首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antagonistically selected alleles‐–those with opposing fitness effects between sexes, environments, or fitness components‐–represent an important component of additive genetic variance in fitness‐related traits, with stably balanced polymorphisms often hypothesized to contribute to observed quantitative genetic variation. Balancing selection hypotheses imply that intermediate‐frequency alleles disproportionately contribute to genetic variance of life‐history traits and fitness. Such alleles may also associate with population genetic footprints of recent selection, including reduced genetic diversity and inflated linkage disequilibrium at linked, neutral sites. Here, we compare the evolutionary dynamics of different balancing selection models, and characterize the evolutionary timescale and hitchhiking effects of partial selective sweeps generated under antagonistic versus nonantagonistic (e.g., overdominant and frequency‐dependent selection) processes. We show that the evolutionary timescales of partial sweeps tend to be much longer, and hitchhiking effects are drastically weaker, under scenarios of antagonistic selection. These results predict an interesting mismatch between molecular population genetic and quantitative genetic patterns of variation. Balanced, antagonistically selected alleles are expected to contribute more to additive genetic variance for fitness than alleles maintained by classic, nonantagonistic mechanisms. Nevertheless, classical mechanisms of balancing selection are much more likely to generate strong population genetic signatures of recent balancing selection.  相似文献   

2.
In hermaphrodites, pleiotropic genetic trade‐offs between female and male reproductive functions can lead to sexually antagonistic (SA) selection, where individual alleles have conflicting fitness effects on each sex function. Although an extensive theory of SA selection exists for dioecious species, these results have not been generalized to hermaphrodites. We develop population genetic models of SA selection in simultaneous hermaphrodites, and evaluate effects of dominance, selection on each sex function, self‐fertilization, and population size on the maintenance of polymorphism. Under obligate outcrossing, hermaphrodite model predictions converge exactly with those of dioecious populations. Self‐fertilization in hermaphrodites generates three points of divergence with dioecious theory. First, opportunities for stable polymorphism decline sharply and become less sensitive to dominance with increased selfing. Second, selfing introduces an asymmetry in the relative importance of selection through male versus female reproductive functions, expands the parameter space favorable for the evolutionary invasion of female‐beneficial alleles, and restricts invasion criteria for male‐beneficial alleles. Finally, contrary to models of unconditionally beneficial alleles, selfing decreases genetic hitchhiking effects of invading SA alleles, and should therefore decrease these population genetic signals of SA polymorphisms. We discuss implications of SA selection in hermaphrodites, including its potential role in the evolution of “selfing syndromes.”  相似文献   

3.
Inbreeding depression is most pronounced for traits closely associated with fitness. The traditional explanation is that natural selection eliminates deleterious mutations with additive or dominant effects more effectively than recessive mutations, leading to directional dominance for traits subject to strong directional selection. Here we report the unexpected finding that, in the butterfly Bicyclus anynana, male sterility contributes disproportionately to inbreeding depression for fitness (complete sterility in about half the sons from brother-sister matings), while female fertility is insensitive to inbreeding. The contrast between the sexes for functionally equivalent traits is inconsistent with standard selection arguments, and suggests that trait-specific developmental properties and cryptic selection play crucial roles in shaping genetic architecture. There is evidence that spermatogenesis is less developmentally stable than oogenesis, though the unusually high male fertility load in B. anynana additionally suggests the operation of complex selection maintaining male sterility recessives. Analysis of the precise causes of inbreeding depression will be needed to generate a model that reliably explains variation in directional dominance and reconciles the gap between observed and expected genetic loads carried by populations. This challenging evolutionary puzzle should stimulate work on the occurrence and causes of sex differences in fertility load.  相似文献   

4.
In genetic polymorphisms of two alleles, heterozygous individuals may contribute to the next generation on average more or fewer descendants than the homozygotes. Two different evolutionary responses that remove a disadvantageous heterozygote phenotype from the population are the evolution of strictly assortative mate choice, and that of a modifier making one of the two alleles completely dominant. We derive invasion fitness of mutants introducing dominance or assortative mate choice in a randomly mating population with a genetic polymorphism for an ecological trait. Mutations with small effects as well as mutants introducing complete dominance or perfect assorting are considered. Using adaptive dynamics techniques, we are able to calculate the ratio of fitness gradients for the effects of a dominance modifier and a mate choice locus, near evolutionary branching points. With equal resident allele frequencies, selection for mate choice is always stronger. Dominance is more strongly selected than assortative mating when the resident (common) alleles have very unequal frequencies at equilibrium. With female mate choice the difference in frequencies where dominance is more strongly selected is smaller than when mutants of both sexes can choose without costs. A symmetric resource-competition model illustrates the results.  相似文献   

