首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described by which affinities and transport rates for unlabeled substrate analogs are readily determined, and which is based on the effect of an unlabeled analog upon the rate of transport of a labeled substrate present at a low concentration on the trans side of the membrane. The procedure is widely applicable since it does not depend on assumptions about rate-limiting steps and holds for both active and non-active systems. Here it is applied in an experimental study of the facilitated diffusion system for choline in erythrocytes, and it is shown that the transport parameters for a test substrate obtained by this method are the same as those found when the transport of the substrate is followed directly.  相似文献   

2.
A method is described, based on the kinetics of transport, for determining the equilibrium distribution of the carrier site on the inner and outer surfaces of the cell membrane, and this method is applied to the choline carrier of human erythrocytes. This method depends on measurement of flux ratios for both entry and exit, i.e., the transport rates of a low concentration of labeled substrate into a solution which contains either no substrate or a saturating concentration of unlabeled substrate. The concentrations of inward-facing and outward-facing carrier are found to be nearly equal, and therefore the 5-fold difference in choline affinity on the inner and outer surfaces of the membrane cannot be explained by an unequal carrier distribution. It is also shown that both reorientation and dissociation of the carrier-substrate complex are far more rapid than reorientation of the free carrier.  相似文献   

3.
The kinetic behavior of five models for biological transport, only one of which is based on the classical carrier mechanism, is investigated. All give hyperbolic substrate saturation curves in accord with experimental observations on many systems. Several simple kinetic tests with substrates and competitive inhibitors serve to exclude or confirm proposed models. The tests involve measuring rates of efflux of radioactive substrate in the presence of (i) a competitive inhibitor outside the cell; (ii) inhibitor inside and outside; and (iii) unlabeled substrate outside. Rules for testing hypothetical mechanisms are presented in tables which may be consulted directly, disregarding the mathematical derivation.  相似文献   

4.
The transport of L-methionine in human diploid fibroblast strain WI38 was investigated. The uptake of L-methionine was measured in sparse cell cultures in a simple balanced salt solution buffered with either Tris.HCl of N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Similar results were obtained with these two buffers. Cultures were allowed to equilibrate with the buffered saline before transport was measured. The presence of glucose in the buffered saline results in a slight reduction in the initial rate of transport for the first 2 h of equilibration in buffered saline. L-Methionine is actively transported in WI38 by saturable, chemicallly specific mechanisms which are temperature, pH and, in part Na+ dependent, and are reactive with both L- and D-stereoisomers. Kinetic analysis of initial rates of transport at substrate concentrations from 0.0005 to 100 mM indicated the presence of two saturable transport systems. System 1 has an apparent KM of 21.7 micrometer and an apparent V of 3.57 nmol/mg per min. System 2 has an apparent KM of 547 micrometer and an apparent V of 22.6 nmol/mg per min. Kinetic analysis of initial rates of transport in Na+-free media or after treatment with ouabain suggested that system 1 is Na+ independent and that system 2 is Na+ dependent. Preloading of cells with unlabeled L-methionine greatly increases the initial rate of uptake. Efflux of transported methionine is temperature dependent, and is greatly increased in the presence of unlabeled L- or D-methionine or L-phenylalanine, but not in the presence of L-arginine. L-Methionine transport is strongly inhibited by other neutral amino acids, and is very weakly inhibited by dibasic amino acids, dicarboxylic amino acids, proline or glycine.  相似文献   

5.
Effect of inorganic anions on p-amino[3H]hippurate transport in renal basolateral membranes has been studied using the vesicles preloaded with unlabeled p-aminohippurate (countertransport condition). The uptake of p-amino[3H]hippurate was stimulated by the outward gradient of unlabeled p-aminohippurate and the labeled substrate was accumulated into the vesicles against its concentration gradient in the presence of Cl-. The substitution of SCN- and SO4(2-) for Cl- in both sides of the vesicles depressed the initial rate and the overshoot magnitude of p-amino[3H]hippurate uptake. These results suggest that Cl- may play an important role for the carrier-mediated transport system of organic anion in renal basolateral membranes.  相似文献   

