首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Using a range of Ca2+ channel blockers we have investigated the Ca2+ channel subtypes that mediate the depolarisation-induced elevation of the intracellular free Ca2+ concentration ([Ca2+]i) and glutamate release from cultured rat cerebellar granule cells. ω-Conotoxin-GVIA had little effect on either the transient or plateau phase of the depolarisation-induced [Ca2+]i rise or on glutamate release, ruling out a significant role for N-type Ca2+ channels. Nifedipine substantially inhibited the initial transient rise in [Ca2+]i and the plateau phase of the [Ca2+]i rise and glutamate release, suggesting the involvement of L-type Ca2+ channels. Both ω-agatoxin and ω-conotoxin-MVIIC also inhibited the transient rise in [Ca2+]i and glutamate release but not the plateau phase of the [Ca2+]i rise. The inhibitions by nifedipine were not increased by coaddition of ω-conotoxin-MVIIC, suggesting overlapping sensitivity to these channel blockers. These data show that glutamate release from granule cells in response to depolarisation with a high KCI level involves Ca2+ currents that are sensitive to nifedipine, ω-agatoxin-IVA, and also ω-conotoxin-MVIIC. The overlapping sensitivity of the channels to these toxins prevents attribution of any of the phases of the [Ca2+]i rise or glutamate release to distinct P-, Q-, or O-type Ca2+ currents.  相似文献   

2.
Mitochondrial dysfunction plays a central role in glutamate-evoked neuronal excitotoxicity, and mitochondrial fission/fusion dynamics are essential for mitochondrial morphology and function. Here, we establish a novel mechanistic linker among glutamate excitotoxicity, mitochondrial dynamics, and mitochondrial dysfunction in spinal cord motor neurons. Ca2+-dependent activation of the cysteine protease calpain in response to glutamate results in the degradation of a key mitochondrial outer membrane fusion regulator, mitofusin 2 (MFN2), and leads to MFN2-mediated mitochondrial fragmentation preceding glutamate-induced neuronal death. MFN2 deficiency impairs mitochondrial function, induces motor neuronal death, and renders motor neurons vulnerable to glutamate excitotoxicity. Conversely, MFN2 overexpression blocks glutamate-induced mitochondrial fragmentation, mitochondrial dysfunction, and/or neuronal death in spinal cord motor neurons both in vitro and in mice. The inhibition of calpain activation also alleviates glutamate-induced excitotoxicity of mitochondria and neurons. Overall, these results suggest that glutamate excitotoxicity causes mitochondrial dysfunction by impairing mitochondrial dynamics via calpain-mediated MFN2 degradation in motor neurons and thus present a molecular mechanism coupling glutamate excitotoxicity and mitochondrial dysfunction.  相似文献   

3.
Abstract: The mechanism of glutamate release from cultured cerebellar granule neurones in response to a chemical model of ischaemia (10 m M 2-deoxyglucose plus 1 m M sodium cyanide) was investigated. In the first 2 min of ischaemia, release of preloaded d -[3H]aspartate could be extensively attenuated by tetanus toxin and bafilomycin A1 and was dependent on the activation of Ca2+ channels sensitive to the "Q" type Ca2+ channel antagonist, ω-conotoxin-MVIIC. During this period, ATP/ADP ratios fell rapidly. The extent of release in the first 2 min was comparable to that evoked by 2-min depolarization by 50 m M KCl. Free Ca2+ concentrations, determined in neurites and somata, did not increase until after 2 min. The neurite increase in cellular Ca2+ precedes that of the cell somata. Release of d -[3H]aspartate was partially inhibited by the NMDA receptor antagonist MK-801, which also delayed the increase in free Ca2+ concentration. Prolonging the period of ischaemia to 6 and 10 min produced no further increase in the apparently exocytotic component of release, but initiated an extensive nonexocytotic release of the amino acid. Studies with the synaptic vesicle membrane probe FM1-43 in which released amino acid was removed by superfusion indicated that Ca2+-dependent exocytosis was delayed in this system. It is concluded that chemical ischaemia initiates an initial exocytotic followed by nonexocytotic release and that the former is facilitated by NMDA receptor activation. These events occur in cells that are still able to exclude propidium iodide, indicating that cell death has not yet occurred.  相似文献   

