首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 853 毫秒
1.
Physiological analysis of the fhy1 mutant of Arabidopsis has led to the proposal that the mutant is deficient in a downstream component of the phytochrome A signal transduction pathway. To define this lesion at the molecular level, we have examined the expression of a range of phytochrome-regulated genes in fhy1. In far-red light, the regulation of genes such as CHS and CHI is blocked in fhy1, whereas the induction of CAB and NR genes is affected minimally. In contrast, the induction of all genes tested is blocked in a phytochrome A-deficient mutant, confirming that gene expression in far-red light is regulated solely by phytochrome A. Thus, fhy1 defines a branch point in phytochrome A signal transduction pathways for gene expression. Contrary to the general opinion that responses to continuous red light are mediated by phytochrome B and other photostable phytochromes, we have shown also that red light-induction of CHS is mediated almost entirely by phytochrome A. Furthermore, phytochrome A-mediated induction of CHS by red light is blocked in fhy1. The induction of CHS by blue light, however, is normal in fhy1, suggesting that although FHY1 is a component of the phytochrome A signaling pathway, it is not a component of the blue-light signaling pathway for CHS expression.  相似文献   

2.
GRAS家族是一类植物特有的转录调控因子, 已有报道表明该家族基因在植物生长发育和光信号转导过程中具有重要作用。目前在拟南芥(Arabidopsis thaliana)基因组中已鉴定了33个GRAS家族基因。利用功能基因组学和生物信息学手段,通过基因芯片数据挖掘和基因功能预测, 对拟南芥GRAS家族基因在渗透和干旱胁迫过程中的应答模式进行了初步探索, 提出了一类响应渗透胁迫和干旱胁迫的拟南芥GRAS家族基因。以SCL13为例, 利用基因芯片相关性和GO分析, 对其在渗透胁迫信号转导过程中可能的调控机制进行了预测和分析。这一研究将为阐明GRAS家族基因参与水分胁迫的分子机制提供新的思路, 同时也为植物抗逆分子育种提供候选基因。  相似文献   

3.
4.
The effects of G protein and cGMP on phytochrome-mediated amaranthin biosynthesis inAmaranthus caudatus seedlings were studied. It was shown that G protein agonist cholera toxin induced amarathin synthesis in darkness, whereas G protein antagonist pertussis toxin inhibited red light-induced amaranthin synthesis. Amaranthin synthesis was also induced by exogenous cGMP, while the amaranthin biosynthesis induced by cholera toxin, red light and exogenous cGMP was inhibited by genistein. L Y-83583, an inhibitor of guanylyl cyclase, inhibited the amarenthin synthesis induced both by red light and cholera toxin, while it was not able to inhibit the amaranthin synthesis induced by exogenous cGMP. These results suggest that G protein, guanylyl cyclase and cGMP were the candidates in phytochrone signal transduction chain for red light-induced amaranthin biosynthesis and the red light signal transduction chain might be as follows: red light → phytochrome → G protein → guanylyl cyclase → cGMP.  相似文献   

5.
C. Schuster  R. Oelmüller  H. Mohr 《Planta》1987,171(1):136-143
Application of nitrate leads to an induction of nitrate reductase (NR; EC 1.6.6.1) and nitrite reductase (NIR; EC 1.7.7.1) in the cotyledons of dark-grown mustard (Sinapis alba L.) seedlings, and this induction can strongly be promoted by a far-red-light pretreatment — operating through phytochrome — prior to nitrate application. This light treatment is almost ineffective — as far as enzyme appearance is concerned — if no nitrate is given. When nitrate is applied, the stored light signal potentiates the appearance of NR and NIR in darkness, even in the absence of active phytochrome, to the same extent as continuous far-red light. This action of previously stored light signal lasts for approx. 12 h.Storage of the light signal was measured for NR and NIR. The process shows enzyme-specific differences. Storage occurs in the absence as well as in the presence of nitrate, i.e. irrespective of whether or not enzyme synthesis takes place. The kinetics of signal transduction and signal storage indicate that the formation and action of the stored signal are a bypass to the process of direct signal transduction. Signal storage is possibly a means of enabling the plant to maintain the appropriate levels of NR and NIR during the dark period of the natural light/dark cycle.Abbreviations cD continuous darkness - cFR continuous far-red light - D darkness - FR far-red light - NIR nitrite reductase (EC 1.7.7.1) - NR nitrate reductase (EC 1.6.6.1) - Pfr phytochrome (far-red absorbing) - Pr phytochrome (red absorbing) - R red light - RG9-light long wavelength far-red light obtained with RG9 glass filter - - Ptot total phytochrome (Pr+Pfr) Professor Wilhelm Nultsch mit guten Wünschen zum 60. Geburtstag  相似文献   