6.
The dynamics of the glucose 6-phosphatase system were investigated in intact rat liver microsomes using a fast-sampling, rapid-filtration apparatus. Glucose and phosphate transport followed single exponential kinetics, appeared to be homogeneous, was unaffected by unlabeled substrate concentrations up to 100 mm, proved insensitive to various potential inhibitors, and demonstrated similarly low energies of activation. The extent of tracer accumulation from glucose 6-phosphate depended on which of the glucose or phosphate moieties was the labeled species in the parent molecule. The rates of tracer equilibration reflected those of glucose or phosphate transport but similar initial rates of uptake were observed for the glucose and phosphate products of hydrolysis. However, the latter accounted for only 12–13% of the steady-state rate of total glucose production. It is concluded that tracer uptake cannot represent substrate transport, that labeled glucose 6-phosphate at best represents a tiny fraction of the intramicrosomal glucose or phosphate pools, and that glucose 6-phosphate transport is not an obligatory prerequisite to its hydrolysis. The latter conclusion invalidates a major postulate of the substrate transport-catalytic unit concept but proves compatible with a conformational model whereby glucose 6-phosphate transport and hydrolysis are tightly coupled processes while glucose and phosphate share, along with water and a variety of other organic and inorganic solutes, a common porelike structure for their transport through the microsomal membrane. Received: 26 May 2000/Revised: 16 October 2000  相似文献   

7.
The weak binding of sugar substrates fails to induce any quantifiable physical changes in the L-fucose-H+ symport protein, FucP, from Escherichia coli, and this protein lacks any strongly binding ligands for competitive binding assays. Access to substrate binding behavior is however possible using NMR methods which rely on substrate immobiliza-tion for detection. Cross-polarization from proton to carbon spins could detect the portion of 13C-labeled substrate associated with 0.2 micromol of the functional transport system overexpressed in the native membranes. The detected substrate was shown to be in the FucP binding site because its signal was diminished by the unlabeled substrates L-fucose and L-galactose but was unaffected by a three- to fivefold molar excess of the non-transportable stereoisomer D-fucose. FucP appeared to bind both anomers of its substrates equally well. An NMR method, designed to measure the rate of substrate exchange, could show that substrate exchanged slowly with the carrier center (>10(-1) s), although its dynamics are not necessarily coupled strongly to this site within the protein. Relaxation measurements support this view that fluctuations in the interaction with substrate would be confined to the binding site in this transport system.  相似文献   

8.
The relationships between structure, affinity and transport activity in the choline transport system of erythrocytes have been investigated in order to (i) explore the nature of the carrier site and its surroundings, and (ii) determine the dependence of the carrier reorientation process on binding energies and steric restraints due to the substrate molecule. Affinity constants and maximum transport rates for a series of trialkyl derivatives of ethanolamine were obtained by a method that involves measuring the trans effect of unlabeled analogs upon the movement of radioactive choline. The main conclusions are as follows: (1) An analysis of transport kinetics shows that the affinity constants determined experimentally differ from the actual dissociation constants in a predictable way. The better the substrate, the higher the apparent affinity relative to the true value, whereas the affinity of non-transported inhibitors is underestimated by a constant factor. (2) The carrier-choline complex undergoes far more rapid reorientation (translocation) than the free carrier. (3) The carrier imposes a strict upper limit upon the size of a substrate molecule that can participate in the carrier reorientation process; this limit corresponds to the choline structure. A smaller substrate such as tetramethylammonium, despite relatively weak binding forces, is unhindered in its translocation, suggesting that a carrier conformational change, dependent upon substrate binding energy, is not required for transport. (4) Small increases in the size of the quaternary ammonium head, as in triethylcholine, sharply lower affinity, consistent with a high degree of specificity for the trimethylammonium group. (5) Lengthening the alkyl substituent in derivatives of dimethyl- and diethylaminoethanol causes a regular increase in affinity, suggestive of unspecific hydrophobic bonding in a region very near the substrate site.  相似文献   

