首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-[8-{N-(2-Methylimidazolyl)}octanoyloxymethyl]-5,10,15, 20-tetrakis(o-pivalamido)phenylporphinatoiron(II)s (FePs) were incorporated into hydrophobic cavities of recombinant human serum albumin (rHSA), providing a totally synthetic O(2)-carrying hemoprotein (rHSA-FeP). An rHSA host absorbs maximally eight FeP molecules. Solution properties of the obtained albumin hybrid [[rHSA] = 5 wt %; FeP/HSA = 1-8 (mol/mol)] are almost identical to those of the rHSA itself; the specific gravity is 1.013 and the viscosity is 1.1 cP. Circular dichroism spectroscopy and isoelectric focusing measurement revealed that the second-order structure and surface charge distribution of rHSA were always constant independent of the binding numbers of FeP. Hydrophobic interaction is probably a major molecular force of the incorporation of this synthetic heme. rHSA-FeP can bind and release dioxygen reversibly under physiological conditions (in aqueous media, pH 7.3, 37 degrees C) like hemoglobin and myoglobin. Its O(2)-coordination structure was evaluated by resonance Raman spectroscopy. The O(2) rebinding after the laser flash photolysis showed three-phases decay, which were analyzed by triple-exponential kinetics. The O(2)-binding affinity and O(2)-association and -dissociation rate constants of rHSA-FeP satisfy the initial clinical requirements for O(2) infusion as a red cell substitute.  相似文献   

2.
The reaction of nitric oxide (NO) with a synthetic hemoprotein, the recombinant human serum albumin (rHSA) incorporating eight tetraphenylporphinatoiron(II) derivatives bearing a covalently linked axial base (FeP) [rHSA-FeP], has been investigated. The UV--vis absorption spectrum of the phosphate buffer solution (pH 7.3) of rHSA-FeP showed maxima at 425 and 546 nm upon the addition of NO. The carbonyl rHSA-FeP, in which FePs are six-coordinate CO-adducts, also moved to the same species after bubbling with NO gas. ESR spectroscopy revealed that the incorporated FePs in the albumin formed six-coordinate nitrosyl complexes; the proximal imidazole moiety does not dissociate from the central iron when NO binds to the trans side. The NO-binding affinity of rHSA-FeP (P(1/2)(NO), 1.7 x 10(-6) Torr, pH 7.3, 298 K) was significantly lower than that of FeP itself (P(1/2)(NO), 1.8 x 10(-8) Torr in toluene). Kinetically, this arises from the decreased association rate constant (k(on)(NO), 8.9 x 10(8) M(-1) s(-1) --> 1.5 x 10(7) M(-1) s(-1)). Since NO-association is diffusion controlled, incorporation of the synthetic heme into the albumin matrix appears to restrict the NO access to the central iron(II).  相似文献   

3.
Recombinant human serum albumin (rHSA) clusters have been synthesized and physicochemically characterized. Cross-linking between the Lys groups of the core albumin and a unique Cys-34 of the shell albumins with an N-succinimidyl-6-[3'-(2-pyridyldithio)propionamido]hexanoate produced the structurally defined rHSA trimer and tetramer. MALDI-TOF-MS showed a single peak with the triple and quadruple masses of rHSA. Their molar ellipticities and the isoelectric points (pI = 4.8) are all identical to those of the monomer, suggesting that the essential structures of the albumin units were intact. TEM observations demonstrated a uniform morphology of the rHSA tetramer with a diameter of 20-30 nm. The circulation half-life (tau1/2) of the 125I-labeled rHSA tetramer in rat (5.5 h) was significantly longer than that of the monomer (2.3 h) due to the low ratio of the distribution phase (alpha-phase). A total of 24 and 32 molecules of the synthetic iron(II) porphyrins (FePs) are incorporated into the hydrophobic cavities of the rHSA trimer and tetramer, respectively, producing huge artificial hemoproteins. These albumin-heme clusters can reversibly bind and release O2 under physiological conditions (37 degrees C, pH 7.3) and showed similar O2-binding properties (O2-binding affinity, association and dissociation rate constants) to those of the corresponding monomer. A large volume of O2 can be chemically dissolved into the albumin-heme cluster solutions relative to the monomeric rHSA-FeP when the molar concentration of the albumin scaffold is identical.  相似文献   