6.
Huq E  Quail PH 《The EMBO journal》2002,21(10):2441-2450
Plants sense and respond to red and far-red light using the phytochrome (phy) family of photoreceptors. However, the mechanism of light signal transduction is not well defined. Here, we report the identification of a new mutant Arabidopsis locus, srl2 (short under red-light 2), which confers selective hypersensitivity to continuous red, but not far-red, light. This hypersensitivity is eliminated in srl2phyB, but not srl2phyA, double mutants, indicating that this locus functions selectively and negatively in phyB signaling. The SRL2 gene encodes a bHLH factor, designated PIF4 (phytochrome-interacting factor 4), which binds selectively to the biologically active Pfr form of phyB, but has little affinity for phyA. Despite its hypersensitive morphological phenotype, the srl2 mutant displays no perturbation of light-induced expression of marker genes for chloroplast development. These data suggest that PIF4 may function specifically in a branch of the phyB signaling network that regulates a subset of genes involved in cell expansion. Consistent with this proposal, PIF4 localizes to the nucleus and can bind to a G-box DNA sequence motif found in various light-regulated promoters.  相似文献   

7.
The effect on the phytochrome system of light regimes establishing a range of photoequilibria was studied in two light grown dicotyledonous plants, both of which were treated with the herbicide SAN 9789 to prevent chlorophyll accumulation. In Sinapis alba L. cotyledons the results are comparable with phytochrome behaviour in etiolated mustard seedlings; the level of Pfr becomes independent of wave-length whereas the total phytochrome level is wave-length dependent. Contrasting properties are exhibited in Phaseolus aureus Roxb. leaves in which total phytochrome is unaffected by light quality; consequently the Pfr level is dependent on wavelength. Nevertheless, the amount of phytochrome in mung leaves increased after transfer to darkness suggesting that light still has a profound influence on the phytochrome system, even though light quality during the light period and prior to darkness does not.Abbreviations FR far-red light - WL white light - PAR photosynthetically active radiation - Pfr far-red light absorbing form of phytochrome - Pr red light absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr) - Pfr/Pfr+Pr - SAN 9789 4-chloro-5-(methylamino) 2(,, trifluoro-m tolyl)-3(2H)-pyridazinone  相似文献   

8.
E. Hofmann  V. Speth  E. Schäfer 《Planta》1990,180(3):372-377
The intracellular localisation of phytochrome in oat (Avena sativa L. cv. Garry Oat) coleoptiles was analysed by electron microscopy. Serial ultrathin sections of resin-embedded material were indirectly immunolabeled with polyclonal antibodies against phytochrome together with a gold-coupled second antibody. The limits of detectability of sequestered areas of phytochrome (SAPs) were analysed as a function of light pretreatments and amounts of the far-red absorbing form of phytochrome (Pfr) established. In 5-d-old dark-grownAvena coleoptiles SAPs were not detectable if less than 13 units of Pfr — compared with 100 units total phytochrome of 5-d-old dark-grown seedlings — were established by a red light pulse. In other sets of experiments, seedlings were preirradiated either with a non-saturating red light pulse to allow destruction to occur or with a saturating red followed by a far-red light pulse to induce first SAP formation and then its disaggregation. These preirradiations resulted in an increase of the limit of detectability of SAP formation after a second red light pulse to 38–41 and 19–23 units Pfr, respectively. We conclude that with respect to Pfr-induced SAP formation an adaptation process exists and that our data indicate that SAP formation is not a simple self-aggregation of newly formed Pfr.Abbreviations FR far-red light - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - Plot total phytochrome (Pfr + Pr) - R red light - SAP sequestered areas of phytochrome This work was supported by Deutsche Forschungsgemeinschaft (SFB 206). The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