9.
The relationships between structure, affinity and transport activity in the choline transport system of erythrocytes have been investigated in order to (i) explore the nature of the carrier site and its surroundings, and (ii) determine the dependence of the carrier reorientation process on binding energies and steric restraints due to the substrate molecule. Affinity constants and maximum transport rates for a series of trialkyl derivatives of ethanolamine were obtained by a method that involves measuring the trans effect of unlabeled analogs upon the movement of radioactive choline. The main conclusions are as follows: (1) An analysis of transport kinetics shows that the affinity constants determined experimentally differ from the actual dissociation constants in a predictable way. The better the substrate, the higher the apparent affinity relative to the true value, whereas the affinity of non-transported inhibitiors is underestimated by a constant factor. (2) The carrier-choline complex undergoes far more rapid reorientation (translocation) than the free carrier. (3) The carrier imposes a strict upper limit upon the size of a substrate molecule that can participate in the carrier reorientation process; this limit corresponds to the choline structure. A smaller substrate such as tetramethylammonium, despite relatively weak binding forces , is unhindered in its translocation, suggesting that a carrier conformational change, dependent upon substrate binding energy, is not required for transport. (4) Small increases in the size of the quaternary ammonium head, as in triethylcholine, sharply lower affinity, consistent with a high degree of specificity for the trimethylammonium group. (5) Lengthening the alkyl substituent in derivatives of dimethyl- and diethylaminoethanol causes a regular increase in affinity, suggestive of unspecific hydrophobic bonding in a region very near the substrate site.  相似文献   

10.
Transcellular transport of a variety of ligands may be an important mechanism by which regulatory substances reach their site of action. We have studied the transcellular transport of two 6,000-mol-wt proteins, epidermal growth factor (EGF) and insulin, across polarized Madin-Darby canine kidney (MDCK) cells grown on dual-sided chambers on a nitrocellulose filter substrate. When grown on these chambers, MDCK cells are polarized and express distinct basal and apical surfaces. MDCK cells are capable of unidirectional transport of EGF from the basal-to-apical direction, 50% of bound EGF transported in 2 h. Transport was inhibited by the addition of unlabeled EGF in a dose-dependent manner. Anti-EGF receptor Ab, which inhibited binding, also inhibited transport. No transport in the apical-to-basal direction is noted. Insulin transport is not observed in either direction. Transport correlates with the presence of ligand-specific receptors on the cell surface. Hence, EGF receptors (Ro = 48,000, Kd = 3.5 X 10(-10) M) are found only on the basal surface of the MDCK cells and neither surface expresses insulin receptors. Characterization of the EGF receptors on MDCK cells, as assessed by affinity, molecular mass, and anti-receptor antibody binding reveals that this receptor has similar characteristics to EGF receptors previously described on a variety of cells. Hence, the EGF receptor can function as a transporter of EGF across an epithelial cell barrier.  相似文献   

11.
The action pattern and mechanism of the Taka-amylase A-catalyzed reaction were studied quantitatively and kinetically by product analysis, using a series of maltooligosaccharides from maltotriose (G3) to maltoheptaose (G7) labeled at the reducing end with 14C-glucose. A marked concentration dependency of the product distribution from the end-labeled oligosaccharides was found, Especially with G3 and G4 as substrates. The relative cleavage frequency at the first glycosidic bond counting from the nonreducing end of the substrate increases with increasing substrate concentration. Further product analyses with unlabeled and end-labeled G3 as substrates yielded the following findings: 1) Maltose is produced in much greater yield than glucose from unlabeled G3 at high concentration (73 mM). 2) Maltooligosaccharides higher than the starting substrate were found in the hydrolysate of labeled G3. 3) Nonreducing end-labeled maltose (G-G), which is a specific product of condensation, was found to amount to only about 4% of the total labeled maltose. Based on these findings, it was concluded that transglycosylation plays a significant role in the reaction at high concentrations of G3, although the contribution of condensation cannot be ignored. A new method for evaluating subsite affinities is proposed; it is based on the combination of the kinetic parameter (ko/Km) and the bond-cleavage distribution at a sufficiently low substrate concentration, where transglycosylation and condensation can be ignored. This method was applied to evaluate the subsite affinities of Taka-amylase A. Based on a reaction scheme which involves hydrolysis, transglycosylation and condensation, the time courses of the formation of various products were simulated, using the Runge-Kutta-Gill method. Good agreement with the experimental results was obtained.  相似文献   

