首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Maximum yield under highly unpredictable environments should be associated with selection of genotypes with superior performance across good and poor environments. Several stability parameters have been proposed to identify superior genotypes over a wide range of environments. None of these has been used as selection criteria, however, because of their low heritability. The objective of the study presented here was to compare the relative efficiency of predicted gain from indirect selection among three stability parameters: the coefficient of regression (b), deviation from regression (S d 2 ), and principal components scores (PC) from the AMMI model; two indices including mean yield and a stability parameter; and three indices involving yield at the best, the worst, and an intermediate environment. Two hundred S1 families from each of two sorghum populations (TP24D and KP9B) were evaluated at four dry-land evironments over 2 years. The low heritability estimates and the low genetic correlation between the various stability parameters and mean yield resulted in their low relative efficiency as indirect selection criteria for high yield across environments. However, when the parameters were combined with mean yield over all to create indices, the relative efficiency increased for all the environments. In terms of resource allocation, these indices were not as efficient as mean productivity, rank summation, and selection index that involved fewer environments in their estimation.Contribution no. 9820 of Agricultural Research Division, Univ. of Neb. and no. 92-203-J of Kansas Exp. Stn.  相似文献   

2.
Toxigenicity of fungi from grain sorghum   总被引:2,自引:0,他引:2  
The mycoflora of nine varieties of grain sorghum was determined by plating serial dilutions of ground samples on rose bengal-streptomycin agar. Seventeen species of fungi representing 10 genera were identified. Curvularia, Penicillium, Mucor, and Aspergillus were dominant genera. Extracts of P. herquei were highly toxic to brine shrimp, while those of C. clavata, C. lunata, and Mucor mucedo showed low to moderate toxicity. Extracts of C. clavata, C. lunata, and M. mucedo were highly toxic to chicken embryos; those of six other species showed low to moderate toxicity. Extracts of C. clavata, C. lunata, M. mucedo, Fusarium moniliforme, Alternaria tenuissima, P. herquei, and P. steckii showed varying degrees of toxicity to day-old cockerels.  相似文献   

3.
4.
Two greenhouse experiments were conducted to examine the effects of increased levels of soil NH 4 + on the growth and yield of grain sorghum (Sorghum bicolor (L.) Moench). Nitrogen was supplied as urea plus the nitrification inhibitor nitrapyrin (enhanced-NH 4 + supply) or as a 41 molar ratio of CA(NO3)2 and Mg(NO3)2 at rates of 0 to 450 mg N kg–1 soil in 37.5 mg N increments. Enhanced-NH 4 + supply, in comparison to the NO3 treatment, increased grain yield 15 and 18% in the two experiments. In one experiment this yield increase occurred through increased number of kernels and in a second experiment, through increased weight of kernels. During the first 28 days after plant emergence, the number of leaves, stalk width, plant weight, and plant N content were greater with enhanced-NH 4 + supply than with NO 3 . However, at harvest total plant weight and plant N content were minimally affected by enhanced-NH 4 + supply.  相似文献   