4.
5.
We present density-functional molecular dynamics simulations of FeP(Im)(AB) heme models (AB = CO, O(2), Im = imidazole) as a way of sketching the dynamic motion of the axial ligands at room temperature. The FeP(Im)(CO) model is characterized by an essentially upright FeCO unit, undergoing small deviations with respect to its linear equilibrium structure (bending and tilting up to 10 degrees and 7 degrees, often occur). The motion of the carbon monoxide ligand is found to be quite complex and fast, its projection on the porphyrin plane sampling all the porphyrin quadrants in a short time ( approximately 0.5 ps). Simultaneously, the imidazole ligand rotates slowly around the Fe-N(epsilon) bond. In contrast to carbon monoxide, the oxygen ligand in FeP(Im)(O(2)) prefers a conformation where the projection of the O-O axis on the porphyrin plane bisects one of the porphyrin quadrants. A transition to other quadrants takes place through an O-O/Fe-N(p) overlapping conformation, within 4-6 ps. Further details of these mechanisms and their implications are discussed.  相似文献   

6.
Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO) receptor. The mechanisms of activation and deactivation of this heterodimeric enzyme are unknown. For deciphering them, functional domains can be overexpressed. We have probed the dynamics of the diatomic ligands NO and CO within the isolated heme domain β(1)(190) of human sGC by piconanosecond absorption spectroscopy. After photo-excitation of nitrosylated sGC, only NO geminate rebinding occurs in 7.5 ps. In β(1)(190), both photo-dissociation of 5c-NO and photo-oxidation occur, contrary to sGC, followed by NO rebinding (7 ps) and back-reduction (230 ps and 2 ns). In full-length sGC, CO geminate rebinding to the heme does not occur. In contrast, CO geminately rebinds to β(1)(190) with fast multiphasic process (35, 171, and 18 ns). We measured the bimolecular association rates k(on) = 0.075 ± 0.01 × 10(6) M(-1) · S(-1) for sGC and 0.83 ± 0.1 × 10(6) M(-1) · S(-1) for β(1)(190). These different dynamics reflect conformational changes and less proximal constraints in the isolated heme domain with respect to the dimeric native sGC. We concluded that the α-subunit and the β(1)(191-619) domain exert structural strains on the heme domain. These strains are likely involved in the transmission of the energy and relaxation toward the activated state after Fe(2+)-His bond breaking. This also reveals the heme domain plasticity modulated by the associated domains and subunit.  相似文献   

7.
The soluble cytochrome o from Vitreoscilla contains two identical subunits and two hemes. The reduced form binds 2 mol of CO in a cooperative manner with a Hill coefficient near 2 (Tyree, B., and Webster, D. A. (1978) J. Biol. Chem. 253, 6988-6991). This carbonyl compound was photolysed with a dye laser and recombination followed at 437 or 420 nm where maximal absorbance changes were registered. Recombination kinetics were biphasic, and the fast phase was approximately 10 times the rate of the slow phase. Apparent rate constants of both phases showed a nonlinear dependence on CO concentration, respectively, in conformity with a reaction scheme which assumes the transient formation of an intermediate species in both slow and fast reactions. A study of temperature dependence of the reactions gave EA = 2.7 kcal/mol for the slow reaction and EA = 3.2 kcal/mol for the fast reaction below 23 degrees C; above this temperature the slope of the Arrhenius plot for the fast reaction became positive. Maximal rates for both phases were around pH 6.5 and fell to approximately 40% of maximal at pH 12. The binding reaction was affected by even a low concentration of sodium dodecyl sulfate (0.0025%), which changed both the kinetic constant of each phase and the relative contribution of each phase to the reaction. A model which assumes the existence of fast and slow reaction conformers in equilibrium is proposed.  相似文献   