4.
Abstract: Pigment epithelium-derived factor (PEDF) is a survival factor for cerebellar granule cells in culture. In the present study, we have investigated the ability of a recombinant form of PEDF (rPEDF) to protect against glutamate neurotoxicity. When rPEDF was added to cerebellar granule cell cultures 30 min before addition of 100 µ M glutamate, glutamate-induced neuronal death was significantly reduced. The protective effect of rPEDF was dose-dependent in the range from 0.023 to 7.0 n M (1–500 ng/ml), with a half-maximal dose of 0.47 n M . An antibody to rPEDF blocked this protective effect. Measurement of intraneuronal free calcium levels demonstrated that rPEDF raised the basal calcium content. However, after the elevation of intracellular calcium in response to administration of glutamate, rPEDF reduced the plateau level seen in the presence of glutamate. These data show that PEDF can protect neurons against glutamate-induced neurotoxicity, possibly via a calcium-related pathway. The finding that only 30 min of preincubation is required for the neuroprotective effect, significantly faster than other known neurotrophic factors, suggests that PEDF may be useful clinically as a neuroprotective agent in the CNS.  相似文献   

5.
To gain some insight into the mechanism by which glutamate neurotoxicity takes place in cerebellar granule cells, two steps of glucose oxidation were investigated: the electron flow via respiratory chain from certain substrates to oxygen and the transfer of extramitochondrial reducing equivalents via the mitochondrial shuttles. However, cytochrome c release from intact mitochondria was found to occur in glutamate-treated cells as detected photometrically in the supernatant of the cell homogenate suspension. As a result of cytochrome c release, an increase of the oxidation of externally added NADH was found, probably occurring via the NADH-b5 oxidoreductase of the outer mitochondrial membrane. When the two mitochondrial shuttles glycerol 3-phosphate/dihydroxyacetone phosphate and malate/oxaloacetate, devoted to oxidizing externally added NADH, were reconstructed, both were found to be impaired under glutamate neurotoxicity. Consistent early activation in two NADH oxidizing mechanisms, i.e., lactate production and plasma membrane NADH oxidoreductase activity, was found in glutamate-treated cells. In spite of this, the increase in the cell NADH fluorescence was found to be time-dependent, an index of the progressive damage of the cell.  相似文献   

6.
Abstract: Excessive activation of N-methyl-d -aspartate (NMDA) receptor channels (NRs) is a major cause of neuronal death associated with stroke and ischemia. Cerebellar granule neurons in vivo, but not in culture, are relatively resistant to toxicity, possibly owing to protective effects of glia. To evaluate whether NR-mediated signaling is modulated when developing neurons are cocultured with glia, the neurotoxic responses of rat cerebellar granule cells to applied NMDA or glutamate were compared in astrocyte-rich and astrocyte-poor cultures. In astrocyte-poor cultures, significant neurotoxicity was observed in response to NMDA or glutamate and was inhibited by an NR antagonist. Astrocyte-rich neuronal cultures demonstrated three significant differences, compared with astrocyte-poor cultures: (a) Neuronal viability was increased; (b) glutamate-mediated neurotoxicity was decreased, consistent with the presence of a sodium-coupled glutamate transport system in astrocytes; and (c) NMDA- but not kainate-mediated neurotoxicity was decreased, in a manner that depended on the relative abundance of glia in the culture. Because glia do not express NRs or an NMDA transport system, the mechanism of protection is distinct from that observed in response to glutamate. No differences in NR subunit composition (evaluated using RT-PCR assays for NR1 and NR2 subunit mRNAs), NR sensitivity (evaluated by measuring NR-mediated changes in intracellular Ca2+ levels), or glycine availability as a coagonist (evaluated in the presence and absence of exogenous glycine) were observed between astrocyte-rich and astrocyte-poor cultures, suggesting that glia do not directly modulate NR composition or function. Nordihydroguaiaretic acid, a lipoxygenase inhibitor, blocked NMDA-mediated toxicity in astrocyte-poor cultures, raising the possibility that glia effectively reduce the accumulation of highly diffusible and toxic arachidonic acid metabolites in neurons. Alternatively, glia may alter neuronal development/phenotype in a manner that selectively reduces susceptibility to NR-mediated toxicity.  相似文献   