5.
6.
González  H.H.L.  Martínez  E.J.  Resnik  S.L. 《Mycopathologia》1997,139(1):35-41
Sorghum (Sorghum bicolor (L.) Moench) is an important cereal produced in and exported from Argentina. The risk of contamination by mycotoxins is related to the mycoflora associated with the sorghum grain. This paper reports on the identification of internal mycoflora of sorghum grain harvested in Argentina in 1991, 1992 and 1993, years with different total rainfall levels. A mycological survey was carried out on sorghum samples, from a location at the humid Argentinian pampa, using a Fusarium/dematiaceous fungi selective medium. The relative density of the prevalent fungal genera were statistically compared. Genus Fusarium was the most prevalent component of the internal seedborne mycoflora in the three harvest seasons. Genera Alternaria, Phoma, Penicillium and Aspergillus were also isolated. The predominant Fusarium was F. moniliforme and the most frequently isolated species of Alternaria, Phoma, Penicillium and Aspergillus were Alt. alternata, Pho. sorghima, Pen. funiculosum and Asp. flavus, respectively. This is the first report of the isolation of Fusarium napiforme in sorghum grain in Argentina. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The major cationic peroxidase in sorghum grain (SPC4) , which is ubiquitously present in all sorghum varieties was purified to apparent homogeneity, and found to be a highly basic protein (pI approximately 11). MS analysis showed that SPC4 consists of two glycoforms with molecular masses of 34,227 and 35,629 Da and it contains a type-b heme. Chemical deglycosylation allowed to estimate sugar contents of 3.0% and 6.7% (w/w) in glycoform I and II, respectively, and a mass of the apoprotein of 33,246 Da. High performance anion exchange chromatography allowed to determine the carbohydrate constituents of the polysaccharide chains. The N-terminal sequence of SPC4 is not blocked by pyroglutamate. MS analysis showed that six peptides, including the N-terminal sequence of SPC4 matched with the predicted tryptic peptides of gene indice TC102191 of sorghum chromosome 1, indicating that TC102191 codes for the N-terminal part of the sequence of SPC4, including a signal peptide of 31 amino acids. The N-terminal fragment of SPC4 (213 amino acids) has a high sequence identity with barley BP1 (85%), rice Prx23 (90%), wheat WSP1 (82%) and maize peroxidase (58%), indicative for a common ancestor. SPC4 is activated by calcium ions. Ca2+ binding increased the protein conformational stability by raising the melting temperature (Tm) from 67 to 82 degrees C. SPC4 catalyzed the oxidation of a wide range of aromatic substrates, being catalytically more efficient with hydroxycinnamates than with tyrosine derivatives. In spite of the conserved active sites, SPC4 differs from BP1 in being active with aromatic compounds above pH 5.  相似文献   

8.
Significant genetic variation in leaf photosynthetic rate has been reported in grain sorghum [Sorghum biocolor (L.) Moench]. The relationships between leaf photosynthetic rates and total biomass production and grain yield remain to be established and formed the purpose of this experiment. Twenty two grain sorghum parent lines were tested in the field during the 1988 growing season under well-watered and water-limited conditions. Net carbon assimilation rates were measured at mid-day during the 30 day period from panicle initiation to head exertion on upper-most fully expanded leaves using a portable photosynthesis system (LI-6200). Total biomass and grain production were determined at physiological maturity. The lines exhibited significant genetic variation in leaf photosynthetic rate, total biomass production and grain yield. Significant positive correlations existed between leaf photosynthesis and total biomass and grain production under both well-watered and water-limited conditions. The results suggest that leaf photosynthetic rate measured prior to flowering is a good indicator of productivity in grain sorghum.  相似文献   

9.
The purpose of the present study was to investigate the animo acid composition of 5 different samples of C Hara sorghum grain and to estimate the biological values of their protein fraction by means of some chemical indexes, such as the the chemical score, biological value, essential amino acid index and the protein balance index.The figures obtained were compared with those of 5 different samples of sorghum grain belonging to the variety NK 121 and with those of common maize grain. C Hara appeared to have the highest amount of crude protein with the lowest biological value, but when protein digestibility figures were considered, C Hara had the highest content of biologically utilizable proteins.  相似文献   

10.
《Biomass》1989,18(1):43-57
In an attempt to reduce the costs associated with fuel ethanol production from grain, the authors used sweet sorghum juice as a partial or complete replacement for tap-water in mash preparation and fermentation. This juice, which was an unutilized by-product of sweet sorghum silage preservation by the Ag-Bag method, contained 6·5–7·6% (wt/wt) reducing sugar and produced up to 3·51% (v/v) ethanol beers after fermentation. Varying amounts of this juice were mixed with water and corn or wheat, either before or after liquefaction (front-end or back-end loading, respectively). When over 60% juice replacement was used in front-end loading trials, salt buildup, due to required pH adjustments during cooking, inhibited yeast metabolism and thereby reduced yields. This inhibition was not observed during back-end loading trials since acid and base usage during cooking were reduced. However, in all trials we noted yeast inhibition by some factor(s) present in juice from sweet sorghum variety NK 8368. This inhibition was not observed with variety NK 405. If sweet sorghum juice is used to replace 40% of the water and either 12·5% of the corn or 12% of the wheat in mash preparation, production costs can be reduced by $0.032/liter ($0.12/US gallon) for corn and $0.040/liter ($0.15/US gallon) for wheat.  相似文献   

