首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerosols of Mycoplasma pneumoniae were studied at several relative humidities at a controlled temperature of 27 C. Production of an experimentally reproducible aerosol required preatomization of the organism in its suspending fluid and was dependent on the type of fluid used in atomization as well as on the procedures used to produce an aerosol. The airborne particles studied were within the range of epidemiological significance, with most being 2 mum or less in diameter. Survival of the airborne mycoplasma in these particles was found to be best at very low and at very high humidities. The most lethal relative humidity levels were at 60 and 80%, at which levels fewer than 1% of the organisms survived over a 4-hr observation period. However, survival of the organism at most relative humidity levels was such that long-term infectivity could be expected from aerosols of M. pneumoniae. Because of the extreme sensitivity of M. pneumoniae at critical humidity levels, control of the airborne transmission of these organisms may be possible in selected spaces.  相似文献   

2.
1. 1. The mean durations of development in the pupae of Drosophila melanogaster (Meigen) and their survival were measured at combinations of six constant temperatures (15, 20, 22.5, 25, 27.5 and 30°C) and up to 11 levels of relative humidity. The thermal survival range for the pupae is between 15 and 30°C, and the humidity viable range is between 60 and 100% RH.
2. 2. The percentage water loss of the pupae was measured at six constant temperatures and four levels of relative humidity. There was a rapid increase in the percentage of water lost during the first 24 h exposure at all tested conditions. However, pupae reared at 100% RH at each constant temperature, sustained the lowest water loss. The percentage water loss increased as temperature increased, as humidity decreased and also with time.
3. 3. The duration of larval development studied at six constant temperatures (15, 20, 22.5, 25, 27.5 and 30°C) was inversely related to temperature. A wide range of alternating temperature regimes had a small, though statistically significant, accelerative effect on larval developmental time. Thus, the present results may be used as a basis for modelling development under changing temperatures, with the assumption that the developmental rate is nearly identical to that from a series of constant temperatures.
  相似文献   

3.
This study investigates the statistical relationship between climatic variables and aspects of cotton production (Gossypium barbadense), and the effects of climatic factors prevailing prior to flowering or subsequent to boll setting on flower and boll production and retention in cotton. Also, the study covers the predicted effects of climatic factors during convenient intervals (in days) on cotton flower and boll production compared with daily observations. Further, cotton flower and boll production as affected by climatic factors and soil moisture status has been considered. Evaporation, sunshine duration, relative humidity, surface soil temperature at 1800 h, and maximum air temperature, are the important climatic factors that significantly affect flower and boll production. The least important variables were found to be surface soil temperature at 0600 h and minimum temperature. The 5-day interval was found to be more adequately and sensibly related to yield parameters. Evaporation; minimum humidity and sunshine duration were the most effective climatic factors during preceding and succeeding periods on boll production and retention. There was a negative correlation between flower and boll production and either evaporation or sunshine duration, while that correlation with minimum relative humidity was positive. The soil moisture status showed low and insignificant correlation with flower and boll production. Higher minimum relative humidity, short period of sunshine duration, and low temperatures enhanced flower and boll formation.  相似文献   

4.
The effects of temperature and humidity on the emergence patterns of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were studied at four temperatures (20, 25, 28, and 33 degrees C),three relative humidities (50, 70, and 90%) and a photoperiod of 14:10 (L:D) h. Both sexes emerged primarily in the late afternoon to early morning, and the peaks of emergence varied depending on temperature and humidity. Females emerged significantly earlier than males. Incubation at 33 degrees C and 90% RH had a significant effect on the emergence rate, but no significant interaction was found between temperature and humidity. Emergence duration was 25.3 h for both sexes at 90% RH, with emergence duration at 33 degrees C lower than the other treatments. The sex ratios of diamondback moth under different temperature and humidity treatments were approximately 1:1, and there were no significant effects of temperature and humidity or interactions between these two factors.  相似文献   

