首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose, glycogen, and insulin responses in the hypothermic rat   总被引:1,自引:0,他引:1  
J M Steffen 《Cryobiology》1988,25(2):94-101
The rat appears to be unable to utilize glucose during hypothermia. The objective of this study was to examine carbohydrate homeostasis during induction, hypothermia, and rewarming phases. Groups of normothermic animals were euthanized to serve as time controls for comparison. Hypothermia (15 degrees C) was produced by exposure to helox (80% helium:20% oxygen) at 0 +/- 1 degree C. Hyperglycemia was noted during the induction process (169 +/- 8 in control vs 326 +/- 49 mg/dl). Serum glucose increased further during 4 hr of hypothermia, but following rewarming (Tre of 33 +/- 1 degrees C) was reduced (153 +/- 16 mg/dl) significantly (P less than 0.05). Serum insulin was depressed during hypothermic induction (from 48 +/- 4 in controls to 19 +/- 3 microU/ml in hypothermic rats) and increased only slightly during the arousal process, remaining significantly lower than in normothermic subjects. Initial hepatic, skeletal muscle, and cardiac glycogen concentrations were reduced 34, 68, and 75%, respectively, during hypothermic induction. While liver glycogen decreased further during 4 hr of hypothermia, skeletal and cardiac stores increased markedly. During rewarming, hepatic glycogen was markedly decreased, while skeletal and cardiac stores were maintained. These data suggest that hyperglycemia in the hypothermic rat can be accounted for by glycogenolysis and hypoinsulinemia. In addition, this study indicates repletion of skeletal and cardiac muscle glycogen during maintained hypothermia and sparing of muscle glycogen during rewarming.  相似文献   

2.
Muscle glycogen availability and temperature regulation in humans   总被引:1,自引:0,他引:1  
The effects of intramuscular glycogen availability on human temperature regulation were studied in eight seminude subjects immersed in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Each subject was immersed three times over a 3-wk period. Each immersion followed 2.5 days of a specific dietary and/or exercise regimen designed to elicit low (L), normal (N), or high (H) glycogen levels in large skeletal muscle groups. Muscle glycogen concentration was determined in biopsies taken from the vastus lateralis muscle before and after each immersion. Intramuscular glycogen concentration before the immersion was significantly different among the L, N, and H trials (P less than 0.01), averaging 247 +/- 15, 406 +/- 23, and 548 +/- 42 (SE) mmol glucose units.kg dry muscle-1, respectively. The calculated metabolic heat production during the first 30 min of immersion was significantly lower during L compared with N or H (P less than 0.05). The rate at which Tre decreased was more rapid during the L immersion than either N or H (P less than 0.05), and the time during the immersion at which Tre first began to decrease also appeared sooner during L than N or H. The results suggest that low skeletal muscle glycogen levels are associated with more rapid body cooling during water immersion in humans. Higher than normal muscle glycogen levels, however, do not increase cold tolerance.  相似文献   

3.
The rate of warming after hypothermia depends on the method of rewarming. This study compared the effectiveness of radio frequency (RF) energy against hot (41 degrees C) water immersion (HW) and an insulated cocoon (IC) for rewarming hypothermic men. Six men fasted overnight and were rewarmed for 1 h after attaining a 0.5 degree C reduction in rectal temperature (Tre). Tre and esophageal (Tes) temperature were recorded every 5 min with nonmetallic thermal probes. The base-line value for Tre and Tes just before rewarming was subtracted from each 5 min Tre and Tes during rewarming to give delta Tre and delta Tes. The 12 delta Tes values were averaged for each individual and were compared using analysis of variance. The average delta Tes for RF (1.15 +/- 0.22 degrees C/h) was faster (P less than 0.001) than either IC (0.37 +/- 0.16 degrees C/h) or HW (0.18 +/- 0.09 degree C/h). The present study shows the superiority of RF energy for rewarming mildly hypothermic men.  相似文献   