7.
Abstract: Metabotropic glutamate receptor (type 1; mGluR1 ) is expressed predominantly in the hippocampus and the cerebellum. Using cultured cerebellar granule cells, we investigated the regulation of the mGluR1 mRNA expression. Levels of mGluR1 mRNA were decreased to less than half by high potassium stimulation and by glutamate and quisqualate. Although these glutamate receptor agonists tested are also known to cause neuronal cell death in culture, the effect of cell death cannot explain the observed reduction in mGluR1 mRNA because of the following reasons: (a) antagonists of N -methyl-D-aspartate and non- N -methyl-D-aspartate receptors inhibited cell death, but not the reduction of the level of mGluR1 mRNA; (b) mGluR1 mRNA returned to its initial level 48 h after the agonist application; and (c) the mRNA level of one of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptors (GluR1) was not altered by these conditions. Therefore, we conclude that the glutamate or quisqualate stimulation can specifically inhibit the expression of mGluR1 mRNA. The dose response of quisqualate for the reduction in mGluR1 mRNA is consistent with that for inositol phosphate formation stimulated through the cloned mGluR1 . The mRNA reduction did not require extracellular calcium. Desensitization of mGluR1 with phorbol ester abolished the mRNA reduction. These results suggest that the reduction in mGluR1 mRNA is mediated by the activation of the metabotropic receptor itself.  相似文献   

8.
在急性、慢性神经退行性疾病和炎症引发的神经系统疾病的发病机制中,兴奋性毒性可能是造成后期神经元死亡的共同途径.小脑颗粒神经元谷氨酸兴奋性毒性模型是研究上述过程的重要实验手段,该模型的稳定性和可重复性是开展相关研究的重要基础.然而,文献报道的建模方法条件各异,说法不一,很难适从.本工作针对小脑颗粒神经元谷氨酸兴奋性毒性模型建立的关键环节,包括小脑颗粒神经元的培养、兴奋性毒性刺激条件的确定,毒性标志性指标的表征,分别进行了比较和优化, 从培养皿的包被、神经元消化、兴奋性刺激的溶液介质选择、神经元刺激的最佳时间及谷氨酸的最佳刺激浓度等方面分别给出了优化条件.通过特征性钙离子曲线、NMDA受体特异性抑制剂MK-801的干预作用以及c-fos基因转录水平的动力学变化等指标,确认了毒性模型的成功建立.本工作不仅对建立小脑颗粒神经元谷氨酸兴奋性毒性模型的实验室具有重要参考意义,而且,其针对不同条件分析比较的结果及优化原则,对其他神经毒性模型的建立也具有普遍参考意义.  相似文献   

9.
On exposure to glutamate, cultured rat cerebellar granule cells undergo a delayed Ca2+ deregulation (DCD), which precedes and predicts cell death. We have previously shown that mitochondria control the sensitivity of the neurons to DCD. Mitochondrial depolarization by rotenone/oligomycin before glutamate addition is strongly neuroprotective, and the indication is therefore that mitochondrial Ca2+ loading leads to a delayed loss of bioenergetic function culminating in DCD and cell death. In this report it is shown that superoxide (O2.-) generation in intact cells, monitored by oxidation of hydroethidine to ethidium, was enhanced by glutamate only when mitochondria were polarized. Production of superoxide was higher in the subset of cells undergoing DCD. In the presence of rotenone and oligomycin, addition of glutamate did not result in increased superoxide generation. Menadione-generated superoxide enhances the DCD of cells exposed to glutamate; in contrast, glutamate-induced DCD was potently inhibited by the presence of the cell-permeant antioxidant manganese(III) tetrakis(4-benzoic acid) porphyrin. An inverse correlation is observed between the cytoplasmic free Ca2+ maintained in individual cells in the presence of glutamate and the ability of these cells to restore basal Ca2+ when NMDA receptors are inhibited and mitochondrial Ca2+ is released. It is concluded that mitochondrial Ca2+ accumulation and reactive oxygen species each contribute to DCD, probably related to damage to a process controlling Ca2+ efflux from the cell.  相似文献   