5.
The survival of Chlamydia pneumoniae in aerosols was investigated by using a chamber with a capacity of 114.5 liters. We injected 5 x 10(7) inclusion-forming units (IFU) of C. pneumoniae in aerosols with a droplet size of 3 to 5 microns. Samples were taken after 30 s and every 1 min thereafter. The survival of C. pneumoniae was measured at four temperatures (8.5, 15, 25, and 35 degrees C) and at three different relative humidities (RH) of 5, 50, and 95% for each temperature. The survival rates of Streptococcus pneumoniae, Streptococcus faecalis, Klebsiella pneumoniae, Chlamydia trachomatis LGV2, and cytomegalovirus were also determined at 25 degrees C and 95% RH and compared with that of C. pneumoniae. At the mentioned temperatures and RH, a rapid decrease of C. pneumoniae IFU was observed in the first 30 s. After this the decrease in the number of IFU was more gradual. The survival of C. pneumoniae in aerosols were optimal at 15 to 25 degrees C and 95% RH; it was good compared with those of other microorganisms. A lower death rate was observed only in S. faecalis. In C. trachomatis, the death rate during the first 30 s was higher than that in C. pneumoniae (85 and 53.3%, respectively). After the first 30 s, the death rates in the two organisms were identical. It was concluded that transmission of C. pneumoniae via aerosols was possible. There is probably a direct transmission from person to person, taking into account the relatively short survival period of C. pneumoniae in aerosols.  相似文献   

6.
Hickford MJ  Schiel DR 《PloS one》2011,6(9):e24318
Anthropogenic impacts, including urbanization, deforestation, farming, and livestock grazing have altered riparian margins worldwide. One effect of changes to riparian vegetation is that the ground-level light, temperature, and humidity environment has also been altered. Galaxias maculatus, one of the most widely distributed fishes of the southern hemisphere, lays eggs almost exclusively beneath riparian vegetation in tidally influenced reaches of rivers. We hypothesized that the survival of these eggs is greatly affected by the micro-environment afforded by vegetation, particularly relating to temperature, humidity and UVB radiation. We experimentally reduced riparian vegetation height and altered shading characteristics, tracked egg survival, and used small ground-level temperature, humidity and UVB sensors to relate survival to ground-level effects around egg masses. The ground-level physical environment was markedly different from the surrounding ambient conditions. Tall dense riparian vegetation modified ambient conditions to produce a buffered temperature regime with constant high relative humidity, generally above 90%, and negligible UVB radiation at ground-level. Where vegetation height was reduced, frequent high temperatures, low humidity, and high UVB irradiances reduced egg survival by up to 95%. Temperature effects on egg survival were probably indirect, through reduced humidity, because developing eggs are known to survive in a wide range of temperatures. In this study, it was remarkable how such small variations in relatively small sites could have such a large effect on egg survival. It appears that modifications to riparian vegetation and the associated changes in the physical conditions of egg laying sites are major mechanisms affecting egg survival. The impacts associated with vegetational changes through human-induced disturbances are complex yet potentially devastating. These effects are particularly important because they affect a very small portion of habitat that is required to complete the life history of a species, despite the wide distribution of adults and juveniles across aquatic and marine environments.  相似文献   

7.
Several different reactor configurations, including single pass, continuous recycle, and batch reactor modes, were used to investigate the effects of temperature and water activity, or relative humidity, on lipase-catalyzed, gas-phase transesterifications. Temperature and relative humidity were controlled both inside reactors and throughout the course of the reaction to account for and optimize their effects. Results indicated that, at low relative humidity, reaction rates increased with temperature up to 60 degrees C. However, when relative humidity was increased, a similar increase in temperature resulted in the loss of nearly all enzyme activity. These results are consistent with the idea that enzymes without free water are more thermally stable. Furthermore, at constant ambient temperatures, production increased dramatically with an increase in relative humidity, confirming the idea that an increase in water activity increases catalytic activity. A mass balance performed on reactors at higher relative humidity revealed that hydrolysis (rather than transesterification) of the ester substrate could significantly decrease product yields.  相似文献   

8.
Salmonella typhimurium survived freeze-drying at a platen temperature of 120 F (48.9 C) and also, though to a much lesser degree, at 160 F (82.6 C). The extent of the survival at these temperatures was dependent on the composition of the model system employed. The incidence of damage immediately after freeze-drying was greater for cells dried at the higher platen temperature and was influenced by the composition of the menstruum in which the cells were dried. In model systems having protein-dominant isotherms, survival during subsequent storage depended greatly on relative humidity, with recovery highest at relative humidities below those corresponding to moisture contents at which a monomolecular layer is formed. In menstrua having a higher sugar content, survival was best at low relative humidities corresponding to a very low equilibrium moisture content in the model system used. Damage during storage tended to be a function of the composition of the gels in which the organisms were freeze-dried, and also depended greatly on the presence of air and on the relative humidity. The maximal percentage of damage usually occurred at the low relative humidities as storage time increased.  相似文献   