12.
A binding component with a high affinity for 5-methyltetrahydrofolate (KD = 0.11μm) is present on the external surface of L1210 cells. The amount of binder (1 pmol/mg protein) corresponds to 8 × 104 sites per cell. The participation of this component in the high-affinity 5-methyltetrahydrofolate/methotrexate transport system is supported by similarities in the KD values for 5-methyltetrahydrofolate and methotrexate binding and the Kt values of these compounds for transport. Relative affinities for other folate substrates (aminopterin, 5-formyltetrahydrofolate, and folate) and various competitive inhibitors (thiamine pyrophosphate, ADP, AMP, arsenate, and phosphate) are also similar for both the binding component and the transport system. The measured binding activity does not represent low-temperature transport of substrate into cells, since it is readily saturable with time and is eliminated by either washing the cells with buffer or by the addition of excess unlabeled substrate.  相似文献   

13.
Transport of bile acids in a human intestinal epithelial cell line, Caco-2   总被引:8,自引:0,他引:8  
The transport of taurocholic acid (TA) across Caco-2 cell monolayers was dependent on time in culture and reached a plateau after 28 days, at which time the apical (AP)-to-basolateral (BL) transport was 10-times greater than BL-to-AP transport. The amounts of TA inside the cells following application of 10 nM [14C]TA to the AP or BL side of the monolayers (30 min) were approximately equal (54.4 +/- 2.7 and 64.6 +/- 2.8 fmol/mg protein, respectively). AP-to-BL transport of TA was saturable and temperature-dependent. Vmax and Km for transport were 13.7 pmol/mg protein per min and 49.7 microM, respectively. The transport of TA had an activation energy of 13.2 kcal.mol-1, required Na+ and glucose. AP-to-BL transport of [14C]TA was inhibited by the co-administration (on the AP side) of either unlabeled TA or deoxycholate, but it was not reduced by the presence of unlabeled TA on the BL side.  相似文献   

14.
Thymidine transport was studied in isolated rat hepatocytes. In these cells no phosphorylation of the substrate by thymidine kinase occurred subsequent to transport. Results from studies of the concentration-dependent uptake of thymidine indicated two transport systems with about 80-fold differences in their kinetic constants. These systems were denoted as high affinity [Km = 5.3 micron, V = 0.47 pmol/(10(6) cells X s)] and low affinity systems [Km = 480 micron, V = 37.6 pmol/(10(6) cells X s)]. From intracellular to extracellular distribution ratios of [3H]thymidine it could be concluded that the uptake by the high affinity system was a concentrative process while the transport by the low affinity system was non-concentrative. The uptake of [3H]-thymidine by the high affinity system could only be inhibited by unlabeled thymidine. In contrast, all other nucleosides tested (uridine, 2'-deoxycytidine, and 2'-deoxyguanosine) were equally effective in inhibiting the low affinity system competitively. The results would suggest that in hepatocytes lacking phosphorylation by thymidine kinase, thymidine is taken up by a high and a low affinity system working in tandem. The high affinity system seems to be an active transport process with narrow substrate specificity. Thymidine uptake by the low affinity system is a facilitated diffusion process. This system is considered to be a common transport route for nucleosides of different structures.  相似文献   

