked virus localization and promoted the movement of a certain amount of TMV particles and/or virus related material from necrotic lesions which induced systemic necrotic symptoms in uninoculated leaves. However, due to the inefficacy of allopurinol in preventing necrotic lesion development, all results are consistent with the hypothesis that xanthine oxidoreductase, the first enzyme in purine oxidative degradation, plays only a secondary role during induction of primary hypersensitive cell death in TMV infected tobacco leaves.  相似文献   

9.
用20%PEG6000(-0.63MPa)溶液对小麦(Triticumaestivum)根系进行渗透胁迫,在DNA琼脂糖凝胶电泳图谱上观察到明显的梯状DNA条带,表明PEG处理诱发了DNA核小体间的断裂,从而表现出典型的细胞程序性死亡的生化特征;末端脱氧核糖核酸转移酶介导的3′-OH末端标记法(terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick end  相似文献   

10.
A previously undescribed cDNA family was isolated from tobacco challenged with tobacco mosaic virus (TMV). A cDNA library was constructed with mRNA from upper leaves of Xanthi nc tobacco plants that had been inoculated with TMV on the lower leaves 11 days previously. The library was screened differentially with radiolabeled cDNA synthesized with mRNA from upper, uninoculated leaves of either TMV-inoculated or mock-inoculated tobacco plants. The new cDNA family, designated SAR8.2, had at least five expressed members, one or more of which were inducible by TMV inoculation and by salicylic acid treatment. The cDNAs encoded small, highly basic proteins containing N-terminal hydrophobic signal peptides and highly conserved cysteine-rich C-terminal domains. One of the SAR8.2 family members contained a direct repeat of the C-terminal domain in tandem. Hybridization of SAR8.2 cDNA to tobacco genomic DNAs indicated a gene family of 10-12 members.  相似文献   

11.
Salicylate watered onto soil in which White Burley tobacco plants were grown represents a reversible stress characterized by stomatal closure, slight slackening of plant growth and low chlorophyll loss. Salicylate affected viral pathogenesis in opposite ways. It had no effect against local and systemic infections by potato virus X (PVX), potato virus Y0 (PVY0) or tobacco mosaic virus (TMV), whereas it completely prevented systemic infection by alfalfa mosaic virus (AIMV) or tobacco, rattle virus (TRV) in a high proportion of treated plants. When infection moved from leaves inoculated with AIMV or TRV, the tendency to limit systemic spread was shown by the restriction of systemic infection to very limited areas erratically distributed in some uninoculated leaves. The salicylate-induced restriction of AIMV or TRV infectivity to inoculated leaves did not appear due to inhibition of virus multiplication because the inoculation of potentially resistant leaves of salicylate-reated plants resulted in virus antigen accumulation comparable to that of untreated controls. Salicylate may therefore inhibit some long distance virus transport function. Salicylate appears able to evoke true hypersensitivity only against systemic viruses able to induce local necrotic lesions, probably by activating some genetic information for resistance that is normally not expressed.  相似文献   

12.
The response of tobacco (Nicotiana tabacum L. cv. Xanthinc) plants, epigenetically suppressed for phenylalanine ammonia-lyase (PAL) activity, was studied following infection by tobacco mosaic virus (TMV). These plants contain a bean PAL2 transgene in the sense orientation, and have reduced endogenous tobacco PAL mRNA and suppressed production of phenylpropanoid products. Lesions induced by TMV infection of PAL-suppressed plants are markedly different in appearance from those induced on control plants that have lost the bean transgene through segregation, with a reduced deposition of phenofics. However, they develop at the same rate as on control tobacco, and pathogenesis-related (PR) proteins are induced normally upon primary infection. The levels of free salicylic acid (SA) produced in primary inoculated leaves of PAL-suppressed plants are approximately fourfold lower than in control plants after 84 h, and a similar reduction is observed in systemic leaves. PR proteins are not induced in systemic leaves of PAL-suppressed plants, and secondary infection with TMV does not result in the restriction of lesion size and number seen in control plants undergoing systemic acquired resistance (SAR). In grafting experiments between wild-type and PAL-suppressed tobacco, the SAR response can be transmitted from a PAL-suppressed root-stock, but SAR is not observed if the scion is PAL-suppressed. This indicates that, even if SA is the systemic signal for establishment of SAR, the amount of pre-existing phenylpropanoid compounds in systemic leaves, or the ability to synthesize further phenylpropanoids in response to the systemic signal, may be important for the establishment of SAR. Treatment of PAL-suppressed plants with dichloro-isonicotinic acid (INA) induces PR protein expression and SAR against subsequent TMV infection. However, treatment with SA, while inducing PR proteins, only partially restores SAR, further suggesting that de novo synthesis of SA, and/or the presence or synthesis of other phenylpropanoids, is required for expression of resistance in systemic leaves.  相似文献   