9.
Do stomata respond to relative humidity?   总被引:24,自引:12,他引:12  
  相似文献   

10.
N. N. Hama  D. W. Davis 《BioControl》1983,28(3):295-302
Nondiapausing pupae ofBathyplectes curculionis (Thomson) were studied under laboratory conditions. The mortality caused by 8 temperatures between 25–48°C at 20% and 70% relative humidity was measured at 10 exposure times between 15 min-24 h. There was no significant mortality at 25°C. Between 30 and 40°C, mortality occurred from long exposures only, with lethal effects becoming greater at each increase in temperature. At 43°C mortality occurred from relatively short exposures, with 100% at 4 h. Exposure times for 50% mortality averaged 16.58 h at 38°C, 1.08 h at 43°C and 0.31 h at 48°C. A slightly higher mortality occurred at 20% relative humidity than at 70% at temperatures between 35 and 40°C. At temperatures above 43°C no effects of relative humidity were noted. Afternoon soil surface temperatures in recently cut alfalfa fields commonly exceeded 50°C during July in northern Utah.  相似文献   

11.
The effects of constant air temperature and relative humidity on the longevity of three species of gripopterygid stonefly adults from New Zealand were investigated in laboratory experiments, and the results were compared to field measurements of air temperature and humidity obtained during summer. Greatest longevity for Zelandobius furcillatus, Zelandoperla decorata and Acroperla trivacuata was recorded in cool humid conditions (10°C, 100% humidity) for adults fed water and a 5% sucrose solution. Absence of feeding reduced survival by 37–73% at 17°C and 100% humidity. Survival decreased significantly with increasing constant air temperature (10, 17 and 25°C) and decreasing mean relative humidity (100, 81 and 15%). Males survived significantly longer than females in all temperature treatments for Z. furcillatus, but longevity was not influenced by gender in other species or in the humidity experiments. Interpolated LT 50 values over 96 h for female stoneflies in the temperature treatments averaged of 22–23°C. Field measurements at near-ground level and 1.5 m above the streambank during summer indicated that these air temperatures were exceeded for 25% of the time in a pasture catchment compared to <0.1% of the time in a native forest catchment. These findings implicate air temperature as a factor potentially influencing the longevity of adult stoneflies, and suggest that maintenance of appropriate microclimate conditions should be a consideration in riparian management.  相似文献   

12.
In order to develop weather-based forecasting model of bacterial leaf spot (BLS) disease of mulberry caused by Xanthomonas campestris pv. mori, weekly disease severity data were recorded for three years on the ruling cultivar S-1. Daily meteorological data viz. maximum temperature, minimum temperature, maximum relative humidity, minimum relative humidity, rainfall and number of rainy days were also recorded. It was observed that BLS appeared in April/May and continued up to November with maximum severity in July. The correlation coefficient between disease severity and meteorological parameters revealed that the BLS disease severity has significant positive correlation with minimum temperatures, maximum and minimum relative humidity, rainfall and number of rainy days and negative correlation with maximum temperature. Multiple regressions analysis revealed that average of maximum temperature, minimum temperature and rainfall of preceding seven days and maximum relative humidity, minimum relative humidity of previous 9–15 days was found to maximally influence BLS disease severity. The contribution of the meteorological factors was found to be highest of minimum temperature (40.65%) followed by maximum temperature (24.20%), maximum relative humidity (16.41%), minimum relative humidity (8.07%), rainfall (5.29%) and number of rainy days (5.38%).  相似文献   

13.
嗜卷书虱实验种群生命表的研究   总被引:8,自引:3,他引:8  
在不同温度和湿度条件下对嗜卷书虱进行饲养,分别组建春实验种群特定年龄和特定时间生命表,并应用Morris模式及SWeibull频数分布以探讨温、湿度与嗜卷书虱种群数量变动的关系。结果表明,温、湿度对存活率的作用是影响该实验种群趋势指数(I)值最重要的因子,在适宜温、湿度条件下,种群存活曲线属DeeveyⅠ型,而在不太适宜条件下则属DeeveyⅢ型,理论上30.63℃时周限增长率(λ)最大,达1.0628倍/天,该虫发育和繁殖的最适温区为28-30℃,最适相对湿度在80%左右。  相似文献   