15.
Abstract

The mitochondrial ADP/ATP carrier imports ADP from the cytosol into the mitochondrial matrix for its conversion to ATP by ATP synthase and exports ATP out of the mitochondrion to replenish the eukaryotic cell with chemical energy. Here the substrate specificity of the human mitochondrial ADP/ATP carrier AAC1 was determined by two different approaches. In the first the protein was functionally expressed in Escherichia coli membranes as a fusion protein with maltose binding protein and the effect of excess of unlabeled compounds on the uptake of [32P]-ATP was measured. In the second approach the protein was expressed in the cytoplasmic membrane of Lactococcus lactis. The uptake of [14C]-ADP in whole cells was measured in the presence of excess of unlabeled compounds and in fused membrane vesicles loaded with unlabeled compounds to demonstrate their transport. A large number of nucleotides were tested, but only ADP and ATP are suitable substrates for human AAC1, demonstrating a very narrow specificity. Next we tried to understand the molecular basis of this specificity by carrying out molecular-dynamics simulations with selected nucleotides, which were placed at the entrance of the central cavity. The binding of the phosphate groups of guanine and adenine nucleotides is similar, yet there is a low probability for the base moiety to be bound, likely to be rooted in the greater polarity of guanine compared to adenine. AMP is unlikely to engage fully with all contact points of the substrate binding site, suggesting that it cannot trigger translocation.  相似文献   

16.
The characteristics of the intestinal transport system for choline were investigated using isolated brush-border membrane vesicles from rat small intestine. In spite of the diminutive lipid solubility, the uptake of choline by membrane vesicles reflected smooth permeation into intravesicular space rather than the binding to the membrane surface. Physiological conditions, present in the intact intestine, such as an inward-directed Na+ or H+ gradient and inside negative membrane potentials, didn't directly involve in choline transport across the brush-border membrane. Moreover, an outward-directed H+ gradient had no significant effect on the time course of choline transport. However, in the absence of a driving-force, the initial uptake of choline exhibited a saturable manner. A kinetic analysis of the initial uptake rate gave an apparent Km of 159 microM. Furthermore, unlabeled choline caused both cis-inhibition and trans-stimulation for labeled choline transport, suggesting the existence of a carrier-mediated transport system for choline, classified as so-called 'facilitated diffusion'. Since tetramethylammonium, acetylcholine, and N1-methylnicotinamide caused both cis-inhibition and trans-stimulation, they appear to be accepted as the substrate of choline carrier. On the other hand, quaternary ammonium compounds (QACs) such as those which possessed hydrophobic parts in their molecules exhibited only cis-inhibition. They also inhibited Na(+)-dependent D-glucose transport, indicating that they influenced various carrier-mediated transport systems non-specifically due to interaction with the membrane. These findings strongly suggest that the choline transport system on the brush-border membrane of rat intestine recognizes only small molecular QACs as its substrate.  相似文献   

17.
DNA stable-isotope probing   总被引:3,自引:0,他引:3  
Stable-isotope probing is a method used in microbial ecology that provides a means by which specific functional groups of organisms that incorporate particular substrates are identified without the prerequisite of cultivation. Stable-isotope-labeled carbon (13C) or nitrogen (15N) sources are assimilated into microbial biomass of environmental samples. Separation and molecular analysis of labeled nucleic acids (DNA or RNA) reveals phylogenetic and functional information about the microorganisms responsible for the metabolism of a particular substrate. Here, we highlight general guidelines for incubating environmental samples with labeled substrate and provide a detailed protocol for separating labeled DNA from unlabeled community DNA. The protocol includes a modification of existing published methods, which maximizes the recovery of labeled DNA from CsCl gradients. The separation of DNA and retrieval of unlabeled and labeled fractions can be performed in 4-5 days, with much of the time being committed to the ultracentrifugation step.  相似文献   