4.
This investigation studied the importance of muscle glycogen levels for body temperature regulation during cold stress. Physiological responses of eight euglycemic males were measured while they rested in cold (18 degrees C, stirred) water on two separate occasions. The trials followed a 3-day program of diet and exercise manipulation designed to produce either high (HMG) or low (LMG) preimmersion glycogen levels in the muscles of the legs, arms, and upper torso. Preimmersion vastus lateralis muscle glycogen concentrations were lower during the LMG trial (144 +/- 14 mmol glucose/kg dry tissue) than the HMG trial (543 +/- 53 mmol glucose/kg dry tissue). There were no significant differences between the two trials in shivering as reflected by aerobic metabolic rate or in the amount of body cooling as reflected by changes in rectal temperature during the immersions. Postimmersion muscle glycogen levels remained unchanged from preimmersion levels in both trials. Small but significant increases in plasma glucose and lactate concentration occurred during both immersions. Plasma glycerol increased during immersion in the LMG trial but not in the HMG trial. Plasma free fatty acid concentration increased during both immersion trials, but the change was apparent sooner in the LMG immersion. It was concluded that thermoregulatory responses of moderately lean and fatter individuals exposed to cold stress were not impaired by a substantial reduction in the muscle glycogen levels of several major skeletal muscle groups. Furthermore, the data suggest that, depending on the intensity of shivering, other metabolic substrates are available to enable muscle glycogen to be spared.  相似文献   

5.
Muscle glycogen utilization during shivering thermogenesis in humans   总被引:2,自引:0,他引:2  
The purpose of the present study was to clarify the importance of skeletal muscle glycogen as a fuel for shivering thermogenesis in humans during cold-water immersion. Fourteen seminude subjects were immersed to the shoulders in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Biopsies from the vastus lateralis muscle and venous blood samples were obtained before and immediately after the immersion. Metabolic rate increased during the immersion to 3.5 +/- 0.3 (SE) times resting values, whereas Tre decreased by 0.9 degrees C to approximately 35.8 degrees C at the end of the immersion. Intramuscular glycogen concentration in the vastus lateralis decreased from 410 +/- 15 to 332 +/- 18 mmol glucose/kg dry muscle, with each subject showing a decrease (P less than 0.001). Plasma volume decreased (P less than 0.001) markedly during the immersion (-24 +/- 1%). After correcting for this decrease, blood lactate and plasma glycerol levels increased by 60 (P less than 0.05) and 38% (P less than 0.01), respectively, whereas plasma glucose levels were reduced by 20% after the immersion (P less than 0.001). The mean expiratory exchange ratio showed a biphasic pattern, increasing initially during the first 30 min of the immersion from 0.80 +/- 0.06 to 0.85 +/- 0.05 (P less than 0.01) and decreasing thereafter toward basal values. The results demonstrate clearly that intramuscular glycogen reserves are used as a metabolic substrate to fuel intensive thermogenic shivering activity of human skeletal muscle.  相似文献   