13.
Yun LJ  Chen WL 《Plant cell reports》2011,30(7):1231-1239
Programmed cell death (PCD) is a genetically encoded, active process that results in the death of individual cells, tissues, or whole organs, which plays an important role in the life cycles of plants and animals. Previous studies show that methyl salicylate (MeSA) is a defense signal molecular associated with systemic acquired resistance and hypersensitive reaction; however, whether MeSA can induce PCD in plant is still unknown. The morphological changes of Arabidopsis thaliana protoplasts exposed to MeSA were observed under fluorescence microscopy and transmission electron microscopy, and the induction of PCD was clearly distinguished by intense perinuclear chromatin margination, condensation of nuclear chromatin and DNA laddering after 3-h exposure of 100 μM MeSA. Our results also showed that salicylic acid (SA) was involved in MeSA-induced PCD by using a transgenic nahG Arabidopsis thaliana line, and the process was mediated by reactive oxygen species, which functioned with SA by making an amplification loop. Our study showed that MeSA could induce PCD in plant cell for the first time.  相似文献   

14.
The hypersensitive interaction between Tobacco mosaic virus (TMV) and tobacco results in accumulation of salicylic acid (SA), defense gene expression, and development of systemic acquired resistance (SAR) in uninfected leaves. The plant hormones SA and ethylene have been implicated in SAR. From a study with ethylene-insensitive (Tetr) tobacco, we concluded that ethylene perception is required to generate the systemic signal molecules in TMV-infected leaves that trigger SA accumulation, defense gene expression, and SAR development in uninfected leaves. Ethylene perception was not required for the responses of the plant to the systemic signal that leads to SAR development.  相似文献   

15.
Wounding of plants by insects is often mimicked in the laboratory by mechanical means such as cutting or crushing, and has not been compared directly with other forms of biotic stress such as virus infection. To compare the response of plants to these types of biotic and abiotic stress, trypsin inhibitor (TI) activity induced locally and systemically in mature tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon esculentum L.) plants was followed for 12 days. In tobacco, cutting, crushing and insect feeding all induced comparable levels of TI activity of approx. 5 nmol·(mg leaf protein)?1 in wounded leaves, while tobacco mosaic virus (TMV) infection of tobacco induced 10-fold lower amounts in the infected leaves. In tomato, feeding by insects also led to the induction of a level of TI activity of 5 nmol·(mg leaf protein)?1. In contrast, both cutting and crushing of tomato leaves induced 10-fold higher amounts. These data show that biotic stress, in the form of insect feeding and TMV infection, and abiotic stress, in the form of wounding, have different effects on local levels of induced TI activity in mature tobacco and tomato plants. Irrespective of the type of wounding, in neither tobacco nor tomato could systemic induction of TI activity be observed in nearby unwounded leaves, which suggests that systemic induction of TI activity in mature tobacco and tomato plants is different from systemic TI induction in seedlings. Wounding of tobacco leaves, however, did increase the responsiveness to wounding elsewhere in the plant, as measured by an increased induction of TI activity.  相似文献   