14.
Modifications of a domestic freezer are described, which convert it to a versatile controlled environment chamber capable of maintaining temperatures between ambient and - 18 °C and therefore useful in investigations both of plant growth at low positive temperatures and of survival of sub-zero temperatures. The temperature control mechanism can provide a wide range of diurnal temperature regimes and of cooling and warming rates. Measurements in two such chambers showed air temperatures were always uniform to within ° 1 °C of set temperature except in a 6 cm band round the inside walls, where they were lower by 0°6 °C, at most; CO2 concentration was always close to 300 v.p.m.; relative humidity was usually in the range 80–90% and photon flux densities during the light period were 180 ° 10 μmol m-2 s-1. The uniformity of environmental conditions within each chamber was confirmed by measurements of leaf growth and plant survival of tillers of a single genotype of perennial ryegrass growing in pots of compost. These tests also confirmed the lower temperature of the 6 cm band adjacent to the chamber walls. Although temperature settings were identical, air and compost temperatures were 0°3 °C higher in one of the two chambers tested. Although this difference did not result in significant differences in plant survival, significant differences in leaf lamina extension were found between cabinets. Problems encountered in the design and testing of the chambers are discussed.  相似文献   

15.
There is a comprehensive body of literature on how increased air temperature affects the physiology, production and behaviour of sows, while very few studies consider the thermal effects of air humidity and air velocity.This review summarises studies that have investigated effects of air temperature by reviewing published literature in which sows were exposed to at least two different levels of air temperature ranging from 15 °C to 39 °C. Increased rectal temperature was investigated in the majority of the studies (26) and on average, the rectal temperature increased by 0.099 °C per °C increased air temperature above 25 °C. The increase was smaller at lower air temperatures, and it was suggested that rectal temperature is practically unaffected by air temperatures in the range of 15 °C–21 °C. This review elucidates how air temperature also affects performance indicators such as respiration rate, vaginal temperature, skin temperature, feed intake, milk yield, body weight loss during lactation, mortality, litter daily weight gain during lactation and sow behaviour.One study reported how respiration rate, rectal temperature, vaginal temperature and skin temperature were affected by both air temperature and air humidity, and the results suggest that the relative significance of air temperature and humidity may be similar for sows and finishing pigs (e.g. an increase of 40% relative humidity at an air temperature of 30 °C has a similar effect as a 1.9 °C increase in temperature).Studies on mitigation methods against the effects of high temperature and humidity such as snout cooling, drip cooling and floor cooling were reviewed to extract knowledge related to the effects of air velocity, temperatures of surrounding surfaces and the opportunity for sows to moisten their skin.  相似文献   

16.
Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) is a widely distributed pest species of soft-skinned fruits. Recent studies suggest the use of sterile insect technique (SIT) as a control method for this species; however, many factors can impact effectiveness of a SIT programme, including the environmental conditions. Environmental condition is critical at the time of the release and in the days afterwards, since it may impact sterile insects’ survival and ability to mate. Thus, we verified the influence of temperature and relative humidity on mating and survival of fertile and sterile D. suzukii, when insects were food provided or deprived. Highest mating rates occurred when sterile or fertile flies provided with food were exposed to 25ºC or 81%–100% relative humidity, while temperatures of 10 and 35ºC and humidity below 60% impaired mating. Overall, mating rate among food-deprived flies was low in all temperatures and humidity levels tested, but fertile insects were more prone to mate when compared to sterile flies. Survival was negatively influenced by high temperatures, low relative humidity and food deprivation. The information present in this study is useful to be considered for release of sterile D. suzukii.  相似文献   