10.
Abstract: Upon addition of the cardiac glycoside ouabain to cultured cerebellar granule cells, an immediate increase in intracellular free sodium is evoked mediated by two pathways, a voltage-sensitive channel blocked by tetrodotoxin and a channel sensitive to flunarizine. Ouabain induces a steady plasma membrane depolarization in low Ca2+ medium; whereas in the presence of Ca2+, a distinct discontinuity is observed always preceded by a large increase in intracellular free Ca2+ ([Ca2+]c). The plateau component of the increase can be inhibited additively by the L-type Ca2+ channel antagonist nifedipine, the spider toxin Aga-Gl, and the NMDA receptor antagonist MK-801. Single-cell imaging reveals that the [Ca2+]c increase occurs asynchronously in the cell population and is not dependent on a critical level of extracellular glutamate or synaptic transmission between the cells. A prolonged release of glutamate is also observed that is predominantly Ca2+ dependent for the first 6–10 min after the evoked increase in [Ca2+]c. This release is four times as large as that observed with 50 m M KCl and is predominantly exocytotic because release was inhibited by tetanus toxin, the V-type ATPase inhibitor bafilomycin, and Aga-Gl. It is proposed, therefore, that ouabain induces a period of membrane excitability culminating in a sustained exocytosis above that observed upon permanent depolarization with KCl.  相似文献   

11.
Abstract: The functional expression of the kainate subtype of glutamate receptor (GluR) has been investigated in cultured rat cerebellar granule cells using single cell intracellular calcium ([Ca2+]i) measurements. Both AMPA- and kainate-induced [Ca2+]i increases could be blocked completely by the AMPA receptor-selective antagonist LY300168 (50 µ M ). However, following treatment with concanavalin A, an inhibitor of kainate receptor desensitisation, 30% of cells showed a kainate-induced [Ca2+]i rise of >100 n M in the presence of LY300168. Responses to 30 µ M kainate in the presence of LY300168 were virtually abolished by the AMPA and GluR5 kainate receptor competitive antagonist LY293558 (100 µ M ). These results demonstrate the presence of functional kainate receptors on cultured cerebellar granule cells, and suggest that the GluR5 subtype of kainate receptor plays a significant role in kainate receptor-mediated [Ca2+]i increases.  相似文献   

12.
Cerebellar granule cells were cocultured with astrocytes from either cerebral cortex or cerebellum in two different systems. In one system the cells were plated next to each other only sharing the culture medium (separated cocultures) and in the other system the granule cells were plated on top of a preformed layer of astrocytes (sandwich cocultures). Using astrocytes from cerebellum, granule cells developed morphologically and functionally showing a characteristic high activity of the glutamate synthesizing enzyme aspartate aminotransferase (AAT) as well as a high stimulus-coupled transmitter release regardless of the culture system, i.e., granule cells could grow on top of cerebellar astrocytes as well as next to these cells. In the case of cerebral cortex astrocytes it was found that cerebellar granule cells did not develop (11% survival) when seeded on top of these astrocytes. This was indicated by the morphological appearance of the cultures as well as by a negligible difference between the AAT activity in sandwich cocultures and astrocytes cultured alone. On the other hand, granule cells in separated cocultures with cerebral cortex astrocytes exhibited a normal morphology and a high activity of AAT as well as a large stimulus-coupled transmitter release. Cerebellar and cortical astrocytes expressed the astrocyte specific enzyme glutamine synthetase in a glucocorticoid-inducible form regardless of the culture system. The results show that under conditions of direct contact between granule cells and astrocytes, regional specificity exists with regard to neuron-glia contacts. This specificity does not seem to involve soluble factors present in the culture medium because in separated cocultures the cerebellar granule cells developed normally regardless of the regional origin of the astrocytes.  相似文献   