6.
The purpose of this study was to investigate whether simultaneous alterations in the availability of plasma free fatty acids and muscle glycogen would impair the maintenance of thermal balance during cold water immersion in humans. Eight seminude subjects were immersed on two occasions in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Each immersion followed 2.5 days of a specific dietary and exercise regimen designed to elicit low (LOW) or high glycogen levels (HIGH) in large skeletal muscle groups. Nicotinic acid (1.6 mg/kg) was administered for 2 h before and during immersion to inhibit white adipose tissue lipolysis. Biopsies from the vastus lateralis showed that the glycogen concentration before the immersion was significantly lower in LOW than in HIGH (223 +/- 19 vs. 473 +/- 24 mmol glucose units/kg dry muscle). However, the mean rates of glycogen utilization were not significantly different between trials (LOW 0.62 +/- 0.14 vs. HIGH 0.88 +/- 0.15 mmol glucose units.kg-1.min-1). Nicotinic acid dramatically reduced plasma free fatty acid levels in both trials, averaging 127 +/- 21 mumol/l immediately before the immersion. Cold water immersion did not significantly alter those levels. Plasma glucose levels were significantly reduced after cold water immersion to a similar extent in both trials (18 +/- 4%). Mean respiratory exchange ratio at rest and during immersion was greater in HIGH than LOW, whereas there were no intertrial differences in O2 uptake. The calculated average metabolic heat production during immersion tended to be lower (P = 0.054) in LOW than in HIGH (15.3 +/- 1.9 vs. 17.5 +/- 1.9 kJ/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Recent studies using inanimate and animal models suggest that the afterdrop observed upon rewarming from hypothermia is based entirely on physical laws of heat flow without involvement of the returning cooled blood from the limbs. During the investigation of thermoregulatory responses to cold water immersion (15 degrees C), blood flow to the limbs (minimized by the effects of hydrostatic pressure and vasoconstriction) was occluded in 17 male subjects (age, 29.0 +/- 3.3 yr). Comparisons of rectal (Tre) and esophageal temperature (Tes) responses were made during the 5 min before occlusion, during the 10-min occlusion period, and for 5 min immediately after the release of the cuffs (postocclusion). In the preocclusion phase, Tre and Tes showed similar cooling rates. The occlusion of blood flow to the extremities significantly arrested the cooling of Tes (P less than 0.05) with little effect on Tre. Upon release of the pressure cuffs, the returning extremity blood flow resulted in an increased rate of cooling, that was three times greater at the esophageal site (-0:149 +/- 0.052 vs. -0.050 +/- 0.026 degrees C.min-1). These results suggest that the cooled peripheral circulation, minimized during cold water immersion, may dramatically affect esophageal temperature and the complete neglect of the circulatory component to the afterdrop phenomenon is not warranted.  相似文献   

8.
Free fatty acid availability and temperature regulation in cold water   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate whether a reduced availability of plasma free fatty acids (FFA) would impair human temperature regulation during cold exposure. Seven seminude male subjects were immersed on two occasions in 18 degrees C water for 90 min or until their rectal temperature (Tre) decreased to 35.5 degrees C. The immersion occurred after 2 h of intermittent oral ingestion of either nicotinic acid (NIC) or a placebo (PLAC). Plasma FFA levels immediately before the immersion were significantly lower in NIC (87 +/- 15 mumol/l) than in PLAC (655 +/- 116 mumol/l, P less than 0.05). Although FFA levels increased by 73% in NIC during the immersion (P less than 0.05), they remained significantly lower than in PLAC (151 +/- 19 vs. 716 +/- 74 mumol/l, P less than 0.05) throughout the immersion. Muscle glycogen concentrations in the vastus lateralis decreased after cold water immersion in both trials (P less than 0.05), but the rate of glycogen utilization was similar, averaging 1.00 +/- 0.27 mmol glucose unit.kg dry muscle-1.min-1). Plasma glucose levels were significantly reduced after immersion in both trials (P less than 0.05), this decrease being greater in NIC (1.3 +/- 0.2 mmol/l) than in PLAC (0.7 +/- 0.1 mmol/l, P less than 0.05). O2 uptake increased to 3.8 +/- 0.3 times preimmersion values in both trials (P less than 0.05). Mean respiratory exchange ratio (RER) immediately before the immersion was greater in NIC (0.87 +/- 0.02) than in PLAC (0.77 +/- 0.01, P less than 0.05). Cold exposure increased RER in PLAC but not in NIC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ultra profound hypothermia (4 to 10 degrees C) is an experimental method aiming at safely prolonging organ and total body preservation. For this purpose, Hypothermosol (HTS), an investigational acellular solution for blood substitution, was demonstrated to be beneficial in animal models undergoing cardiopulmonary bypass. We investigated the beneficial versus deleterious effects of cold preservation and the role of HTS on isolated coronary arteries (CA) during cold exposure, rewarming, and post-rewarming exposure to anoxia. Newborn lamb CA rings were studied using a tissue bath technique. CA were subjected to cold (7 degrees C for 3 h) and treated with either Krebs' buffer (Krebs/hypothermia) or HTS (HTS/hypothermia) (n = 15 each). A third group maintained at 37 degrees C (Krebs/normothermia) (n = 18) served as a time control. After rewarming (37 degrees C), precontracted CA were exposed to anoxia. In Krebs/hypothermia a substantial hypercontraction (g) occurred during rewarming (1.21+/-0.07) (mean +/- SEM) but not in HTS/hypothermia (0.79+/-0.03); P<0.05. Precontraction force generated by indomethacin/U46619 was identical in all three groups. However, Krebs/hypothermia vessels demonstrated a significantly higher relative vasoconstriction (percentage) in the early (approximately 10 min) and late (30 min) anoxia exposure than the HTS/hypothermia and time control (119.5%+/- 3.7 vs. 109.5%+/-4.4 and 101.5%+/-3, and 71%+/-7.6 vs. 38.9%+/-7 and 51.5%+/-5.9, respectively; P<0.05). In conclusion, Ultra profound hypothermia promotes coronary vasoconstriction upon rewarming, which is detrimental to relaxant response to hypoxia. Both phenomena are alleviated by performing ultra profound hypothermia under HTS protection.  相似文献   