8.
Docking of the nitrogenase component proteins, the iron protein (FeP) and the molybdenum-iron protein (MoFeP), is required for MgATP hydrolysis, electron transfer between the component proteins, and substrate reductions catalyzed by nitrogenase. The present work examines the function of 3 charged amino acids, Arg 140, Glu 141, and Lys 143, of the Azotobacter vinelandii FeP in nitrogenase component protein docking. The function of these amino acids was probed by changing each to the neutral amino acid glutamine using site-directed mutagenesis. The altered FePs were expressed in A. vinelandii in place of the wild-type FeP. Changing Glu 141 to Gln (E141Q) had no adverse effects on the function of nitrogenase in whole cells, indicating that this charged residue is not essential to nitrogenase function. In contrast, changing Arg 140 or Lys 143 to Gln (R140Q and K143Q) resulted in a significant decrease in nitrogenase activity, suggesting that these charged amino acid residues play an important role in some function of the FeP. The function of each amino acid was deduced by analysis of the properties of the purified R140Q and K143Q FePs. Both altered proteins were found to support reduced substrate reduction rates when coupled to wild-type MoFeP. Detailed analysis revealed that changing these residues to Gln resulted in a dramatic reduction in the affinity of the altered FeP for binding to the MoFeP. This was deduced in FeP titration, NaCl inhibition, and MoFeP protection from Fe2+ chelation experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Rebinding of CO to reduced cytochrome c oxidase in plant mitochondria has been monitored optically at 590-630 nm after flash photolysis at low temperature from 160 to 200 K. (1) Under 100%-CO saturation, CO rebinding exhibits a four-step mechanism. The thermodynamic parameters of the first phase have been determined; its activation energy, Ea1, is 38.9 kJ.mol-1 and its enthalpy, delta H+/-1, and entropy, delta S+/-1, of activation are respectively 37.5 kJ.mol-1 and -75.8J.mol-1.K-1. (2) When the CO concentration is decreased to 0.2%, rebinding still occurs according to a four-step mechanism. The rate constant of the first phase is CO-concentration-independent. Under non-saturating conditions there is only one CO molecule per occupied site. The rebinding mechanism does not require additional CO molecules to be present in the haem pocket. (3) Dual-wavelength scanning experiments failed to detect optical forms correlated with the resolved phases. (4) Results are discussed with respect to previous work related to CO rebinding to mammalian cytochrome c oxidase and myoglobin.  相似文献   

10.
We have analysed a kinetic model of axonal transport by simulating experimental tracer profiles. The existence of three phases of axoplasmic transport is assumed: fast anterograde, slow anterograde and retrograde. Each phase has its characteristic velocity. Transported materials are postulated to shift between these phases. Also catabolism and sequestration of material is allowed for in our model. Thus, we have set up equations which contain axonal transport, diffusion and cross-over terms. The rate constants of material shifts were determined by computer fitting to experimental data. Best-fitted values of the rate constants for transfer of material between the fast and slow phases were both 2 X 10(-5) sec-1, while the rate constants for transfer between the fast and retrograde phases were both 1 X 10(-5) sec-1. The rate constant of material loss from the slow phase to the extracellular space was 1 X 10(-6) sec-1. The material shift between the slow and retrograde phases was negligibly small. These data show that there is exchange of material between the fast and slow phases and between the fast and retrograde phases. However, there is no significant exchange between the slow and retrograde phases. Diffusion was found to have only a minor effect on the profiles. The velocity of the fast anterograde track in cold-blooded animals was predicted to be around 200 mm/day, or, in other words, to be close to experimentally observed values of the fast anterograde component of axonal transport.  相似文献   

11.
The recombinant human serum albumin (rHSA) dimer, which was cross-linked by a thiol group of Cys-34 with 1,6-bis(maleimido)hexane, has been physicochemically characterized. Reduction of the inert mixed-disulfide of Cys-34 beforehand improved the efficiency of the cross-linking reaction. The purified dimer showed a double mass and absorption coefficient, but unaltered molar ellipticity, isoelectric point (pI: 4.8) and denaturing temperature (65 degrees C). The concentration dependence of the colloid osmotic pressure (COP) demonstrated that the 8.5 g dL(-1) dimer solution has the same COP with the physiological 5 g dL(-1) rHSA. The antigenic epitopes of the albumin units are preserved after bridging the Cys-34, and the circulation lifetime of the 125I-labeled variant in rat was 18 h. A total of 16 molecules of the tetrakis[(1-methylcyclohexanamido)phenyl]porphinatoiron(II) derivative (FecycP) is incorporated into the hydrophobic cavities of the HSA dimer, giving an albumin-heme hybrid in dimeric form. It can reversibly bind and release O2 under physiological conditions (37 degrees C, pH 7.3) like hemoglobin or myoglobin. Magnetic circular dichroism (CD) revealed the formation of an O2-adduct complex and laser flash photolysis experiments showed the three-component kinetics of the O2-recombination reaction. The O2-binding affinity and the O2-association and -dissociation rate constants of this synthetic hemoprotein have also been evaluated.  相似文献   