9.
K. Zandomeni  P. Schopfer 《Protoplasma》1993,173(3-4):103-112
Summary The effects of red and blue light on the orientation of cortical microtubules (MTs) underneath the outer epidermal wall of maize (Zea mays L.) coleoptiles were investigated with immunofluorescent techniques. The epidermal cells of dark-grown coleoptiles demonstrated an irregular pattern of regions of parallel MTs with a random distribution of orientations. This pattern could be changed into a uniformly transverse MT alignment with respect to the long cell axis by 1 h of irradiation with red light. This response was transient as the MTs spontaneously shifted into a longitudinal orientation after 1–2 h of continued irradiation. Induction/reversion experiments with short red and far-red light pulses demonstrated the involvement of phytochrome in this response. In contrast to red light, irradiation with blue light induced a stable longitudinal MT alignment which was established within 10 min. The blue-light response could not be affected by subsequent irradiations with red or far-red light indicating the involvement of a separate blue-light photoreceptor which antagonizes the effect of phytochrome. In mixed light treatments with red and blue light, the blue-light photoreceptor always dominated over phytochrome which exhibited an apparently less stable influence on MT orientation. Long-term irradiations with red or blue light up to 6 h did not reveal any rhythmic changes of MT orientation that could be related to the rhythmicity of helicoidal cell-wall structure. Subapical segments isolated from dark-grown coleoptiles maintained a longitudinal MT arrangement even in red light indicating that the responsiveness to phytochrome was lost upon isolation. Conversely auxin induced a transverse MT arrangement in isolated segments even in blue light, indicating that the responsiveness to blue-light photoreceptor was eliminated by the hormone. These complex interactions are discussed in the context of current hypotheses on the functional significance of MT reorientations for cell development.Abbreviations MT cortical microtubule - Pr, Pfr red and far-red absorbing form of phytochrome  相似文献   

10.
The psi2 mutant of Arabidopsis displays amplification of the responses controlled by the red/far red light photoreceptors phytochrome A (phyA) and phytochrome B (phyB) but no apparent defect in blue light perception. We found that loss-of-function alleles of the protein phosphatase 7 (AtPP7) are responsible for the light hypersensitivity in psi2 demonstrating that AtPP7 controls the levels of phytochrome signaling. Plants expressing reduced levels of AtPP7 mRNA display reduced blue-light induced cryptochrome signaling but no noticeable deficiency in phytochrome signaling. Our genetic analysis suggests that phytochrome signaling is enhanced in the AtPP7 loss of function alleles, including in blue light, which masks the reduced cryptochrome signaling. AtPP7 has been found to interact both in yeast and in planta assays with nucleotide-diphosphate kinase 2 (NDPK2), a positive regulator of phytochrome signals. Analysis of ndpk2-psi2 double mutants suggests that NDPK2 plays a critical role in the AtPP7 regulation of the phytochrome pathway and identifies NDPK2 as an upstream element involved in the modulation of the salicylic acid (SA)-dependent defense pathway by light. Thus, cryptochrome- and phytochrome-specific light signals synchronously control their relative contribution to the regulation of plant development. Interestingly, PP7 and NDPK are also components of animal light signaling systems.  相似文献   

11.
Seeds (nutlets) of Rumex obtusifolius L. fail to germinate in darkness at 25° C, but are stimulated by short exposure to red light (R) the effectiveness of which can be negated by a subsequent short exposure to far red light (F) indicating phytochrome control. Short periods of elevated temperature treatment (e.g. 5 min at 35° C) can induce complete germination in darkness. Although short F cannot revert the effect of 35° C treatment, cycling the phytochrome pool by exposure to short R before short F results in reversion of at least 50% of the population. Prolonged or intermittent F can also revert the germination induced by 35° C treatment. The effect of elevated temperature treatment is interpreted on the basis of two possible models; (i) that it increases the sensitivity of the seeds to a low level of pre-existing active form of phytochrome (Pfr) (ii) that it induces the appearance of Pfr in the dark. In both cases it is envisaged that elevated temperature treatment and Pfr control germination at a common point in the series of reactions that lead to germination.Abbreviations D Dark - F far red light - P phytochrome - Pr red absorbing form of P - Pfr far red absorbing form of P - R red light  相似文献   