5.
Antagonistic pleiotropy (AP)—where alleles of a gene increase some components of fitness at a cost to others—can generate balancing selection, and contribute to the maintenance of genetic variation in fitness traits, such as survival, fecundity, fertility, and mate competition. Previous theory suggests that AP is unlikely to maintain variation unless antagonistic selection is strong, or AP alleles exhibit pronounced differences in genetic dominance between the affected traits. We show that conditions for balancing selection under AP expand under the likely scenario that the strength of selection on each fitness component differs between the sexes. Our model also predicts that the vast majority of balanced polymorphisms have sexually antagonistic effects on total fitness, despite the absence of sexual antagonism for individual fitness components. We conclude that AP polymorphisms are less difficult to maintain than predicted by prior theory, even under our conservative assumption that selection on components of fitness is universally sexually concordant. We discuss implications for the maintenance of genetic variation, and for inferences of sexual antagonism that are based on sex‐specific phenotypic selection estimates—many of which are based on single fitness components.  相似文献   

6.
When selection differs between males and females, pleiotropic effects among genes expressed by both sexes can result in sexually antagonistic selection (SA), where beneficial alleles for one sex are deleterious for the other. For hermaphrodites, alleles with opposing fitness effects through each sex function represent analogous genetic constraints on fitness. Recent theory based on single‐locus models predicts that the maintenance of SA genetic variation should be greatly reduced in partially selfing populations. However, selfing also reduces the effective rate of recombination, which should facilitate selection on linked allelic combinations and expand opportunities for balancing selection in a multilocus context. Here, I develop a two‐locus model of SA selection for simultaneous hermaphrodites, and explore the joint influence of linkage, self‐fertilization, and dominance on the maintainance of SA polymorphism. I find that the effective reduction in recombination caused by selfing significantly expands the parameter space where SA polymorphism can be maintained relative to single‐locus models. In particular, linkage facilitates the invasion of male‐beneficial alleles, partially compensating for the “female‐bias” in the net direction of selection created by selfing. I discuss the implications of accounting for linkage among SA loci for the maintenance of SA genetic variation and mixed mating systems in hermaphrodites.  相似文献   

7.
Connallon T  Clark AG 《Genetics》2011,187(3):919-937
Disruptive selection between males and females can generate sexual antagonism, where alleles improving fitness in one sex reduce fitness in the other. This type of genetic conflict arises because males and females carry nearly identical sets of genes: opposing selection, followed by genetic mixing during reproduction, generates a population genetic "tug-of-war" that constrains adaptation in either sex. Recent verbal models suggest that gene duplication and sex-specific cooption of paralogs might resolve sexual antagonism and facilitate evolutionary divergence between the sexes. However, this intuitive proximal solution for sexual dimorphism potentially belies a complex interaction between mutation, genetic drift, and positive selection during duplicate fixation and sex-specific paralog differentiation. The interaction of these processes--within the explicit context of duplication and sexual antagonism--has yet to be formally described by population genetics theory. Here, we develop and analyze models of gene duplication and sex-specific differentiation between paralogs. We show that sexual antagonism can favor the fixation and maintenance of gene duplicates, eventually leading to the evolution of sexually dimorphic genetic architectures for male and female traits. The timescale for these evolutionary transitions is sensitive to a suite of genetic and demographic variables, including allelic dominance, recombination, sex linkage, and population size. Interestingly, we find that female-beneficial duplicates preferentially accumulate on the X chromosome, whereas male-beneficial duplicates are biased toward autosomes, independent of the dominance parameters of sexually antagonistic alleles. Although this result differs from previous models of sexual antagonism, it is consistent with several findings from the empirical genomics literature.  相似文献   