11.
E Aasum  T S Larsen 《Cryobiology》1999,38(3):243-249
We examined the effect of hypothermia and rewarming on myocardial function and calcium control in Langendorff-perfused hearts from rat and guinea pig. Both rat and guinea pig hearts demonstrated a rise in myocardial calcium ([Ca]total) in response to hypothermic perfusion (40 min, 10 degrees C), which was accompanied by an increase in left ventricular end diastolic pressure (LVEDP). The elevation in [Ca]total was severalfold higher in guinea pig than in rat hearts, reaching 12.9 +/- 0.8 and 3.1 +/- 0.6 micromol.g dry wt-1, respectively. The rise in LVEDP, however, was comparable in the two species: 62.5 +/- 2.5 (guinea pig) and 52.5 +/- 5.1 mm Hg (rat). Following rewarming, [Ca]total remained elevated in guinea pig, whereas a moderate decline in [Ca]total was observed in the rat (13.6 +/- 1.9 and 2.2 +/- 0.3 micromol.g dry wt-1, respectively). Posthypothermic values of LVEDP were also significantly higher in guinea pig compared to rat hearts (42.5 +/- 6.8 vs 20.5 +/- 5.1 mm Hg, P < 0.027). Furthermore, whereas rat hearts demonstrated a 78 +/- 7% recovery of left ventricular developed pressure, there was only a 15 +/- 7% recovery in guinea pig hearts. Measurements of tissue levels of high energy phosphates and glycogen utilization indicated a higher metabolic requirement in guinea pig than in rat hearts in order to oppose the hypothermia-induced calcium load. Thus, we conclude that isolated guinea pig hearts are more sensitive to a hypothermic insult than rat hearts.  相似文献   