11.
Magadi soda (MS) is a commercially available form of sodium sesquicarbonate in Kenya. Soaking high-tannin sorghum (HTS) grain (2.5% catechin equivalents) in a 6 g l−1 MS solution was shown to eliminate measurable tannin content. A feeding trial was conducted to investigate the performance of broiler chicks fed soyabean-based diets containing HTS or MS-treated HTS as the sole cereal source from 1-3 weeks of age. A third diet containing sorghum with no detectable tannin content served as the control. Diets containing 220 g kg−1 crude protein were fed to 6 pens of 5 birds per pen for each treatment from 1-2 weeks of age and to 4 pens of 4 birds per pen per treatment in weeks 2-3. Feed intake, weight gain and feed efficiency (FE) were determined weekly. Apparent dry matter digestibility (DMD), metabolizable energy (AMEn) and nitrogen retention (NR) were measured over the last 3 days of each period. Gain and feed intake were not affected by treatment (P > 0.05), but FE and DMD were lower (P < 0.05) for the HTS diet than for the MS-treated HTS and control diets, which themselves were similar. Absolute NR was higher (P < 0.05) for the control diet than either of the HTS diets in week 2 but was the same for all diets in week 3. As % of intake, NR was higher (P < 0.05) for the control in both weeks 2 and 3 than for the HTS diets, although this was improved (P < 0.05) by MS treatment in week 2. AMEn values showed a similar pattern to that for NR in week 2 but in week 3 was the same for the MS-treated HTS and control diets, which were higher than the HTS diet (P < 0.05). Though total tannin content did not influence growth of birds in this study, MS treatment of HTS did reduce deleterious effects on FE, AMEn and NR as a % of intake.  相似文献   

12.
Activity of key nitrogen assimilating enzymes was studied in developing grains of high-lysine opaque sorghum P-721 and normal sorghum CSV-5. The higher percentage of protein in opaque sorghum was mainly due to lower starch content since protein per grain was less than in CSV-5. During grain development, albufn and globulin decreased while prolafne and glutelin increased. Prolafne content in CSV-5 was higher than in opaque sorghum. Average nitrate reductase activity in flag and long leaf were similar in both the varieties. The nitrate reductase activity decreased during grain development. Glutamate dehydrogenase activity was higher during early development and lower at later stages in opaque sorghum than in CSV-5. Glutamate oxaloacetate transaminase activity was higher and glutamine synthetase lower in opaque sorghum than in CSV-5 grains during development. Glutamate synthase activity was higher in opaque sorghum up to day 20 and lower thereafter than in CSV-5. It is suggested that reduced activities of glutamine synthetase as well as glutamate synthase in opaque sorghum as compared to CSV-5 during later stages of development may restrict protein accumulation in the former.  相似文献   

13.
Summary A relationship between height genes (dw locus) and perioxidase was demonstrated by extracting and determining peroxidase specific activity in internode tissue from different height isogenic lines of sorghum Sorghum bicolor (L.) Moench]. Tall plants (2 dwarf) had less peroxidase per gram tissue than their short counterparts (3 dwarf); their F1 offspring internodes were closer but had more peroxidase than the tall parent. Peroxidase in the F2 offspring was inversely related to their height and followed a simply-inherited pattern similar to that for height.Among different tissues analyzed, peroxidase concentration in roots was higher than in leaves and internodes, whole internode higher than in pith, and seed embryo higher than in endosperm. Peroxidase activity of nonviable seeds was negligible.Isoelectric focusing provided a more detailed peroxidase zymogram than did gel electrophoresis. Differences in peroxidase bands among tall and short parental plants, F1 and F2 segregating groups all appear to be reflected by intensity differences rather than by position or number of bands.Activities of nitrate reductase and acid phosphatase did not correlate with height. That finding provides a control and suggests that peroxidase activity is not associated with height by chance but may have a functional relationship.Contribution no. 1628-j, Dept. of Agronomy and no. 188-j, Dept. of Biochemistry, and no. 962-j, Dept. of Grain Science and Industry, Kansas State University, Kansas Agricultural Experiment Station, Manhattan, Kansas 66506.  相似文献   