8.
Intralocus sexual conflict occurs when populations segregate for alleles with opposing fitness consequences in the two sexes. This form of selection is known to be capable of maintaining genetic and fitness variation in nature, the extent of which is sensitive to the underlying genetics. We present a one-locus model of a haploid maternal effect that has sexually antagonistic consequences for offspring. The evolutionary dynamics of these maternal effects are distinct from those of haploid direct effects under sexual antagonism because the relevant genes are expressed only in females. Despite this, we find the same opportunity for sexually antagonistic polymorphism at the maternal effect locus as at a direct effect locus. Thus, sexually antagonistic maternal effects may underlie some natural genetic variation. The model we present permits alternative interpretations of how the genes are expressed and how the fitness variation is assigned, which invites a theoretical comparison to models of both imprinted genes and sex allocation.  相似文献   

9.
Connallon T  Clark AG 《Genetics》2012,190(4):1477-1489
Antagonistic selection--where alleles at a locus have opposing effects on male and female fitness ("sexual antagonism") or between components of fitness ("antagonistic pleiotropy")--might play an important role in maintaining population genetic variation and in driving phylogenetic and genomic patterns of sexual dimorphism and life-history evolution. While prior theory has thoroughly characterized the conditions necessary for antagonistic balancing selection to operate, we currently know little about the evolutionary interactions between antagonistic selection, recurrent mutation, and genetic drift, which should collectively shape empirical patterns of genetic variation. To fill this void, we developed and analyzed a series of population genetic models that simultaneously incorporate these processes. Our models identify two general properties of antagonistically selected loci. First, antagonistic selection inflates heterozygosity and fitness variance across a broad parameter range--a result that applies to alleles maintained by balancing selection and by recurrent mutation. Second, effective population size and genetic drift profoundly affect the statistical frequency distributions of antagonistically selected alleles. The "efficacy" of antagonistic selection (i.e., its tendency to dominate over genetic drift) is extremely weak relative to classical models, such as directional selection and overdominance. Alleles meeting traditional criteria for strong selection (N(e)s > 1, where N(e) is the effective population size, and s is a selection coefficient for a given sex or fitness component) may nevertheless evolve as if neutral. The effects of mutation and demography may generate population differences in overall levels of antagonistic fitness variation, as well as molecular population genetic signatures of balancing selection.  相似文献   

10.
In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait–fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected.  相似文献   

11.
The maintenance of heritable variation through social competition   总被引:1,自引:0,他引:1  
The paradoxical persistence of heritable variation for fitness-related traits is an evolutionary conundrum that remains a preeminent problem in evolutionary biology. Here we describe a simple mechanism in which social competition results in the evolutionary maintenance of heritable variation for fitness related traits. We demonstrate this mechanism using a genetic model with two primary assumptions: the expression of a trait depends upon success in social competition for limited resources; and competitive success of a genotype depends on the genotypes that it competes against. We find that such social competition generates heritable (additive) genetic variation for "competition-dependent" traits. This heritable variation is not eroded by continuous directional selection because, rather than leading to fixation of favored alleles, selection leads instead to allele frequency cycling due to the concerted coevolution of the social environment with the effects of alleles. Our results provide a mechanism for the maintenance of heritable variation in natural populations and suggest an area for research into the importance of competition in the genetic architecture of fitness related traits.  相似文献   

12.
Genetic variation for quantitative traits is often greater than that expected to be maintained by mutation in the face of purifying natural selection. One possible explanation for this observed variation is the action of heterogeneous natural selection in the wild. Here we report that selection on quantitative trait loci (QTL) for fitness traits in the model plant species Arabidopsis thaliana differs among natural ecological settings and genetic backgrounds. At one QTL, the allele that enhanced the viability of fall-germinating seedlings in North Carolina reduced the fecundity of spring-germinating seedlings in Rhode Island. Several other QTL experienced strong directional selection, but only in one site and seasonal cohort. Thus, different loci were exposed to selection in different natural environments. Selection on allelic variation also depended upon the genetic background. The allelic fitness effects of two QTL reversed direction depending on the genotype at the other locus. Moreover, alternative alleles at each of these loci caused reversals in the allelic fitness effects of a QTL closely linked to TFL1, a candidate developmental gene displaying nucleotide sequence polymorphism consistent with balancing selection. Thus, both environmental heterogeneity and epistatic selection may maintain genetic variation for fitness in wild plant species.  相似文献   