12.
Eleven women (age = 24.4 +/- 6.3 yr, mass = 65.0 +/- 7.8 kg, height = 167 +/- 8 cm, body fatness = 22.4 +/- 5.9%, mean +/- SD) were immersed to neck level in 18 degrees C water for up to 90 min for comparison of their thermal responses with those of men (n = 14) in a previous similarly conducted protocol. Metabolic rate increased about three times resting levels in men and women, whereas the rate of rectal temperature cooling (DeltaT(re)/Deltat) in women (0.47 degrees C/h) was about one-half that in men. With use of all data, DeltaT(re)/Deltat correlates with the ratio of body surface area to size and the metabolic rate of shivering correlates inversely to the square root of body fatness. No significant gender differences in total metabolic heat production normalized for body mass or surface area were found among subjects who completed 90 min of immersion (9 women and 7 men). Nor was there a gender difference in the overall percent contribution ( approximately 60%) of fat oxidation to total heat production. Blood concentrations of free fatty acids, glycerol, beta-hydroxybutyrate, and lactate increased significantly during the 90-min immersion, whereas muscle glycogen sampled from the right quadriceps femoris vastus lateralis decreased (free fatty acids, glycerol, and beta-hydroxybutyrate were higher in women). When the subjects were subgrouped according to similar body fatness and 60 min of immersion (6 women and 5 men), no significant gender differences emerged in DeltaT(re)/Deltat, energy metabolism, and percent fat oxidation. These findings suggest that no gender adjustments are necessary for prediction models of cold response if body fatness and the ratio of body surface area to size are taken into account and that a potential gender advantage with regard to carbohydrate sparing during cold water immersion is not supported.  相似文献   

13.
The muscle contents of high-energy phosphates and their derivatives [ATP, ADP, AMP, creatine phosphate (CrP), and creatine], glycogen, some glycolytic intermediates, pyruvate, and lactate were compared in 11 dogs performing prolonged heavy exercise until exhaustion (at ambient temperature 20.0 +/- 1.0 degrees C) without and with trunk cooling using ice packs. Without cooling, dogs were able to run for 57 +/- 8 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 +/- 0.2 and 43.0 +/- 0.2 degrees C, respectively. Compared with noncooling, duration of exercise with cooling was longer by approximately 45% while Tre and Tm at the time corresponding to the end of exercise without cooling were lower by 1.1 +/- 0.2 and 1.2 +/- 0.2 degrees C, respectively. The muscle contents of high-energy phosphates (ATP + CrP) decreased less, the rate of glycogen depletion was lower, and the increases in the contents of AMP, pyruvate, and lactate as well as in the muscle-to-blood lactate ratio were smaller. The muscle content of lactate was positively correlated with Tm. The data indicate that with higher body temperature equilibrium between high-energy phosphate breakdown and resynthesis was shifted to the lower values of ATP and CrP and glycolysis was accelerated. The results suggest that hyperthermia developing during prolonged muscular work exerts an adverse effect on muscle metabolism that may be relevant to limitation of endurance.  相似文献   

14.
To obtain more detailed information relative to the potential usefulness of using radio frequency (RF) energy in treating hypothermia, anesthetized rhesus monkeys were used in a rewarming study that compared a conventional method (heating pad) with an RF induction coil system. Rectal temperature (Tre) of each subject was monitored, and enzyme and isoenzyme levels were determined from blood samples collected before, during, and up to 48 h after hypothermia in order to assess the effects of each rewarming method. The previously observed postprocedure rise in serum enzymes (most visible at 24 h) was again seen, with no statistically significant difference in the time course of serum enzyme levels between the two treatments for comparable durations of hypothermia. To test the limits of the ability of the RF induction coil system, successively more severe hypothermia was induced in the subjects to the point of cardiovascular collapse (Tre less than 20 degrees C); RF energy was successful in resuscitating the profoundly hypothermic subjects without discernible harmful effects.  相似文献   