12.
Germination of Rumex obtusifolius L. seeds (nutlets) is low in darkness at 25° C. Germination is stimulated by exposure to 10 min red light (R) and also by a 10-min elevation of temperature to 35° C. A 10-min exposure to far-red light (FR) can reverse the effect of both R (indicating phytochrome control) and 35° C treatment. Fluence-response curves for this reversal of the effect of R and 35° C treatments are quantitatively identical. Treatment for 10 min with light of wavelenght 680, 700, 710 and 730 nm, after R and 35° C treatment, demonstrates that germination induced by 35° C treatment results from increased sensitivity to a pre-existing, active, far-red-absorbing form of phytochrome (Pfr) in the seeds.Abbreviations FR far-red light - P phytochrome - Pr red-absorbing form of P - Pfr far-red-absorbing form of P - R red light  相似文献   

13.
Continuous irradiation of Mesembryanthemum crystallinum plantswith light of equal amounts of photosynthetically active radiation,but widely different red:far red ratios was used to intervenein phytochrome-mediated signal transduction pathways in thepresence and absence of salt stress. Light with a low ratioof red:far red (in contrast to light with a high ratio of red:farred), caused induction of PEP carboxylase activity, accumulationof the CAM isoform of PEP carboxylase, and the accumulationof malate anion. Taking these as indicators of CAM inductionit is concluded that phytochrome can participate in the signaltransduction pathway leading to CAM in M. crystallinum. A lowratio of red: far red light acted synergystically with saltstress in the induction of these CAM indicators. The simplestinterpretation of this interaction is that the phytochrome-mediatedeffects and salt stress effects acted on the same signal transductionpathway. The accumulation of pinitol was also increased by light witha low ratio of red:far red, consistent with the existence ofa stress syndrome in M. crystallinum which utilizes a commontransduction pathway. A low ratio of red:far red light induced a strong shade avoidanceresponse and, compared to light with a high red:far red ratio,modified chlorophyll content and betacyanin pigment complement. Plants grown in light with a low ratio of red:far red floweredearlier than plants grown in light with a high red:far red ratio. It is concluded that phytochrome can participate in the signaltransduction pathway leading to the induction of both CAM andthe processes which result in pinitol accumulation and pigmentationin M. crystallinum, as well as in the mediation of shade avoidanceand flowering responses. Key words: Mesembryanthemum crystallinum, CAM, phytochrome, signal transduction, drought stress  相似文献   

14.
The low chlorophyll content of cotyledons of Pharbitis nil grown for 24 h in far-red light (FR) or at 18° C in white light from fluorescent lamps (WL) allows spectrophotometric measurement of phytochrome in these tissues. The (A) measurements utilize measuring beams at 730/802 nm and an actinic irradiation in excess of 90 s. The constancy of the relationship between phytochrome content and sample thickness confirms that, under these conditions of measurement, a true maximum phytochrome signal was obtained. These techniques have been used to follow changes in the form and amount of phytochrome during an inductive dark period for flowering. Following exposure to 24h WL at 18° C with a terminal 10 min red (R), Pfr was lost rapidly in darkness and approached zero in less than 1 h; during this period there was no change in the total phytochrome signal. Following exposure to 24 h FR with a terminal 10 min R, Pfr approached zero in 3 h, and the total phytochrome signal decreased by about half. The relevance of these changes to photoperiodic time measurement is discussed.Abbreviations BCJ irradiation from photographic ruby-red lamps - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - P total phytochrome content - R red light - WL white light from fluorescent lamps  相似文献   

15.
Peter J. Watson  Harry Smith 《Planta》1982,154(2):128-134
Phytochrome in the far-red light absorbing form (Pfr) was observed to disappear in vivo more rapidly from the non-cation-requiring pelletable phytochrome population than from the supernantant phytochrome population of oat seedlings given an increasing dark incubation after red irradiation. The amount of pelletable phytochrome in the red light absorbing form (Pr) remained relatively stable while supernatant Pr was lost. These observations indicated that supernant Pfr was subject to loss during the incubation, while pelletable Pfr was subject to both dark reversion and loss.During the incubation, the ability of far-red irradiation to reverse the red-induced increase in phytochrome pelletability was lost, with kinetics similar to those of the loss of pelletable Pfr.Far-red reversibility of the red-induced increase in coleoptile elongation correlated with the change intotal Pfr in both supernatant and pelletable phytochrome populations, but with the change in the ratio of Pfr to total phytochrome only in the pelletable phytochrome population.The possible significance of these results is discussed with reference to the action of phytochrome in the photocontrol of physiological growth responses.Abbreviations Pfr phytochrome in the far-red light absorbing form - Pr phytochrome in the red absorbing form - Ptot total phytochrome  相似文献   