13.
Abstract: The effect(s) of a prototypic intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), on glutamate-induced neurotoxicity was investigated in primary cultures of mouse cerebellar granule cells. Glutamate evoked an increase in cytosolic free-Ca2+ levels ([Ca2+]i) that was dependent on the extracellular concentration of Ca2+ ([Ca2+]o). In addition, this increase in [Ca2+]i correlated with a decrease in cell viability that was also dependent on [Ca2+]o. Glutamate-induced toxicity, quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, was shown to comprise two distinct components, an “early” Na+/Cl?-dependent component observed within minutes of glutamate exposure, and a “delayed” Ca2+-dependent component (ED50~50 µM) that coincided with progressive degeneration of granule cells 4–24 h after a brief (5–15 min) exposure to 100 µM glutamate. Quantitative analysis of cell viability and morphological observations identify a “window” in which TMB-8 (at >100 µM) protects granule cells from the Ca2+-dependent, but not the Na+/Cl?-dependent, component of glutamate-induced neurotoxic damage, and furthermore, where TMB-8 inhibits glutamate-evoked increases in [Ca2+]i. These findings suggest that Ca2+ release from a TMB-8-sensitive intracellular store may be a necessary step in the onset of glutamate-induced excitotoxicity in granule cells. However, these conclusions are compromised by additional observations that show that TMB-8 (1) exhibits intrinsic toxicity and (2) is able to reverse its initial inhibitory action on glutamate-evoked increases in [Ca2+]i and subsequently effect a pronounced time-dependent potentiation of glutamate responses. Dantrolene, another putative intracellular Ca2+ antagonist, was completely without effect in this system with regard to both glutamate-evoked increases in [Ca2+]i and glutamate-induced neurotoxicity.  相似文献   

14.
Abstract: The time course of changes in extracellular glutamic acid levels and their Ca2+ dependency were studied in the rat striatum during focal cerebral ischaemia, using microdialysis. Ischaemia-induced changes were compared with those produced by high K+-evoked local depolarization. To optimize time resolution, glutamate was analysed continuously as the dialysate emerged from the microdialysis probe by either enzyme fluorimetry or biosensor. The Ca2+ dependency of glutamate changes was examined by perfusing the probe with Ca2+-free medium. With normal artificial CSF, ischaemia produced a biphasic increase in extracellular glutamate, which started from the onset of ischaemia. During the first phase lasting ~10 min, dialysate glutamate level increased from 5.8 ± 0.9 µM· min?1 to 35.8 ± 6.2 µM where it stabilized for ~3 min. During the second phase dialysate glutamate increased progressively to its maximum (82 ± 8 µM), reached after 55 min of ischaemia, where it remained for as long as it was recorded (3 h). The overall changes in extracellular glutamate were similar when Ca2+ was omitted from the perfusion medium, except that the first phase was no longer detectable and, early in ischaemia, extracellular glutamate increased at a significantly slower rate than in the control group (2.2 ± 1 µM· min?1; p < 0.05). On the basis of these data, we propose that most of the glutamate released in the extracellular space in severe ischaemia is of metabolic origin, probably originating from both neurons and glia, and caused by altered glutamate uptake mechanisms. Comparison with high K+-induced glutamate release did not suggest that glutamate “exocytosis,” early after middle cerebral artery occlusion, was markedly limited by deficient ATP levels.  相似文献   