15.
The purpose of this study was to determine whether the rate of muscle glycogen storage could be enhanced during the initial 4-h period postexercise by substantially increasing the amount of the carbohydrate consumed. Eight subjects cycled for 2 h on three separate occasions to deplete their muscle glycogen stores. Immediately and 2 h after exercise they consumed either 0 (P), 1.5 (L), or 3.0 g glucose/kg body wt (H) from a 50% glucose polymer solution. Blood samples were drawn from an antecubital vein before exercise, during exercise, and throughout recovery. Muscle biopsies were taken from the vastus lateralis immediately, 2 h, and 4 h after exercise. Blood glucose and insulin declined significantly during exercise in each of the three treatments. They remained below the preexercise concentrations during recovery in the P treatment but increased significantly above the preexercise concentrations during the L and H treatments. By the end of the 4 h-recovery period, blood glucose and insulin were still significantly above the preexercise concentrations in both treatments. Muscle glycogen storage was significantly increased above the basal rate (P, 0.5 mumol.g wet wt-1.h-1) after ingestion of either glucose polymer supplement. The rates of muscle glycogen storage, however, were not different between the L and H treatments during the first 2 h (L, 5.2 +/- 0.9 vs. H, 5.8 +/- 0.7 mumol.g wet wt-1.h-1) or the second 2 h of recovery (L, 4.0 +/- 0.9 vs. H, 4.5 +/- 0.6 mumol.g wet wt-1. h-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Thermoregulatory responses were studied in 10 men and 8 women at rest in air and during 1-h immersion in water at 20, 24, and 28 degrees C. For men of high body fat (27.6%), rectal temperature (Tre) and oxygen consumption (VO2) were maintained at air values at all water temperatures (Tw). For men of average (16.8%) and low (9.2%) fat the change in Tre (delta Tre) was inversely related to body fat at all Tw with VO2 increasing to 1.07 l X min-1 for a -1.6 degrees C delta Tre for lean men. For women of average (25.2%) and low (18.5%) fat Tre decreased steadily during immersion at all Tw. The greatest changes occurred at 20 degrees C with little differences in delta Tre and VO2 noted between these groups of women. In comparison with males of similar percent fat, Tre dropped to a greater extent (P less than 0.05) in females at 20 and 24 degrees C. Stated somewhat differently, lean women with twice the percentage of fat have similar delta Tre as lean men at all Tw. For delta Tre greater than -1.0 degree C men showed significantly greater (P less than 0.05) thermogenesis compared with women. The differences in thermoregulation between men and women during cold stress at rest may be due partly to the sensitivity of the thermogenic response as well as the significant differences in lean body weight and surface area-to-mass ratio between the sexes.  相似文献   

17.
Ten male volunteers were divided into two groups based on body morphology and mass. The large-body mass (LM) group (n = 5) was 16.3 kg heavier and 0.22 cm2 X kg-1 X 10(-2) smaller in surface area-to-mass ratio (AD X wt-1) (P less than 0.05) than the small-body mass (SM) group (n = 5). Both groups were similar in total body fat and skinfold thicknesses (P greater than 0.05). All individuals were immersed for 1 h in stirred water at 26 degrees C during both rest and one intensity of exercise (metabolic rate approximately 550 W). During resting exposures metabolic rate (M) and rectal temperature (Tre) were not different (P greater than 0.05) between the LM and SM groups at min 60. Esophageal temperature (Tes) was higher (P less than 0.05) for the SM group at min 60, although the change in Tes during the 60 min between groups was similar (LM, -0.4 degrees C; SM, -0.2 degrees C). Tissue insulation (I) was lower (P less than 0.05) for SM (0.061 degrees C X m-2 X W-1) compared with the LM group (0.098 degrees C X m-2 X W-1). During exercise M, Tre, Tes, and I were not different (P greater than 0.05) between groups at min 60. These data illustrate that a greater body mass between individuals increases the overall tissue insulation during rest, most likely as a result of a greater volume of muscle tissue to provide insulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An attempt was made to demonstrate the importance of increased perfusion of cold tissue in core temperature afterdrop. Five male subjects were cooled twice in water (8 degrees C) for 53-80 min. They were then rewarmed by one of two methods (shivering thermogenesis or treadmill exercise) for another 40-65 min, after which they entered a warm bath (40 degrees C). Esophageal temperature (Tes) as well as thigh and calf muscle temperatures at three depths (1.5, 3.0, and 4.5 cm) were measured. Cold water immersion was terminated at Tes varying between 33.0 and 34.5 degrees C. For each subject this temperature was similar in both trials. The initial core temperature afterdrop was 58% greater during exercise (mean +/- SE, 0.65 +/- 0.10 degrees C) than shivering (0.41 +/- 0.06 degrees C) (P < 0.005). Within the first 5 min after subjects entered the warm bath the initial rate of rewarming (previously established during shivering or exercise, approximately 0.07 degrees C/min) decreased. The attenuation was 0.088 +/- 0.03 degrees C/min (P < 0.025) after shivering and 0.062 +/- 0.022 degrees C/min (P < 0.025) after exercise. In 4 of 10 trials (2 after shivering and 2 after exercise) a second afterdrop occurred during this period. We suggest that increased perfusion of cold tissue is one probable mechanism responsible for attenuation or reversal of the initial rewarming rate. These results have important implications for treatment of hypothermia victims, even when treatment commences long after removal from cold water.  相似文献   