12.
Tetrakis{(alpha,alpha,alpha,alpha-o-pivalamido)phenyl}porphinatoiron(II) with a bifunctional tail possessing an axially coordinated imidazolyl group and a protein attachable succinimidyl(glutamyl) group (FeP-GluSu) has been synthesized. It can efficiently react with the lysine residues of recombinant human serum albumin (rHSA), giving a new albumin-heme conjugate [rHSA(FeP-Glu)]. MALDI-TOFMS showed a distinct molecular ion peak at m/z 70 643, which indicates that three FeP-Glu molecules were covalently linked to the rHSA scaffold. The binding number of FeP-Glu is approximately three (mol/mol) and independent of the mixing ratio. The CD spectrum and Native PAGE revealed that the albumin structure remained unaltered after the covalent bonding of the hemes. This rHSA(FeP-Glu) conjugate can bind and release O2 reversibly under physiological conditions (pH 7.3, 37 degrees C) in the same manner as hemoglobin and myoglobin. The O2-adduct complex had a remarkably long lifetime (tau(1/2): 5 h). The O2-binding affinity [P(1/2)O2: 27 Torr] was identical to that of human red cells. Laser flash photolysis experiments gave the O2- and CO-association rate constants and suggested that there are two different geometries of the imidazole binding to the central ion.  相似文献   

13.
5,10,15,20-Tetrakis[(alpha,alpha,alpha,alpha-o-pivaloylamino)phenyl]porphinatoiron(II) and 5,10,15,20-tetrakis([alpha,alpha,alpha,alpha-o-(1-methylcyclohexanoylamino)]phenyl)porphinatoiron(II) complexes bearing a covalently bound 8-(2-methyl-1-imidazolyl)octanoyloxymethyl or 4-(methyl-L-histidinamido)butanoyloxymethyl side-chain [FeRP(B) series: R = piv or cyc, B = Im or His] have been synthesized. The histidine-bound derivatives [FepivP(His), FecycP(His)] formed five N-coordinated high-spin iron(II) complexes in organic solvents under an N(2) atmosphere and showed large O(2)-binding affinities in comparison to those of the 2-methylimidazole-bound analogues [FepivP(Im), FecycP(Im)] due to the low O(2)-dissociation rate constants. On the contrary, the difference in the fence groups around the O(2)-coordination site (pivaloyl or 1-methylhexanoyl) did not significantly influence to the O(2)-binding parameters. These four porphinatoiron(II)s were efficiently incorporated into recombinant human serum albumin (rHSA), thus providing the synthetic hemoprotein, the albumin-heme hybrid [rHSA-FeRP(B)]. An rHSA host absorbs a maximum of eight FeRP(B) molecules in each case. The obtained rHSA-FeRP(B) can reversibly bind and release O(2) under physiological conditions (in aqueous media, pH 7.3, 37 degrees C) like hemoglobin and myoglobin. As in organic solutions, the difference in the fence groups did not affect their O(2)-binding parameters, but the axial histidine coordination significantly increased the O(2)-binding affinity, which is again ascribed to the low O(2)-dissociation rates. The most remarkable effect of the heme structure appeared in the half-life (tau(1/2)) of the O(2)-adduct complex. The dioxygenated rHSA-FecycP(His) showed an unusually long lifetime (tau(1/2): 25 h at 37 degrees C) which is ca. 13-fold longer than that of rHSA-FepivP(Im).  相似文献   

14.
Fourier transform infrared (FTIR) and step-scan time-resolved FTIR difference spectra are reported for the [carbonmonoxy]cytochrome caa(3) from Thermus thermophilus. A major C-O mode of heme a(3) at 1958 cm(-1) and two minor modes at 1967 and 1975 cm(-1) (7:1:1) have been identified at room temperature and remained unchanged in H(2)O/D(2)O exchange. The observed C-O frequencies are 10 cm(-1) higher than those obtained previously at 21 K (Einarsdóttir, O., Killough, P. M., Fee, J. A., and Woodruff, W. H. (1989) J. Biol. Chem. 264, 2405-2408). The time-resolved FTIR data indicate that the transient Cu(B)(1+)-CO complex is formed at room temperature as revealed by the CO stretching mode at 2062 cm(-1). Therefore, the caa(3) enzyme is the only documented member of the heme-copper superfamily whose binuclear center consists of an a(3)-type heme of a beta-form and a Cu(B) atom of an alpha-form. These results illustrate that the properties of the binuclear center in other oxidases resulting in the alpha-form are not required for enzymatic activity. Dissociation of the transient Cu(B)(1+)-CO complex is biphasic. The rate of decay is 2.3 x 10(4) s(-1) (fast phase, 35%) and 36.3 s(-1) (slow phase, 65%). The observed rate of rebinding to heme a(3) is 34.1 s(-1). The implications of these results with respect to the molecular motions that are general to the photodynamics of the binuclear center in heme-copper oxidases are discussed.  相似文献   