15.
Abstract: Excitatory amino acid (EAA)-induced polyphosphoinositide (PPI) hydrolysis was studied during the development in culture of cerebellar granule cells. The developmental pattern was similar using metabotropic glutamate (Glu) receptor (mGluR) agonists, including L-Glu, quisqualate, and trans -(±)-1-amino-1,3-cyclopentanedicarboxylic acid: The stimulation of [3H]inositol monophosphate ([3H]-InsP) formation was low at 2 days in vitro (DIV), but the response increased steeply, reaching a peak at 4 DIV, followed by a progressive decline. In contrast, carbamylcholine-induced PPI hydrolysis exhibited a plateau after a pronounced increase during the first week in vitro. At 6 DIV, but not at 4 DIV, when the activity peaked, PPI hydrolysis elicited by Glu was reduced by the N -methyl- d -aspartate (NMDA) receptor antagonist MK-801, indicating that in cultured granule cells, NMDA receptors contribute to [3H]-InsP formation and that this component of the response develops relatively late. Accordingly, NMDA-induced [3H]-InsP formation, estimated under Mg2+-free conditions, increased markedly from very low values at 2 DIV to a plateau at 8–10 DIV. The developmental pattern of EAA-induced PPI hydrolysis was paralleled by changes in the level of an mRNA for a specific mGluR subtype ( mGluR1 mRNA). RNA blot analysis performed with the pmGR1 cDNA probe revealed that the hybridization signal in RNA extracts from cultures at 1 DIV was very weak, but mGluR mRNA levels increased dramatically between 1 and 3 DIV, followed by a progressive decrease, so that by 15 DIV the mRNA levels were only ∼10% of the values at 3 DIV. These observations indicate that the functional expression of the mGluR is subject to developmental regulation, which critically involves receptor mRNA levels.  相似文献   

16.
Abstract: We studied the neurotoxic effects of β25–35 amyloid fragment (β25–35) on cerebellar granule cells and the intracellular mechanisms involved. Treatment for 3 days with peptide greatly reduced the survival of 1 day in vitro (DIV) cultures kept in 5 m M KCl but slightly modified the survival of 25 m M KCl-cultured cerebellar granule cells. We also studied the effect of glutamate on survival of undifferentiated cerebellar granules. We report no neurotoxic effect of glutamate on 3-DIV-treated cultures; whereas in β25–35-pretreated cells, a significant glutamate toxicity was observed. Treatment of 6-DIV cells with β25–35, performed with 25 m M KCl, induced a late but significant neurotoxic effect after 5 days of exposure, and death occurred within 8 days. Differentiated cerebellar granule cells were also sensitive to glutamate-related neurotoxicity, and this effect was enhanced by β25–35 pretreatment. To study the molecular mechanisms underlying the neurotoxic effects of β25–35, changes in calcium homeostasis after glutamate stimulation were evaluated in control and β25–35-treated cells. β25–35 did not affect basal [Ca2+]i but modified glutamate-induced [Ca2+]i increase, causing a sustained plateau phase that persisted even after the removal of the agonist. These results show that β25–35 induces neurotoxicity in cerebellar granule cells and that this effect is related to modifications in the control of calcium homeostasis.  相似文献   

17.
To clarify the role of the mitochondrial permeability transition pore (MPT) in the mechanism of the glutamate-induced delayed calcium deregulation (DCD) and mitochondrial depolarization (MD), we studied changes in cytosolic (pH(c)) and mitochondrial pH (pH(m)) induced by glutamate in cultured cortical neurons expressing pH-sensitive fluorescent proteins. We found that DCD and MD were associated with a prominent pH(m) decrease which presumably resulted from MPT opening. This pH(m) decrease occurred with some delay after the onset of DCD and MD. This argued against the hypothesis that MPT opening plays a dominant role in triggering of DCD. This conclusion was also supported by experiments in which Ca(2+) was replaced with antagonist of MPT opening Sr(2+). We found that in Sr(2+)-containing medium glutamate-induced delayed strontium deregulation (DSD), similar to DCD, which was accompanied by a profound MD. Analysis of the changes in pH(c) and pH(m) associated with DSD led us to conclude that MD in Sr(2+)-containing medium occurred without involvement of the pore. In contrast, in Ca(2+)-containing medium such "non-pore mechanism" was responsible only for MD initiation while in the final stages of MD development the MPT played a major role.  相似文献   