16.
Sulfated fucans are common structural components of the cell walls of marine brown algae. Using a fucan-degrading hydrolase isolated from a marine bacterium, we prepared sulfated fucan oligosaccharides made of mono- and disulfated fucose units alternatively bound by alpha-1,4 and alpha-1,3 glycosidic linkages, respectively. Here, we report on the elicitor activity of such fucan oligosaccharide preparations in tobacco. In suspension cell cultures, oligofucans at the dose of 200 microg ml(-1) rapidly induced a marked alkalinization of the extracellular medium and the release of hydrogen peroxide. This was followed within a few hours by a strong stimulation of phenylalanine ammonia-lyase and lipoxygenase activities. Tobacco leaves treated with oligofucans locally accumulated salicylic acid (SA) and the phytoalexin scopoletin and expressed several pathogenesis-related (PR) proteins, but they displayed no symptoms of cell death. Fucan oligosaccharides also induced the systemic accumulation of SA and the acidic PR protein PR-1, two markers of systemic acquired resistance (SAR). Consistently, fucan oligosaccharides strongly stimulated both local and systemic resistance to tobacco mosaic virus (TMV). The use of transgenic plants unable to accumulate SA indicated that, as in the SAR primed by TMV, SA is required for the establishment of oligofucan-induced resistance.  相似文献   

17.
Callus cultures were induced from leaves of a tomato plant infected with tomato yellow leaf curl virus (TYLCV) and analyzed for viral DNA presence during successive subcultures. No TYLCV DNA was detected in calli sampled after eight months of culture. Considerable differences in the presence of TYLCV DNA were found within sectors of a callus culture and between different callus cultures, throughout the entire eight months period. Infected calli which were cultured at sub-optimal temperature (15°C) retained the viral DNA longer than at 25 °C. The results suggested that TYLCV disappearance during callus culture was due to a disruption of some of the cell-to-cell connections, resulting in islands of infected cells in the midst of uninfected tissue and/or to the competition between the rate of cell division and that of viral DNA replication.Abbreviations BA benzyladenine - CMV cucumber mosaic virus - NAA naphthaleneacetic acid - TMV tobacco mosaic virus - TYLCV tomato yellow leaf curl virus  相似文献   

18.
Through differential screening of a cDNA library, we cloned six groups of genes that are expressed relatively early in the inoculated leaves of tobacco resisting infection by tobacco mosaic virus (TMV). Induction of all these genes was subsequently detected in the uninoculated leaves; thus, their expression is associated with the development of both local and systemic acquired resistance. Exogenously applied salicylic acid (SA) was observed to induce these genes transiently. However, analyses with transgenic NahG plants, which are unable to accumulate SA, demonstrated that expression of these genes in TMV-inoculated leaves is mediated via an SA-independent pathway. Because the expression kinetics of these genes differ from those associated with the well-characterized pathogenesis-related protein (PR-1) and phenylalanine ammonia-lyase (PAL) genes, we propose that they belong to a group which we designate SIS, for SA-independent, systemically induced genes. Interestingly, the expression of several SIS genes in the uninoculated leaves of TMV-infected NahG plants was delayed and/or reduced, raising the possibility that SA is involved in activating some of these genes in systemic tissue. Most of the SIS genes were induced by exogenous ethylene. However, analyses of infected NahG plants treated with ethylene action and/or synthesis inhibitors indicated that the TMV-induced expression of several SIS genes is independent of ethylene as well as SA.  相似文献   

19.
When tobacco plants were treated by injection with nitric oxide (NO)-releasing compounds, the sizes of lesions caused by Tobacco mosaic virus (TMV) on the treated leaves and on upper nontreated leaves were significantly reduced. The reduction in TMV lesion size was caused by NO released from the NO-releasing compounds; the byproduct formed after release of NO from the NO-releasing compound NOC-18, diethylenetriamine, did not itself alter lesion size. Treatment of tobacco plants with inhibitors of nitric oxide synthase or an NO scavenger attenuated but did not abolish the systemic acquired resistance (SAR) induced by salicylic acid (SA). In NahG transgenic tobacco plants, NO had no effect on lesion size following TMV infection. These results are consistent with the hypothesis that NO plays an important role in SAR induction in tobacco and that NO is required for the full function of SA as an SAR inducer. The activity of NO is fully dependent on the function of SA in the SAR signaling pathway in tobacco.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号