15.
We have measured the rebinding of carbon monoxide (CO) to some distal mutants of myoglobin (Mb) in the time range from 10(-8) to 10(-1) s by flash photolysis, in which the photodissociated CO rebinds to the heme iron without escaping to the solvent water from the protein matrix. We have found that the double mutants [His64-->Val/Val68-->Thr (H64V/V68T) and His64-->Val/Val68-->Ser (H64V/V68S)] have an extremely large geminate yield (70-80%) in water at 5 degreesC, in contrast to the 7% of the geminate yield of wild-type Mb. The CO geminate yields for these two mutants are the largest in those of Mb mutants reported so far, showing that the two mutants have a unique heme environment that favors CO geminate rebinding. Comparing the crystal structures and 1H-NMR and vibrational spectral data of H64V/V68T and H64V/V68S with those of other mutants, we discuss factors that may control the nanosecond geminate CO rebinding and CO migration in the protein matrix.  相似文献   

16.
It is well known that chronic treatment with lithium gives cytoprotection from ischemia and neurodegeneration. Despite the clinical relevance, the potential effects of acute lithium treatment just before and during early stages of ischemia are not well known. Brain impedance was measured in an experimental global ischemia model, to determine these potential effects and their time course,as measured in minutes. Thiobarbital anesthetized (60 mg·kg(-1), intraperitoneal injection) male Sprague-Dawley rats were infused intravenously (i.v.) with isovolumetric amounts of ringer (n = 10 rats) or lithium (Li(2)CO(3); 10; 30; 100 mg·kg(-1); n = 6 rats per dose tested). Cortico-subcortical impedance was recorded before (20 min) and after (20 min) the infusion, and during global cerebral ischemia (20 min) induced by cardiopulmonary arrest due to the administration of D-tubocurarine. Lithium did not change tissue impedance in normoxid animals. In the ringer-infused group, global cerebral ischemia first (9 min) shows a fast voltage decay rate (-7.08%·min(-1)), followed by a slow one (-0.94%·min(-1)) for the last 11 min of the recording. Lithium, at any dose tested, induced a strong reduction in voltage decay for both fast (-3.7%·min(-1)) and slow (-5.2%·min(-1)) phases, although the reduction was more intense in the first phase (>58%, Mann-Whitney Z = 2.02; P < 0.043). The reduction was more effective at 10 mg (Li?CO?)·kg(-1) than at 30 or 100 mg·kg(-1). The time course of brain edema was defined by curve fitting for ringer- (time constant λ = 512.9 s) or lithium-infused animals (λ = 302.0 s). These results suggest that acute lithium infusion 20 min prior to global ischemia, strongly reduces cerebral impedance by reducing the decay rate and the duration of the fast decay phase, and increasing time constant decay during ischemia.  相似文献   

17.
S Hahm  B Durham  F Millett 《Biochemistry》1992,31(13):3472-3477
The reactions of yeast cytochrome c peroxidase with horse cytochrome c derivatives labeled at specific lysine amino groups with (dicarboxybipyridine)(bisbipyridine)ruthenium(II) [Ru(II)] were studied by flash photolysis. All of the derivatives formed complexes with cytochrome c peroxidase compound I (CMPI) at low ionic strength (2 mM sodium phosphate, pH 7). Excitation of Ru(II) to Ru(II*) with a short laser flash resulted in electron transfer to the ferric heme group in cytochrome c, followed by electron transfer to the radical site in CMPI. This reaction was biphasic and the rate constants were independent of CMPI concentration, indicating that both phases represented intracomplex electron transfer from the cytochrome c heme to the radical site in CMPI. The rate constants of the fast phase were 5200, 19,000, 55,000, and 14,300 s-1 for the derivatives modified at lysines 13, 25, 27, and 72, respectively. The rate constants of the slow phase were 260, 520, 200, and 350 s-1 for the same derivatives. These results suggest that there are two binding orientations for cytochrome c on CMPI. The binding orientation responsible for the fast phase involves a geometry that supports rapid electron transfer, while that for the slow phase allows only slow electron transfer. Increasing the ionic strength up to 40 mM increased the rate constant of the slow phase and decreased that of the fast phase. A single intracomplex electron transfer phase with a rate constant of 2800 s-1 was observed for the lysine 72 derivative at this ionic strength. When a series of light flashes was used to titrate CMPI to CMPII, the reaction between the cytochrome c derivative and the Fe(IV) site in CMPII was observed. The rate constants for this reaction were 110, 250, 350, and 140 s-1 for the above derivatives measured in low ionic strength buffer.  相似文献   