17.
We examined the effect of short-term exposure to high and low temperatures and a range of relative humidity (RH) on survival of Phytophthora ramorum hyphae. Spore-free hyphal colonies were grown on dialysis squares atop V8 medium. Colonies were transferred to water agar plates positioned at 27.5-50 C on a thermal gradient plate and incubated 2.5-480 min. For low temperature trials colonies were transferred to vials of distilled water and incubated in a water bath at -5 to -25 C for 1-24 h. In the relative humidity trials hyphal colonies were transferred to sealed humidity chambers containing various concentrations of glycerin for 1-8 h. Relative humidity was 41-93% at 20 C and 43-86% at 28 C. Survival in all trials was characterized by growth from dialysis squares into V8 medium. Temperatures of 37.5-40 C were lethal to P. ramorum hyphae within several hours, and temperatures of 42.5-50 C were lethal within minutes. Exposure to 32.5 and 35 C resulted in reduced survival over 8 h, while 30 C had no effect on three of four isolates. Hyphal colonies demonstrated considerable tolerance to cold, with all isolates surviving a 24 h exposure to -5 C. Survival diminished over time at lower temperatures, however a few colonies survived 24 h exposure to -25 C. Temperature also affected the ability of hyphal colonies to withstand reduced humidity. A RH of 41-43% was lethal in 2 h at 28 C compared to 8 h at 20 C. Three of four isolates were unaffected by an 8 h exposure to 81 and 95% RH at 20 C, and 73 and 86% RH at 28 C. Isolate differences were apparent in tolerance to freezing temperatures and reduced humidity. From these results it is apparent that the cold temperatures found in the northeastern USA are not likely to prevent the establishment of P. ramorum. There is also the potential for hyphae, and presumably spores, to survive periods of high humidity on the leaf surface in the absence of free water.  相似文献   

18.
温、湿度对美洲斑潜蝇发育、存活及食量的影响   总被引:6,自引:0,他引:6  
郝树广  康乐 《昆虫学报》2001,44(3):332-336
以花斑芸豆Phaseolus vulgaris为食料植物,在不同温、湿度组合下,观测了美洲斑潜蝇Liriomyza sativae的发育、存活及取食特征。结果表明,卵、幼虫和蛹期的发育速率与温度的关系均呈S型曲线。发育起点温度为:卵,8.9℃;幼虫, 10.1℃;蛹,9.6℃;整个未成熟期,9.5℃。有效积温为:卵,57.7日·度;幼虫,53.9日·度;蛹,151.9日·度;整个未成熟期,264.2日·度。湿度对发育速率的影响不明显。温度对存活的影响较大,当温度>34℃或<19℃时,各虫态的存活率都显著降低。湿度对存活率的影响主要发生在蛹期,当湿度低于50%时,蛹的羽化率显著降低。在高温、低湿的条件下,蛹不能羽化。在相对低温下的累计取食面积大于高温时的相应值,在25℃时达到1.6 cm2,而在28℃及以上温度时取食面积只有0.9 cm2左右。  相似文献   

19.
Measurements of expiration temperatures were carried out under different climatic conditions. In one series of experiments the ambient air temperature was varied, in another the relative humidity of the ambient air. The temperatures of the ambient air ranged between –5°C and 30°C and the relative humidity between 10% and 90%. The results reveal a high variability of the expiration temperatures, when the ambient air temperature is changed, and almost constant expiration temperatures, when the relative humidity is altered but the ambient air temperature is kept constant. Nasal expiration temperatures are more sensitive to changes of the meteorological parameters than oral expiration temperatures.  相似文献   

20.
1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life‐history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, whereas phenology can shape population performance and community interactions. 2. It was experimentally assessed how developmental temperatures experienced by aquatic larvae affected survival, phenology, and adult morphology of dragonflies [Pachydiplax longipennis (Burmeister)]. Larvae were reared under three environmental temperatures: ambient, +2.5, and +5 °C, corresponding to temperature projections for our study area 50 and 100 years in the future, respectively. Experimental temperature treatments tracked naturally‐occurring variation. 3. Clear effects of temperature were found in the rearing environment on survival and phenology: dragonflies reared at the highest temperatures had the lowest survival rates and emerged from the larval stage approximately 3 weeks earlier than animals reared at ambient temperatures. There was no effect of rearing temperature on overall body size. Although neither the relative wing nor thorax size was affected by warming, a non‐significant trend towards an interaction between sex and warming in relative thorax size suggests that males may be more sensitive to warming than females, a pattern that should be investigated further. 4. Warming strongly affected survival in the larval stage and the phenology of adult emergence. Understanding how warming in the developmental environment affects later life‐history stages is critical to interpreting the consequences of warming for organismal performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号