14.
Genetic variation for gas exchange rates in grain sorghum   总被引:2,自引:0,他引:2       下载免费PDF全文
Carbon assimilation rate (A) and stomatal conductance (g) are highly correlated. However, the slope of the A versus g relationship differs among species and environments resulting in differences in gas exchange efficiency which should reflect water use efficiency. The objective of this research was to determine the genetic variation for A and g in grain sorghum (Sorghum bicolor [L.] Moench.). Field experiments were conducted using 30 sorghum hybrids with four water supply treatments. A, g, and leaf water potential (Ψw) of individual leaves were monitored every 15 to 20 days. Significant genetic variation existed among the hybrids for A and g. Plant age and water supply also affected A and g as expected. When A was regressed on g for each hybrid, large and significant differences existed among the slopes, implying differences in intrinsic gas exchange efficiency. The regression analysis of A and g versus Ψw suggested that A was more sensitive than g to increasing water stress. Genetic differences in the rate of change in A as water stress increased were observed. Regression analysis was used to evaluate the individual hybrid response relative to other hybrids. Twofold difference in slopes existed for A. These results provide evidence for genetic variation in gas exchange rates which might directly contribute to whole plant water use efficiency and productivity.  相似文献   

15.
Several hundred somaclones established from plants regenerated from embryogenic callus cultures of six high tannin sorghum lines were screened for variants with altered levels of polyphenols in the grain. Grain from over 6000 plants including the R 1 (primary), R2, and R3 generations were analyzed for total phenols, flavan-4-ols, and proanthocyanidins (condensed tannins). Although many variants which had lost the ability to synthesize chlorophyll were found, none of the somaclones tested had lost or greatly reduced the ability to synthesize any of the polyphenols assayed. However, we did observe statistically significant differences in polyphenol concentration between tissue culture-derived R1 plants and the parental controls. In the R2 generation the proportion of somaclones which differed significantly from the parents varied from 47% to 68% depending upon genotype. The average somaclonal variation rate and somaclonal variant frequency estimated in the tested population for the three polyphenol characteristics ranged from 37.3% to 40.7% and 5.3% to 7.8%, respectively. Variants with decreased levels of polyphenols were usually epigenetic and reverted back to normal levels in subsequent generations, but those with increased levels usually persisted after two meiotic cycles, indicating they are heritable. Variants with polyphenol levels increased up to 80% or decreased by 30% were selected for in the R3 generation.  相似文献   

16.
Radchenko EE 《Genetika》2006,42(1):65-70
The inheritance of resistance against the Krasnodar population of common greenbug Schizaphis graminum Rond. was analyzed in nine accessions of grain sorghum and sudangrass. The dominant gene of cultivar Capbam (k-455, United States) was effective against some greenbug clones and differed from the Sgr1-Sgr11 resistance genes. The gene was designated as Sgr12. The cultivar Capbam was proposed for use as a differentiator in population genetic studies in S. graminum. The cultivar Sarvasi (k-3852, Hungary) contains not only the dominant Sgr1 gene, but also a recessive gene (most likely Sgr2), which is effective against some greenbug clones. Grain sorghum accessions k-928 and k-929 (Gugara Belaya, western China) each carry two highly effective dominant resistance genes, which differ from Sgr1-Sgr4, Sgr6, Sgr9, and Sgr10. In addition, the resistance genes of accession k-929 differ from the Sgr5 gene. Accession k-928 proved to contain an additional dominant resistance gene, which is expressed in response to some greenbug clones. The gene was designated as Sgr13. Sudangrass accessions k-100 and k-122 (Ukraine) each carry two dominant resistance genes. Accessions k-62, k-99 (Ukraine), and k-96 (Russia) each carry one dominant and one recessive resistance gene. The dominant resistance genes that are expressed in the cultivar Odesskaya 25 (k-122) in response to infestation with some clones from the natural greenbug population were designated as Sgr14 and Sgr15.  相似文献   