13.
The long‐running debate about the role of selection in maintaining genetic variation has been given new impetus by the discovery of hundreds of seasonally oscillating polymorphisms in wild Drosophila, possibly stabilized by an alternating summer‐winter selection regime. Historically, there has been skepticism about the potential of temporal variation to balance polymorphism, because selection must be strong to have a meaningful stabilizing effect—unless dominance also varies over time (“reversal of dominance”). Here, we develop a simplified model of seasonally variable selection that simultaneously incorporates four different stabilizing mechanisms, including two genetic mechanisms (“cumulative overdominance” and reversal of dominance), as well as ecological “storage” (“protection from selection” and boom‐bust demography). We use our model to compare the stabilizing effects of these mechanisms. Although reversal of dominance has by far the greatest stabilizing effect, we argue that the three other mechanisms could also stabilize polymorphism under plausible conditions, particularly when all three are present. With many loci subject to diminishing returns epistasis, reversal of dominance stabilizes many alleles of small effect. This makes the combination of the other three mechanisms, which are incapable of stabilizing small effect alleles, a better candidate for stabilizing the detectable frequency oscillations of large effect alleles.  相似文献   

14.
The mechanism underlying the maintenance of adaptive genetic variation is a long-standing question in evolutionary genetics. There are two concepts (mutation-selection balance and balancing selection) which are based on the phenotypic differences between alleles. Mutation - selection balance and balancing selection cannot properly explain the process of gene substitution, i.e. the molecular evolution of quantitative trait loci affecting fitness. I assume that such loci have non-essential functions (small effects on fitness), and that they have the potential to evolve into new functions and acquire new adaptations. Here I show that a high amount of neutral polymorphism at these loci can exist in real populations. Consistent with this, I propose a hypothesis for the maintenance of genetic variation in life history traits which can be efficient for the fixation of alleles with very small selective advantage. The hypothesis is based on neutral polymorphism at quantitative trait loci and both neutral and adaptive gene substitutions. The model of neutral - adaptive conversion (NAC) assumes that neutral alleles are not neutral indefinitely, and that in specific and very rare situations phenotypic (relative fitness) differences between them can appear. In this paper I focus on NAC due to phenotypic plasticity of neutral alleles. The important evolutionary consequence of NAC could be the increased adaptive potential of a population. Loci responsible for adaptation should be fast evolving genes with minimally discernible phenotypic effects, and the recent discovery of genes with such characteristics implicates them as suitable candidates for loci involved in adaptation.  相似文献   

15.
Populations with two sexes are vulnerable to a pair of genetic conflicts: sexual antagonism that can arise when alleles have opposing fitness effects on females and males; and parental antagonism that arises when alleles have opposing fitness effects when maternally and paternally inherited. This paper extends previous theoretical work that found stable linkage disequilibrium (LD) between sexually antagonistic loci. We find that LD is also generated between parentally antagonistic loci, and between sexually and parentally antagonistic loci, without any requirement of epistasis. We contend that the LD in these models arises from the admixture of gene pools subject to different selective histories. We also find that polymorphism maintained by parental antagonism at one locus expands the opportunity for polymorphism at a linked locus experiencing parental or sexual antagonism. Taken together, our results predict the chromosomal clustering of loci that segregate for sexually and parentally antagonistic alleles. Thus, genetic conflict may play a role in the evolution of genomic architecture.  相似文献   

16.
As organisms age, the effectiveness of natural selection weakens, leading to age‐related decline in fitness‐related traits. The evolution of age‐related changes associated with senescence is likely influenced by mutation accumulation (MA) and antagonistic pleiotropy (AP). MA predicts that age‐related decline in fitness components is driven by age‐specific sets of alleles, nonnegative genetic correlations within trait across age, and an increase in the coefficient of genetic variance. AP predicts that age‐related decline in a trait is driven by alleles with positive effects on fitness in young individuals and negative effects in old individuals, and is expected to lead to negative genetic correlations within traits across age. We build on these predictions using an association mapping approach to investigate the change in additive effects of SNPs across age and among traits for multiple stress‐response fitness‐related traits, including cold stress with and without acclimation and starvation resistance. We found support for both MA and AP theories of aging in the age‐related decline in stress tolerance. Our study demonstrates that the evolution of age‐related decline in stress tolerance is driven by a combination of alleles that have age‐specific additive effects, consistent with MA, as well as nonindependent and antagonistic genetic architectures characteristic of AP.  相似文献   