19.
Intraperitoneal injection of prostaglandin E1 (PGE) produces a transient hypothermia in rats that lasts 1-2 h. Rats exposed to an ambient temperature (Ta) of 26 degrees C displayed a decrease in rectal temperature (Tre) of 0.95 +/- 0.12 degrees C (SE) after injection with PGE (100 micrograms/kg ip). Hypothermia was produced mainly by heat losses, as indicated by increases in tail blood flow. At Ta of 4 degrees C, PGE produced a comparable fall in Tre of 1.00 +/- 0.14 degrees C. However, in the cold the hypothermia was caused solely by decreases in heat production. These results indicate that the PGE-induced hypothermia is not the result of a peripheral vasodilation induced by the direct action of PGE on the tail vascular smooth muscle but is a central nervous system-mediated response of the thermoregulatory system induced by PGE within the peritoneal cavity. Capsaicin injected subcutaneously induces a transient hypothermia in rats because of stimulation of the warm receptors. If administered peripherally in sufficient amounts, it is reputed to impair peripheral warm receptors so that they become desensitized to the hypothermic effects of capsaicin. We measured PGE-induced hypothermias in rats both before and after capsaicin desensitization at Ta of 26 degrees C. Before desensitization the hypothermia was -1.14 +/- 0.12 degrees C, whereas after capsaicin treatment the PGE-induced hypothermia was -0.34 +/- 0.17 degrees C. The biological effects of capsaicin are diverse; however, based on current thinking about the thermoregulatory effects of capsaicin desensitization, our results indicate that peripheral warm receptor pathways are in some manner implicated in the hypothermia induced by intraperitoneal PGE.  相似文献   

20.
The present study sought to quantitate the levels of plasma catecholamines [norepinephrine (NE), epinephrine (E), and dopamine (DA)] during induction and rewarming from hypothermia. Male rats (317 +/- 8 g) were made hypothermic by exposure to 0.9% halothane at -10 to -15 degrees C while blood pressure (carotid artery), heart rate, and colonic temperature (Tc) were monitored. Anesthesia was discontinued when Tc reached 28 degrees C. Tc continued to fall but was held at 20-20.5 degrees C for 30 min. Rewarming was then initiated by raising ambient temperature to 22 degrees C. Arterial blood samples were taken 1) before cooling, 2) just before rewarming, 3) when Tc reached 22 degrees C during rewarming, and 4) when Tc reached 27 degrees C during rewarming. Plasma was assayed radioenzymatically for catecholamines using both phenylethanolamine-N-methyltransferase and catechol-O-methyltransferase procedures, and hypothermic induction resulted in significant increases in NE, E, and DA above control levels (P less than 0.01). With rewarming to Tc = 22 degrees C, all catecholamines increased above the level observed during hypothermia (P less than 0.01), and NE and DA increased still further (P less than 0.01) when Tc reached 27 degrees C. The levels of plasma catecholamines observed during hypothermia and during the rewarming phase indicate a role of the sympathoadrenal medullary system in the metabolic adjustments associated with hypothermia and recovery. During rewarming, the levels of E and NE attained exceed those at which both substances may be expected to act as circulating hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号