17.
The inheritance of resistance against the Krasnodar population of common greenbug Schizaphis graminum Rond. was analyzed in nine accessions of grain sorghum and sudangrass. The dominant gene of cultivar Capbam (k-455, United States) was effective against some greenbug clones and differed from the Sgr1–Sgr11 resistance genes. The gene was designated as Sgr12. The cultivar Capbam was proposed for use as a differentiator in population genetic studies in S. graminum. The cultivar Sarvasi (k-3852, Hungary) contains not only the dominant Sgr1 gene, but also a recessive gene (most likely Sgr2), which is effective against some greenbug clones. Grain sorghum accessions k-928 and k-929 (Gugara Belaya, western China) each carry two highly effective dominant resistance genes, which differ from Sgr1–Sgr4, Sgr6, Sgr9, and Sgr10. In addition, the resistance genes of accession k-929 differ from the Sgr5 gene. Accession k-928 proved to contain an additional dominant resistance gene, which is expressed in response to some greenbug clones. The gene was designated as Sgr13. Sudangrass accessions k-100 and k-122 (Ukraine) each carry two dominant resistance genes. Accessions k-62, k-99 (Ukraine), and k-96 (Russia) each carry one dominant and one recessive resistance gene. The dominant resistance genes that are expressed in the cultivar Odesskaya 25 (k-122) in response to infestation with some clones from the natural greenbug population were designated as Sgr14 and Sgr15.  相似文献   

18.

Background

Sorghum is a tropical C4 cereal that recently adapted to temperate latitudes and mechanized grain harvest through selection for dwarfism and photoperiod-insensitivity. Quantitative trait loci for these traits have been introgressed from a dwarf temperate donor into hundreds of diverse sorghum landraces to yield the Sorghum Conversion lines. Here, we report the first comprehensive genomic analysis of the molecular changes underlying this adaptation.

Results

We apply genotyping-by-sequencing to 1,160 Sorghum Conversion lines and their exotic progenitors, and map donor introgressions in each Sorghum Conversion line. Many Sorghum Conversion lines carry unexpected haplotypes not found in either presumed parent. Genome-wide mapping of introgression frequencies reveals three genomic regions necessary for temperate adaptation across all Sorghum Conversion lines, containing the Dw1, Dw2, and Dw3 loci on chromosomes 9, 6, and 7 respectively. Association mapping of plant height and flowering time in Sorghum Conversion lines detects significant associations in the Dw1 but not the Dw2 or Dw3 regions. Subpopulation-specific introgression mapping suggests that chromosome 6 contains at least four loci required for temperate adaptation in different sorghum genetic backgrounds. The Dw1 region fractionates into separate quantitative trait loci for plant height and flowering time.

Conclusions

Generating Sorghum Conversion lines has been accompanied by substantial unintended gene flow. Sorghum adaptation to temperate-zone grain production involves a small number of genomic regions, each containing multiple linked loci for plant height and flowering time. Further characterization of these loci will accelerate the adaptation of sorghum and related grasses to new production systems for food and fuel.  相似文献   

19.
20.
Heterosis is an important component of hybrid yield performance. Identifying high yielding hybrids is expensive and involves testing large numbers of hybrid combinations in multi-environment trials. Molecular marker diversity has been proposed as a more efficient method of selecting superior combinations. The aim of this study was to investigate the value of molecular marker-based distance information to identify high yielding grain sorghum hybrids in Australia. Data from 48 trials were used to produce hybrid performance-estimates for four traits (yield, height, maturity and stay green) for 162 hybrid combinations derived from 70 inbred parent lines. Each line was screened with 113 mapped RFLP markers. The Rogers distances between the parents of each hybrid were calculated from the marker information on a genome basis and individually for each of the ten linkage groups of sorghum. Some of the inbred parents were related so the hybrids were classified into 75 groups with each group containing individual hybrids that showed similar patterns of Rogers distances across linkage groups. Correlations between hybrid-group performance and hybrid-group Rogers distances were calculated. A significant correlation was observed between whole genome-based Rogers distance and yield ( r = 0.42). This association is too weak to be of value for identifying superior hybrid combinations. One reason for the generally poor association between parental genetic diversity and yield may be that important QTLs influencing heterosis are located in particular chromosome regions and not distributed evenly over the genome. Variation in the sign and magnitude of correlations between Rogers distance and hybrid-group performance for particular linkage groups observed in this study support this hypothesis. The concept of using diversity on individual linkage groups to predict performance was explored. Using data from just two linkage groups 38% of the variation in hybrid performance for grain yield could be explained. A model combining phenotypic trait data and parental diversity on particular linkage groups explained 71% of the variation in grain yield and has potential for use in the selection of heterotic hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号