18.
Previous laser flash photolysis investigations between 100 and 300 K have shown that the kinetics of CO rebinding with cytochrome P450(cam)(camphor) consist of up to four different processes revealing a complex internal dynamics after ligand dissociation. In the present work, molecular dynamics simulations were undertaken on the ternary complex P450(cam)(cam)(CO) to explore the CO migration pathways, monitor the internal cavities of the protein, and localize the CO docking sites. One trajectory of 1 nsec with the protein in a water box and 36 trajectories of 1 nsec in the vacuum were calculated. In each trajectory, the protein contained only one CO ligand on which no constraints were applied. The simulations were performed at 200, 300, and 320 K. The results indicate the presence of seven CO docking sites, mainly hydrophobic, located in the same moiety of the protein. Two of them coincide with xenon binding sites identified by crystallography. The protein matrix exhibits eight persistent internal cavities, four of which corresponding to the ligand docking sites. In addition, it was observed that water molecules entering the protein were mainly attracted into the polar pockets, far away from the CO docking sites. Finally, the identified CO migration pathways provide a consistent interpretation of the experimental rebinding kinetics.  相似文献   

19.
In this study we produced germline transgenic silkworms that spin cocoons containing recombinant human serum albumin (rHSA) in the sericin layer. A piggyBac-based transformation vector was constructed that carried HSA cDNA driven by sericin-1 gene promoter, viral enhancer hr3, and gene encoding viral trans-activator IE1. Isolated silk glands were bombarded with the vector and transplanted into host larvae. Three days later, the transplants were immunohistochemically analyzed, which showed that middle silk gland (MSG) cells expressed rHSA and secreted it into the MSG lumen. Then, silkworm eggs were injected with the vector and developed to larvae. The obtained transgenic silkworms spun silk threads whose sericin layers contained rHSA at 3.0microg/mg of cocoons. Most (83%) of the rHSA in cocoons was extracted with phosphate buffered saline, which was then subjected to ammonium sulfate precipitation and affinity chromatography. Finally, we obtained 2.8mg of 99%-pure rHSA from 2g of cocoons. Measurements of circular dichroism spectra of rHSA, and equilibrium dissociation constants of rHSA to warfarin and naproxen indicated that rHSA was conformationally and functionally identical to natural plasma HSA. Germline transgenic silkworms will be useful for producing various recombinant proteins in the sericin layer of cocoons.  相似文献   

20.
Human serum albumin (HSA) incorporating synthetic hemes, the tetrakis(o-pivalamido)phenylporphinatoiron(II) derivative (FeP), is an artificial hemoprotein (HSA-FeP) which is able to reversibly bind and release dioxygen under physiological conditions (in aqueous media, pH 7.4, 37 degrees C) like hemoglobin and myoglobin. Physiological responses to exchange transfusion with HSA-FeP solution [[HSA], 5 g/dL; FeP/HSA, 4 (mol/mol)] into rats after hemodilution and hemorrhage (Hct, about 10%) has been evaluated. The declined mean arterial pressure (MAP) and blood flow after a 70% exchange with HSA and the further 40% bleeding of blood were significantly recovered up to about 90% of the baseline values by the injection of HSA-FeP. Furthermore, the renal cortical O(2)-tensions and skeletal tissue O(2)-tensions were also increased, indicating the in vivo O(2)-delivery of HSA-FeP. Autoxidation of ferrous Fe(II)P to ferric Fe(III)P was retarded in the blood stream; the half-lifetime of the dioxygenated FeP [tau(1/2)(O(2))] in vivo was 4.1 h [cf. 1.0 h (in vitro)]. It has been found that autooxidized Fe(III)P was certainly reduced in the whole blood suspension. Physiological concentrations of ascorbic acid continuously provided by red blood cells probably rereduces Fe(III)P, leading to the apparent long lifetime of the dioxygenated species of FeP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号