16.
In general, phototropic responses in land plants are induced by blue light and mediated by blue light receptor phototropins. In many cryptogam plants including the fern Adiantum capillus-veneris, however, red as well as blue light effectively induces a positive phototropic response in protonemal cells. In A. capillus-veneris, the red light effect on the tropistic response is mediated by phytochrome 3 (phy3), a chimeric photoreceptor of phytochrome and full-length phototropin. Here, we report red and blue light-induced negative phototropism in A. capillus-veneris rhizoid cells. Mutants deficient for phy3 lacked red light-induced negative phototropism, indicating that under red light, phy3 mediates negative phototropism in rhizoid cells, contrasting with its role in regulating positive phototropism in protonemal cells. Mutants for phy3 were also partially deficient in rhizoid blue light-induced negative phototropism, suggesting that phy3, in conjunction with phototropins, redundantly mediates the blue light response.  相似文献   

17.
The occurrence of phytochrome-mediated highirradiance responses (HIR), previously characterised largely in dicotyledonous plants, was investigated in Triticum aestivum L., Zea mays L., Lolium multiflorum Lam. and in both wild-type Oryza sativa L. and in transgenic plants overexpressing oat phytochrome A under the control of a 35S promoter. Coleoptile growth was promoted (maize, ryegrass) or inhibited (wild-type rice) by continuous far-red light (FRc). However, at equal fluences, hourly pulses of far-red light (FRp) were equally effective, indicating that the growth responses to FRc were not true HIR. In contrast, in maize and rice, FRc increased anthocyanin content in the coleoptile in a fluence-rate dependent manner. This response was a true HIR as FRp had reduced effects. In maize, anthocyanin levels were significantly higher under FRc than under continuous red light. In rice, overexpression of phytochrome A increased the inhibition of coleoptile growth and the levels of anthocyanin under FRc but not under FRp or under continuous red light. The effect of FRc was fluence-rate dependent. In light-grown rice, overexpression of phytochrome A reduced leaf-sheath length, impaired the response to supplementary far-red light, but did not affect the response to canopy shade-light. In grasses, typical HIR, i.e. fluence-rate dependent responses showing reciprocity failure, can be induced by FRc. Under FRc, overexpressed phytochrome A operates through this action mode in transgenic rice.Abbreviations FR far-red light - FRc continuous far-red light - FRp pulses of far-red light - HIR high-irradiance responses - LFR low-fluence responses - OPHYA transgenic rice overexpressing oat phytochrome A - Pfr far-red light-absorbing form of phytochrome - phyA phytochrome A - R red light - Rc continuous red light - VLFR very low-fluence responses - WT wildtype We thank Marcelo J. Yanovsky for his help with the photographs and Professor Rodolfo A. Sanchez for providing a reprint of the paper by P.J.A.L. de Lint. This work was supported by grants from UBA (AG041) and Fundacion Antorchas (A-13218/1-15) to J.J.C.  相似文献   

18.
Massanori Takaki  V. M. Zaia 《Planta》1984,160(2):190-192
A short period (15–30 min) at 30° C promotes germination of seeds of Lactuca sativa L. cv. Repolhuda in darkness. Far-red light reverses this stimulation, and the escape curves for phytochrome and high-temperature action are quite similar, indicating that the two factors act at a common point in the chain of events leading to germination. It is suggested that high temperature acts by decreasing the threshold of the active, far-red absorbing, form of phytochrome (Pfr) needed to promote germination.Abbreviations FR far-red light - Pfr far-red-absorbing form of phytochrome - R red light  相似文献   

19.
The effect of light on the phytochrome content of cauliflower (Brassica oleracea (L.) var. botrytis) curd was studied using in vivo spectrophotometry. It was found that light caused a rapid increase in phytochrome level whereas transfer to darkness caused a rapid loss, regardless of the amount of phytochrome initially present in the far red absorbing form. The amount of phytochrome detectable during continuous irradiation appears to be related to the photoequilibrium , and is thus controlled by phytochrome itself.Abbreviation Pr and Pfr red and far red absorbing forms of phytochrome, respectively  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号