18.
ATP-driven pumping of a variety of drugs out of cells by the human P-glycoprotein poses a serious problem to medical therapy. High level heterologous expression of human P-glycoprotein, in the yeast Saccharomyces cerevisiae, has facilitated biophysical studies in purified proteoliposome preparations. Membrane permeability of transported drugs and consequent lack of an experimentally defined drug position have made resolution of the transport mechanism difficult by classical techniques. To overcome these obstacles we devised a novel EPR spin-labeled verapamil for use as a transport substrate. Spin-labeled verapamil was an excellent transport substrate with apparent turnover number, K(m) and K(i) values of 5.8 s(-1), 4 microm, and 210 microm, respectively, at pH 7.4 and 37 degrees C. The apparent affinities were approximately 10-fold higher than for unlabeled verapamil. Spin-labeled verapamil stimulated ATPase activity approximately 5-fold, was relatively hydrophilic, and had a very low flip-flop rate, making it an ideal transport substrate. The K(m) for MgATP activation of transport was 0.8 mm. By measuring the mobility of spin-labeled verapamil during transport experiments, we were able to resolve the location of the drug in proteoliposome suspensions. Steady state gradients of spin-labeled verapamil within the range of K(i)/K(m) ratios were observed.  相似文献   

19.
This study focused on the role of insulin-like growth factor (IGF) binding proteins (IGFBPs) in cartilage on the transport and binding of IGF-I within the tissue. We have developed experimental and theoretical modeling techniques to quantify and contrast the roles of diffusion, binding, fluid convection, and electrical migration on the transport of IGF-I within cartilage tissue. Bovine articular cartilage disks were equilibrated in buffer containing 125I-IGF-I and graded levels of unlabeled IGF-I. Equilibrium binding, as measured by the uptake ratio of 125I-IGF-I in the tissue (free plus bound) to the concentration of labeled species in the buffer, was found to be consistent with a first-order reversible binding model involving one dominant family of binding sites within the matrix. Western ligand blots revealed a major IGF binding doublet around 23 kDa, which has been previously shown to coincide with IGFBP-6. Diffusive transport of 125I-IGF-I through cartilage was measured and found to be consistent with a diffusion-limited reaction theoretical model incorporating first-order reversible binding. Addition of excess amounts of unlabeled IGF-I during steady state transport of 125I-IGF-I resulted in release of bound 125I-IGF-I from the tissue, as predicted by the diffusion-reaction model. In contrast, addition of the low-affinity Des(1-3)IGF-I analog did not result in release of bound 125I-IGF-I. Application of electric current was used to augment transport of IGF-I through cartilage via electroosmosis and electrophoresis. Taken together, our results suggest that a single dominant substrate family, the high-affinity IGFBPs, is responsible for much of the observed binding of IGF-I within cartilage. The data suggest that intratissue fluid flow, such as that induced by mechanical loading of cartilage in vivo may be expected to enhance IGF transport by an order of magnitude and that this increment may help to counterbalance the restrictions encountered by the immobilization of IGFs by the binding proteins.  相似文献   

20.
The uptake of cystine and lysine by rat renal brushborder membrane vesicles was examined at various intravesicular and extravesicular hydrogen ion concentrations to discern whether ionic species are determinants of specificity for the shared transport system and whether hydrogen ion gradients play a role in determining uptake values. When intravesicular and extravesicular pH are identical, the highest uptake of cystine occurred at pH 7.4, with lesser uptake at pH 6.0 and 8.3. Since cystine is electroneutral at pH 6.0 and 90% anionic at pH 8.3, it appears that neither form of the amino acid is a preferred species for transport. A similar relationship between pH and uptake occurs for lysine, which is cationic at pH below 8.5. This suggests that pH affects the functioning of the membrane carrier system independent of ionic species of the substrate. There is no apparent relationship of cystine uptake to hydrogen ion gradients across the membrane. Over the range of extravesicular pH studied, optimal cystine uptake occurred whenever the intravesicular pH was 7.4. Competitive interactions between unlabeled amino acids and labeled cystine were not affected by the extravesicular pH and, therefore, did not seem determined by the ionic species of cystine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号