17.
Recent documentations of sexually antagonistic genetic variation in fitness have spurred an interest in the mechanisms that may act to maintain such variation in natural populations. Using individual-based simulations, I show that positive assortative mating by fitness increases the amount of sexually antagonistic genetic variance in fitness, primarily by elevating the equilibrium frequency of heterozygotes, over most of the range of sex-specific selection and dominance. Further, although the effects of assortative mating by fitness on the protection conditions of polymorphism in sexually antagonistic loci were relatively minor, it widens the protection conditions under most reasonable scenarios (e.g., under heterozygote superiority when fitness is averaged across the sexes) but can also somewhat narrow the protection conditions under other circumstances. The near-ubiquity of assortative mating in nature suggests that it may contribute to upholding standing sexually antagonistic genetic variation in fitness.  相似文献   

18.
The equilibrium structure of models of differential selection in the sexes is investigated. It is shown that opposing additive selection leads to stable polymorphic equilibria for only a restricted set of selection intensities, and that for weak selection the selection intensities must be of approximately the same magnitude in the sexes. General models of opposing directional selection, with arbitrary dominance, are investigated by considering simultaneously the stability properties of the trivial equilibria and the curve along which multiple roots appear. Numerical calculations lead us to infer that the average degree of dominance determines the equilibrium characteristics of models of opposing selection. It appears that if the favored alleles are, on the average, recessive, there may be multiple polymorphic equilibria, whereas only a single polymorphic equilibrium can occur when the favored alleles are, on the average, dominant. The principle that the average degree of dominance controls equilibrium behavior is then extended to models allowing directional selection in one sex with overdominance in the other sex, by showing that polymorphism is maintained if and only if the average fitness in heterozygotes exceeds one.  相似文献   

19.
Understanding the maintenance of genetic variation in the face of selection remains a key issue in evolutionary biology. One potential mechanism for the maintenance of genetic variation is opposing selection during the diploid and haploid stages of biphasic life cycles universal among eukaryotic sexual organisms. If haploid and diploid gene expression both occur, selection can act in each phase, potentially in opposing directions. In addition, sex-specific selection during haploid phases is likely simply because male and female gametophytes/gametes tend to have contrasting life histories. We explored the potential for the maintenance of a stable polymorphism under ploidally antagonistic as well as sex-specific selection. Furthermore, we examined the role of the chromosomal location of alleles (autosomal or sex-linked). Our analyses show that the most permissible conditions for the maintenance of polymorphism occur under negative ploidy-by-sex interactions, where stronger selection for an allele in female than male diploids is coupled with weaker selection against the allele in female than male haploids. Such ploidy-by-sex interactions also promote allele frequency differences between the sexes. With constant fitness, ploidally antagonistic selection can maintain stable polymorphisms for autosomal and X-linked genes but not for Y-linked genes. We discuss the implications of our results and outline a number of biological settings where the scenarios modeled may apply.  相似文献   

20.
Abstract Parasite resistance and body size are subject to directional natural selection in a population of feral Soay sheep (Ovis aries) on the island of St. Kilda, Scotland. Classical evolutionary theory predicts that directional selection should erode additive genetic variation and favor the maintenance of alleles that have negative pleiotropic effects on other traits associated with fitness. Contrary to these predictions, in this study we show that there is considerable additive genetic variation for both parasite resistance, measured as fecal egg count (FEC), and body size, measured as weight and hindleg length, and that there are positive genetic correlations between parasite resistance and body size in both sexes. Body size traits had higher heritabilities than parasite resistance. This was not due to low levels of additive genetic variation for parasite resistance, but was a consequence of high levels of residual variance in FEC. Measured as coefficients of variation, levels of additive genetic variation for FEC were actually higher than for weight or hindleg length. High levels of additive genetic variation for parasite resistance may be maintained by a number of mechanisms including high mutational input, balancing selection, antagonistic pleiotropy, and host‐parasite coevolution. The positive genetic correlation between parasite resistance and body size, a trait also subject to sexual selection in males, suggests that parasite resistance and growth are not traded off in Soay sheep, but rather that genetically resistant individuals also experience superior growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号