18.
By use of nuclear mini-extracts prepared from cultured cerebellar granule cells in a gel-mobility assay, exogenous N-methyl-D-aspartate (NMDA) or kainate was shown to increase both 12-O-tetradecanoylphorbol 13-acetate-responsive element (TRE)- and cyclic AMP-responsive element (CRE)-binding activity. These increases were specifically prevented by the NMDA receptor antagonist D,L-2-amino-5-phosphonovalerate and the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, respectively. The increase of TRE-binding activity was dependent on de novo protein synthesis, and its inductions by both NMDA and kainate required extracellular Ca2+. TRE-binding activity was competitively inhibited by the CRE, and vice versa, showing higher DNA-binding affinity to the CRE than to the TRE. A proteolytic clipping bandshift assay demonstrated that the increase in CRE-binding activity could be mediated by the TRE-binding activity. Thus, the TRE-binding activity cross-binding to the CRE could be activated by NMDA or kainate stimulation. The involvement of c-Fos or Fos-related proteins in the TRE- and CRE-binding complexes was shown by a supershift gel-mobility assay using anti-c-Fos antiserum.  相似文献   

19.
Abstract: The role of the transvesicular protonmotive force in synaptic vesicle recycling was investigated in cultured cerebellar granule cells. The vesicular V-ATPase was inhibited by 1 µ M bafilomycin A1; as an alternative, the pH component of the gradient was selectively collapsed by equilibration of the cells with 10 m M methylamine and monitored with the fluorescent probe Lysosensor Green. Electrical field-evoked exocytosis of d -[3H]aspartate was inhibited by bafilomycin A1 but not by methylamine, indicating that a transvesicular membrane potential rather than pH gradient is required for transmitter retention within vesicles. In contrast, neither compound affected the field-evoked uptake, recycling, or destaining of the vesicle-specific dye FM2-10; thus, vesicles whose lumens were neutral and/or depleted of transmitter could still recycle in the nerve terminal. No exhaustion of d -[3H]aspartate exocytosis was observed when cells were subjected to six consecutive trains of field stimuli (40 Hz/10 s separated by 10 s). In contrast, the release of preloaded FM2-10 was reduced by ∼50%, with each stimulus indicating that unlabeled vesicles with accumulated d -[3H]aspartate were competing with labeled vesicles for exocytosis. As d -[3H]aspartate was accumulated rapidly across the vesicle membrane from the large cytoplasmic pool, the transmitter-loaded but unlabelled vesicles may represent refilled recycling vesicles. FM2-10 destaining and d -[3H]aspartate exocytosis were reduced in parallel at low frequencies, challenging a role for transient vesicle fusion.  相似文献   

20.
Abstract: Recent evidence suggests that neuronal apoptosis is the consequence of an inappropriate reentry into the cell cycle. Expression of the cell cycle gene cyclin D1, a G1-phase cell cycle regulator, was examined in primary cultures of murine cerebellar granule cells (CGCs) during kainate (KA)-mediated apoptosis. Using cultures of CGCs, we found that a 24-h exposure to KA (1–3,000 µ M ) induced a concentration-dependent cell death with neurons exhibiting characteristic apoptotic morphology and extensive labeling using the terminal transferase-mediated nick end-DNA labeling (TUNEL) method. KA induced a time- and concentration-dependent increase in expression of cyclin D1 as determined by immunocytochemistry and western blot analysis. KA-induced apoptosis and cyclin D1 expression exhibited a similar concentration dependence and were significantly attenuated by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (50 µ M ), indicating a KA receptor-mediated effect. Here we present evidence for the first time that KA-induced apoptosis in cultured CGCs involves the induction of cyclin D1, suggesting its involvement in excitotoxic receptor-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号